AUTHOR=Fang Su-jun , Yin Zhao-di , Cai Qi , Li Li-fan , Zheng Peng-fei , Chen Li-zhen TITLE=Harnessing artificial intelligence for brain disease: advances in diagnosis, drug discovery, and closed-loop therapeutics JOURNAL=Frontiers in Neurology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2025.1615523 DOI=10.3389/fneur.2025.1615523 ISSN=1664-2295 ABSTRACT=Brain diseases pose a significant global health challenge due to their complexity and the limitations of traditional medical strategies. Recent advancements in artificial intelligence (AI), especially deep learning models like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Graph Neural Networks (GNNs), offer powerful new tools for analysis. These neural networks are effective at extracting complex patterns from high-dimensional data. By integrating diverse data sources-such as neuroimaging, multi-omics, and clinical information-multimodal AI provides the comprehensive view needed to understand intricate disease mechanisms. This review outlines how these technologies enhance precision drug development and enable closed-loop treatment systems for brain disorders. Key applications include improving diagnostic accuracy, identifying novel biomarkers, accelerating drug discovery through target identification and virtual screening, and predicting patient-specific treatment responses. These AI-driven methods have the potential to shift medicine from a one-size-fits-all model to a personalized approach, with diagnostics and therapies tailored to individual profiles. However, realizing this potential requires addressing significant challenges related to data access, model interpretability, clinical validation, and practical integration.