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Introduction: This study investigates whether a multi-shell diffusion tensor 
imaging (DTI) protocol and its subsets can reliably distinguish healthy controls 
(HC) from patients with multiple sclerosis (MS) presenting with low Expanded 
Disability Status Scale (EDSS) scores and mild MRI findings.

Methods: To enhance accuracy, spatial systematic errors in diffusion 
measurements were corrected using the B-matrix Spatial Distribution method 
(BSD-DTI). We examined the discriminative potential of fractional anisotropy 
(FA) and mean diffusivity (MD) across three broad brain regions: whole brain 
(WB), white matter (WM), and gray matter (GM), using both the full protocol and 
its subsets. Additionally, we employed a more detailed classification strategy 
based on segmentation into 95 regions of interest (ROIs), analyzing FA, MD, axial 
diffusivity (AD), and radial diffusivity (RD) under a stringent statistical criterion.

Results: While the protocol and each subset showed a comparable ability to 
differentiate between HC and MS groups, substantial variability in metric values 
across protocols highlights the limited utility of directly comparing DTI metrics 
between acquisition schemes.

Discussion: The results emphasize the importance of accounting for spatial 
systematic errors when selecting optimal protocols for clinical and research 
applications.
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1 Introduction

Diffusion Tensor Imaging (DTI) is an MRI technique that utilizes the phenomenon of 
water diffusion (1, 2) as a natural source of contrast. Since its introduction nearly three decades 
ago (3), DTI has become an important modality in neuroradiology, with increasing utility in 
the imaging of the musculoskeletal system, abdomen, and heart (4–8). A distinctive advantage 
of DTI lies in its ability to yield quantitative metrics derived from the eigenvalues and 
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eigenvectors of the diffusion tensor, which are closely related to the 
underlying tissue microstructure (9–11).

Nevertheless, the comparability of DTI metrics across scanners, 
protocols, and sites remains limited. This is largely due to the 
dependence of the measured diffusion tensor on MRI hardware and 
sequence-specific parameters (12–15), resulting in an apparent rather 
than absolute tensor representation. Moreover, DTI is sensitive to 
random noise, affecting the signal-to-noise ratio (16, 17), as well as 
systematic spatial errors induced by gradient field inhomogeneities 
(18–23). While the former can be mitigated by increasing voxel size 
or signal averaging, the latter requires the precise characterization of 
the spatial error distribution specific to the scanner and protocol in use.

In this study, we aim to determine whether a multi-shell diffusion 
tensor imaging (DTI) protocol and its subsets can reliably distinguish 
healthy individuals from patients with multiple sclerosis (MS) with low 
Expanded Disability Status Scale (EDSS) scores, and to identify which 
variant offers the best diagnostic performance in individuals with mild 
neurological and magnetic resonance imaging (MRI) findings. To ensure 
accuracy, spatial systematic errors in diffusion measurements were 
corrected using the B-matrix Spatial Distribution method (BSD-DTI).

In contrast to previous work (31), which analyzed the discriminative 
power of DTI metrics in a different context, we evaluate the effectiveness 
of fractional anisotropy (FA) and mean diffusivity (MD) across three 
large brain regions, whole brain (WB), white matter (WM), and gray 
matter (GM) using both the full protocol and its subsets. Additionally, 
we  propose a more detailed classification approach based on the 
segmentation of the brain into 95 regions of interest (ROIs) and the 
analysis of four DTI-derived metrics: FA, MD, axial diffusivity (AD), and 
radial diffusivity (RD), applying a stringent statistical criterion.

The influence of protocol design on group differentiation is 
assessed through a comparison of several protocol variants acquired 
on an MRI system optimized for high signal-to-noise ratio (SNR) and 
corrected for spatial systematic errors related to gradient 
nonuniformities, offering insights into optimal acquisition strategies 
for clinical application.

2 Theory and related work

The phenomenon of spatial heterogeneity in magnetic field 
gradients, observed in Diffusion Weighted Imaging (DWI) and DTI, 
was first addressed by researchers in 2003 (18). They attributed this 
effect to the nonlinearity of magnetic field gradients generated by 
gradient coils. This spatial heterogeneity is undesirable in DWI/DTI 
as it introduces systematic errors, negatively affecting the accuracy of 
diffusion measurements. To mitigate this issue, Bammer introduced a 
correction based on characteristics in the form of spherical harmonic 
functions that describe the magnetic field produced by the gradient 
coils. This correction led to significant improvements in the accuracy 
of DTI metric calculations (18).

An alternative approach to addressing this issue was proposed in 
2008, utilizing diffusion tensor norms in the form of anisotropic and 
isotropic phantoms with well-defined structures and known 
distributions of diffusion tensors (24). Diffusion tensor norms here 
refer to the known, spatially resolved diffusion tensor field of the 
phantom for each voxel, serving as a reference diffusion tensor D(r). 
By applying the Stejskal-Tanner (Equation 1), a system of equations is 
solved to accurately determine the spatial distribution of the b(r) 
matrix. This matrix represents the effective diffusion weighting at each 

voxel, reflecting local distortions caused by magnetic field gradient 
heterogeneity. The definition of b(r) is given explicitly in Equation 3. 
This approach does not require explicitly identifying the sources of 
heterogeneity in magnetic field gradients. Instead, the known diffusion 
tensor norms for each voxel within the studied region inside the RF coil 
are necessary. Methods for determining these reference diffusion 
tensor fields for isotropic and anisotropic phantoms have been 
described in detail in previous publications. This method, referred to 
as B-matrix Spatial Distribution in DTI (BSD-DTI), was thoroughly 
described both theoretically and experimentally, with successful 
implementation on a 9.4 T MRI system (22).

A complementary method involves mapping the spatial 
distribution of magnetic field gradients by directly measuring the 
magnetic field (21, 25). From this mapping, the spatial distribution of 
the b(r) matrix can be  derived. This technique demonstrates the 
inherent heterogeneity in magnetic field gradients. However, it raises 
a critical concern regarding the accuracy of determining the true 
distribution of the b(r) matrix when utilizing MR sequences different 
from the one intended for the specific experimental setup.

It should be noted that the above experimental observations are 
contrary to the current theoretical approach, namely that the Stejskal-
Tanner (S-T) equation assumes the constancy of the diffusion gradient 
vector in space. An attempt was made to find a solution (20). The 
derived Equation 2, the Generalized Stejskal-Tanner (GS-T) equation 
for non-uniform magnetic field gradients, allows for the analysis of any 
gradient distribution. In addition, the classical S-T equation is a unique 
solution of GS-T, assuming the constancy of gradient vector G in space.

In the classical approach, the value of matrix b is calculated for 
time t = 2τ, i.e., at the spin echo center of the dependence,
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where:

 • A(2τ), A(0) are the signal intensities with and without 
diffusion gradients,

 • TE – echo time, τ = TE/2,
 • b – symmetric 3×3 matrix,
 • D – symmetric diffusion tensor second rank

 ( ) ( ) ( )′ ′= ′∫0
t Tb t k t k t dt

With the gradient vector G(t) = [Gx(t), Gy(t), Gz(t)]T, the 
following relation applies where
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In fact, the diffusion gradient vector G has a non-uniform 
distribution in space dependent on the MR scanner, the sequence and 
its parameters. The solution of the Bloch-Torrey equation proposed in 
(20), with this assumption of the nonlinearity of the magnetic field, 
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led to the known empirical form of the S-T equation, where matrix b 
has a spatial relationship b(r),

 

( )
( ) ( )τ 

= −  
 

2
ln :

0
A

b r D
A  

(2)

The above equation is true, assuming a spin echo signal and 
symmetry of magnetic field gradients. Then the spatial distribution 
b(r) has the form,
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The L(r) tensor, which Bammer called the coil tensor, is now 
called the field correction tensor. It can also be  interpreted as the 
Jacobian matrix for coordinates changing from Cartesian ones to 
those given by a curvilinear coordinate system, in which the diffusion 
gradient vector G is constant in space.

Over the last twenty years, researchers have continued to develop 
the three approaches mentioned above (18, 21, 23, 24, 26). However, 
no approach has so far provided a definitive solution to the problem. 
Recently, a large clinical study performed on a modern 3 T MR 
scanner confirmed the existence of systematic errors related to the 
spatial heterogeneity of magnetic field gradients.

3 Materials and methods

3.1 Participants

Demographic characteristics are presented in Table 1, and the 
recruitment process for both patient and control groups is illustrated 
in Figure 1. The clinical study received a favorable opinion from the 
Bioethics Committee of the Regional Medical Chamber (Opinion No. 
282/KBL/OIL/2020) on December 18, 2020.

Participants were recruited at the University Hospital between 
January 2021 and January 2022. The multiple sclerosis (MS) group 
comprised individuals aged 18–50 years, diagnosed with relapsing–
remitting MS, and presenting an Expanded Disability Status Scale 
(EDSS) score between 0 and 6.5.

MS patients were selected as they frequently present subtle, 
spatially diffuse microstructural brain changes that are particularly 
suitable for evaluating the effectiveness of technical corrections in 
DTI imaging.

Exclusion criteria included contraindications to MRI 
and pregnancy.

The healthy control (HC) group consisted of volunteers recruited 
from hospital staff and their family members. Eligible individuals were 
aged 18–50 years and had no clinical signs or symptoms indicative of 
MS. Volunteers with demyelinating lesions on MRI suggestive of 
multiple sclerosis or radiologically isolated syndrome were excluded.

Initially, 150 MS patients and 100 HC participants were enrolled. 
MRI data acquisition continued through August 2022. After 
exclusions, the final sample comprised 143 MS patients and 86 HC 
volunteers. For further analysis, a random subset of 50 participants 
from each group was selected. Details of the selection procedure are 
shown in Figure 1.

3.2 MRI protocol

Images were obtained using a 3 T Magnetom Vida fit scanner 
(Siemens, Germany) at the University Hospital, using the following 
imaging protocol: (a) T1-weighted magnetization-prepared rapid 
gradient echo (MPRAGE): repetition time (TR), 2,300 ms; echo time 
(TE), 2.99 ms; acquisition time (AT), 238 s; field of view (FOV), 
242×250 mm2; voxel size, 0.98×0.98×1.2 mm3; (b) multi-shell DTI 
using spin-echo echo-planar imaging (SE-EPI): number of diffusion 
gradient directions (NDGD), NDGD = 20; b-value = 0, 1000, 2000 s/
mm2; TR/TE = 3900/88 ms; AT = 680 s; FOV = 191×191 mm2; voxel 
size = 2.5×2.5×2.5 mm3. This primary DTI protocol, denoted as 
1000/2000(40), was divided into subsets: (a) 1000(20): b = 0, 1000 s/
mm2, NDGD = 20; (b) 1000(11): b = 0, 1000 s/mm2, NDGD = 11; (c) 
1000(6): b = 0, 1000 s/mm2, NDGD = 6; (d) 2000(20): b = 0, 2000 s/
mm2, NDGD = 20.

3.3 Study design

All participants underwent brain MRI examinations that included 
a diffusion tensor imaging (DTI) sequence as part of the protocol. For 
each participant, two identical measurements of an isotropic diffusion 
phantom were acquired using the same MRI scanner settings. The 
phantom and the participant’s head were positioned identically in the 
scanner’s laboratory coordinate system to ensure geometric consistency. 
Although phantom scans were typically performed immediately after 
the participant’s scan, the exact timing was not critical, as the systematic 
distortion remained stable throughout the four-year clinical study due 
to constant scanner hardware, fixed imaging protocol, and reproducible 
positioning. The first phantom acquisition was used to estimate the 
spatial distribution of the b(r) matrix corresponding to each diffusion 
gradient direction. The second, independent acquisition, with a 
different realization of Gaussian noise, was used to assess the 
effectiveness of the B-matrix Spatial Distribution (BSD) correction.

Phantom measurements were performed using a Siemens 
spherical phantom (D 165, solution C: 1.25 g NiSO₄ × 6 H₂O per 
1000 g distilled H₂O; model 240, 10,496,625) and identical 
acquisition sequences and parameters to those used for human 
participants. Diffusion tensor metrics were then computed using 
both the conventional processing pipeline and an alternative 
approach incorporating systematic error correction via the 
BSD-DTI method.

TABLE 1 Demographic table.

Characteristic HC MS p

Number of subjects 50 50 -

Male/female 16/34 15/35 1.0

Mean age (SD) 34.73 (7.80) 35.28 (6.95) 0.84

Median age (IQR) 34 (27–42) 35.5 (30–40) 0.84

Median EDSS (IQR) - 1 (1–1.5) -

HC, healthy control; MS, multiple sclerosis; EDSS, expanded disability status scale; IQR, 
interquartile ranges. Age of participants in years.
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3.4 Image analysis

3.4.1 Region of interest (ROI) segmentation
The T1-weighted images were automatically segmented into 

anatomical structures using FastSurfer software (27). Since the 
segmentations of the MS brains contained some misclassifications, 
especially in the demyelinated areas, each was verified and 
manually corrected. FastSurfer provides whole-brain segmentation 
into 95 classes (95 ROIs) that were grouped in our study into 3 
ROIs: whole brain (WB), white matter (WM), and gray 
matter (GM).

Two experienced data analysts performed all manual annotations, 
verified by two neurology and neuroradiology experts.

Subsequently, the ROIs were subjected to a resampling process to 
match the resolution of the DWI data. This resampling was done using 
the ResampleImageFilter from the SimpleITK library (28). The DWI 
images were designated as the reference for resampling, thereby 
defining the target resolution, spatial orientation, and dimensions. A 
nearest-neighbor interpolator was employed to calculate the intensity 
values of the resampled segmentations. Once resampled, the aligned 
segmentations were used to calculate DTI metrics within the 
specified regions.

3.4.2 Calculation of DTI metrics
The diffusion tensor elements were calculated by minimizing the 

chi-square distribution for a system of 40, 20, 11 or 6 equations, 
depending on the subset version. Calculations were performed for 
each voxel in two cases: standard (STD), using a single b-matrix for 
each DWI and BSD, utilizing the b(r) distribution, offering a separate 
b-matrix for each voxel (22). The following metrics were calculated 
from the tensor components: FA–fractional anisotropy, MD–mean 
diffusivity, AD – axial diffusivity, RD – radial diffusivity.

Calculations and analyses were performed for each brain 
measurement and the twin phantom measurement for the same ROIs 
segmented from the T1 weighted brain image. An identical protocol 
was used in the measurements, and care was taken to ensure the 

identical location of the tested objects; the patient’s head and the 
phantom were in the laboratory reference system of the MR scanner.

The application of BSD correction algorithms, developed in C/
C++ and compiled with Visual Studio 13.00 (Microsoft, USA), is 
available at: https://nmrlab.pl/en/bsd/.

3.4.3 Correction of spatial systematic errors
The determination of the actual distribution of b(r) related to the 

spatial heterogeneity of magnetic field gradients was generally 
performed according to the principles of BSD-DTI (20, 22), with a 
new approach to calculating the spatial distribution b(r) of the matrix 
b for each DWI recently used in a clinical study spanning several years 
(29). The impact of systematic errors and the effectiveness of BSD 
correction were assessed by analyzing FA and MD distributions for 
100 measurements and a single isotropic phantom measurement in 
ROIs identified from the corresponding brain imaging.

The influence of systematic errors and the effectiveness of BSD 
correction were assessed by analyzing the FA and MD distributions 
for 100 measurements (Phantoms; 50 each for HC and MS) and a 
single (1Phantom) measurement of an isotropic phantom in regions 
of interest identified from the corresponding brain imaging according 
to the rules given in 3.3 Study design.

The obtained FA for an isotropic phantom should ideally be 0, and 
its deviation is due to the influence of noise and systematic errors. 
Ideally, the MD for such a phantom should have a constant value and 
a standard deviation of 0.

3.4.4 Statistical analysis
Statistical analyses were performed using the SciPy library 

(version 1.12). Normality of the data was first assessed with the 
Shapiro–Wilk test. As the distributions of key variables deviated from 
normality, non-parametric tests were applied in subsequent analyses.

The Mann–Whitney U-test was used to compare the HC and MS 
groups for variables such as age and diffusion tensor imaging (DTI) 
metrics. The Chi-square test assessed differences in categorical 
variables, such as sex distribution.

FIGURE 1

The flow chart shows the procedure for recruiting multiple sclerosis patients and healthy volunteers for MRI examinations.
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To evaluate the impact of BSD correction on DTI measurements, 
the Wilcoxon signed-rank test was used to compare standard (STD) 
and BSD-corrected values within subjects.

Effect sizes were also calculated to estimate the magnitude of 
observed differences. Effect size was interpreted according to Cohen’s 
thresholds: values above 0.3 were considered medium, and those 
above 0.5 were classified as large.

To control for false discovery due to multiple comparisons, 
p-values were adjusted using the Benjamini–Hochberg false discovery 
rate (FDR) correction method.

No covariates were added to the model, as the HC and MS groups 
were demographically well matched.

3.4.5 A method of assessing the effectiveness of 
distinguishing between HC and MS groups

In addition to the results demonstrating the ability of DTI 
metrics—FA and MD—to differentiate between HC and MS groups 
in large ROIs (WB, WM, GM), we propose a more comprehensive 
method. This approach involves the analysis of four DTI metrics (FA, 
MD, AD, RD) across 95 ROIs, applying a stringent criterion for 
detecting group differences.

The criterion was met when at least one of the four metrics 
revealed a statistically significant difference (SSD) between HC 
and MS in each ROI (p < 0.005). A value of 100% indicates that 
SSDs were found in all 95 ROIs. As an additional evaluation, 

we report effect sizes, considering medium (> 0.3) and large (> 
0.5) thresholds.

4 Results

4.1 Participants characteristics

Statistical analysis regarding age distribution revealed no 
statistically significant differences (SSD) between the two groups. The 
mean age in years and standard deviation (SD) for the MS group were 
35.28 (SD = 6.95), and for the HC group were 34.73 (SD = 7.80), 
yielding a p-value of 0.84. Furthermore, the median ages in years and 
interquartile ranges (IQR) were established at 35.5 (IQR = 30–40) for 
the MS group and 34 (IQR = 27–42) for the HC group, with a 
corresponding p-value of 0.84.

4.2 Diffusion tensor metrics of the 
phantom measurements

4.2.1 Estimation of noise and systematic errors
The FA and MD measures obtained for the isotropic phantom using 

the standard approach show the scale of the overall noise and systematic 
errors (Table 2). The results indicate that the worst accuracy of a single 

TABLE 2 Diffusion tensor metrics (FA and MD) obtained from 100 phantom measurements (Phantoms; 50 MS + 50 HC) and a single measurement 
(1Phantom), using the standard approach (STD) and after correction for spatial systematic errors with the BSD method.

B val (dirs) Mean diffusivity Fractional anisotropy

Phantoms (SD) 1Phantom (SD) Phantoms (SD) 1Phantom (SD)

1000/2000 (40)

STD 2.04E-03 (4.38E-05) 2.07E-03 (5.60E-05) 4.08E-02 (3.23E-03) 4.02E-02 (1.68E-02)

BSD 2.03E-03 (4.76E-05) 2.07E-03 (1.66E-05) 2.68E-02 (3.06E-03) 2.83E-02 (1.34E-02)

p <0.001 (0.83) <0.001 (0.23) <0.001 (0.87) <0.001 (0.76)

2000 (20)

STD 2.04E-03 (4.26E-05) 2.07E-03 (6.34E-05) 4.51E-02 (3.29E-03) 4.54E-02 (1.94E-02)

BSD 2.03E-03 (4.71E-05) 2.07E-03 (2.10E-05) 3.36E-02 (3.65E-03) 3.55E-02 (1.70E-02)

p <0.001 (0.65) <0.001 (0.19) <0.001 (0.87) <0.001 (0.69)

1000 (20)

STD 2.05E-03 (4.92E-05) 2.09E-03 (3.95E-05) 3.77E-02 (6.29E-03) 3.53E-02 (1.69E-02)

BSD 2.03E-03 (4.97E-05) 2.07E-03 (7.75E-06) 1.02E-02 (3.94E-03) 9.61E-03 (6.12E-03)

p <0.001 (0.87) <0.001 (0.49) <0.001 (0.87) <0.001 (0.87)

1000 (11)

STD 2.05E-03 (4.91E-05) 2.09E-03 (4.15E-05) 4.14E-02 (6.99E-03) 3.88E-02 (1.95E-02)

BSD 2.03E-03 (4.93E-05) 2.07E-03 (1.33E-05) 1.74E-02 (4.29E-03) 1.67E-02 (1.10E-02)

p <0.001 (0.87) <0.001 (0.52) <0.001 (0.87) <0.001 (0.86)

1000 (6)

STD 2.05E-03 (4.99E-05) 2.09E-03 (4.97E-05) 5.08E-02 (8.87E-03) 4.82E-02 (2.99E-02)

BSD 2.04E-03 (5.04E-05) 2.08E-03 (2.06E-05) 2.86E-02 (5.22E-03) 2.83E-02 (1.95E-02)

p <0.001 (0.87) <0.001 (0.38) <0.001 (0.87) <0.001 (0.82)

Data are mean with standard deviation (SD) in parentheses.
STD, standard; BSD, B-matrix Spatial Distribution. Mean diffusivity is given in mm2/s. A p-value less than.05 indicates a statistically significant difference; the corresponding effect size is 
specified in parentheses alongside.
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TABLE 3 Diffusion tensor metrics (FA and MD) obtained from 50 healthy controls (Control) and 50 multiple sclerosis patients (Patients), calculated using 
the standard approach (STD) and after correction for spatial systematic errors using the BSD method.

B val (dirs) Mean diffusivity Fractional anisotropy

Control (SD) Patients (SD) p Control (SD) Patients (SD) p

1000/2000 (40)

STD 8.33E-04 (3.16E-05) 8.79E-04 (4.83E-05) <0.001 (0.51) 2.15E-01 (7.97E-03) 2.07E-01 (9.97E-03) <0.001 (0.41)

BSD 8.30E-04 (3.17E-05) 8.77E-04 (4.86E-05) <0.001 (0.50) 2.15E-01 (7.92E-03) 2.07E-01 (9.73E-03) <0.001 (0.42)

p <0.001 (0.77) <0.001 (0.69) 0.552 (0.10) 0.194 (0.20)

2000 (20)

STD 7.71E-04 (2.88E-05) 8.14E-04 (4.32E-05) <0.001 (0.52) 2.30E-01 (7.45E-03) 2.21E-01 (9.11E-03) <0.001 (0.47)

BSD 7.69E-04 (2.90E-05) 8.12E-04 (4.35E-05) <0.001 (0.52) 2.30E-01 (7.32E-03) 2.21E-01 (8.86E-03) <0.001 (0.49)

p <0.001 (0.71) <0.001 (0.64) <0.001 (0.51) <0.001 (0.51)

1000 (20)

STD 1.05E-03 (4.75E-05) 1.11E-03 (7.11E-05) <0.001 (0.45) 2.39E-01 (8.25E-03) 2.30E-01 (9.85E-03) <0.001 (0.46)

BSD 1.04E-03 (4.75E-05) 1.10E-03 (7.11E-05) <0.001 (0.45) 2.40E-01 (8.23E-03) 2.30E-01 (9.88E-03) <0.001 (0.45)

p <0.001 (0.87) <0.001 (0.87) 0.627 (0.08) 0.065 (0.28)

1000 (11)

STD 1.04E-03 (4.81E-05) 1.10E-03 (7.13E-05) <0.001 (0.46) 2.77E-01 (9.87E-03) 2.65E-01 (1.11E-02) <0.001 (0.50)

BSD 1.03E-03 (4.81E-05) 1.09E-03 (7.11E-05) <0.001 (0.45) 2.78E-01 (9.76E-03) 2.65E-01 (1.12E-02) <0.001 (0.51)

p <0.001 (0.87) <0.001 (0.87) <0.001 (0.55) <0.001 (0.68)

1000 (6)

STD 9.98E-04 (5.11E-05) 1.06E-03 (7.28E-05) <0.001 (0.44) 3.14E-01 (9.51E-03) 2.99E-01 (1.08E-02) <0.001 (0.63)

BSD 9.95E-04 (5.10E-05) 1.06E-03 (7.34E-05) <0.001 (0.44) 3.14E-01 (9.42E-03) 2.99E-01 (1.09E-02) <0.001 (0.62)

p <0.001 (0.85) <0.001 (0.77) 0.904 (0.02) 0.665 (0.07)

Values refer to the Whole Brain (WB) region of interest.
Data are mean with standard deviation (SD) in parentheses.
STD, standard; BSD, B-matrix spatial distribution. Mean diffusivity is given in mm2/s. A p-value less than 0.05 indicates a statistically significant difference; the corresponding effect size is 
specified in parentheses alongside.
Supplementary Tables S2A,B show the results for the other ROIs, white matter and gray matter.

FA measurement (1Phantom) concerns subset 1,000(6); the highest 
FA = 0.0482 due to MD is subset 2000(20); the highest SD = 6.34E- 05. 
In turn, the best accuracy for both metrics is provided by subset 
1,000(20): lowest FA = 0.0353 and lowest SD = 3.95E-05 for MD.

4.2.2 Elimination of the impact of spatial 
systematic errors

Table 2 also shows that the BSD approach can remove the effects 
of systematic errors on DTI metrics for an individual protocol and their 
subsets. The subset 1,000(20) demonstrated the highest efficiency, with 
the lowest FA = 0.00961 and the lowest SD = 7.75E-06 for MD.

4.3 Diffusion tensor metrics of HC and MS 
groups and single measurement

4.3.1 Whole brain region of interest
FA and MD metric values for 50-person HC and MS groups, 

depending on protocol or its subset type, are presented in Table 3. 
Moreover, the evolution of metric values depending on group size is 
tracked in Supplementary Table S1. The sensitivity of the metrics to 
distinguish between groups is shown in the context of SSD and the 
associated effect size. These results are analyzed for each approach, 

STD or BSD, separately and between them. Visualizations of the FA 
and MD distributions obtained by the basic protocol, 1,000/2000(40), 
for sample HC and MS measurement in 2D axial, sagittal and coronal 
views, as well as 3D histograms for the entire ROI, are presented in 
Supplementary Figure S1. Identical data sets for subsets 1,000(20) and 
1,000(6) are included in Supplementary Figures S2, S3. These types of 
subsets were selected due to their additional features. The most 
outstanding efficiency of eliminating systematic errors occurred in the 
first case, and the smallest possible number of directions of the 
diffusion gradient vector was found in the second case.

4.3.2 White matter and gray matter regions of 
interest

Like the Whole Brain region, Supplementary Tables S2A,B show 
the values of FA and MD metrics in the White Matter and Gray Matter 
regions for the 50-person HC and MS groups depending on the 
protocol and its subset type.

4.3.3 Effectiveness of DTI metrics to distinguish 
HC and MS groups with BSD impact assessment

Table 4 summarizes the effectiveness of distinguishing between HC 
and MS groups and includes an evaluation of the impact of BSD 
correction. The analytical approach, based on a relatively stringent 
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criterion for assessing DTI metrics, is detailed in Section 3.4.5. The first 
column (‘ANY’) reports the percentage of ROIs in which a statistically 
significant difference (SSD; p < 0.005) between groups was observed 
for at least one DTI metric, accompanied by a medium effect size (> 
0.3). The subsequent four columns present the corresponding results 
for each metric. The right side of the table presents an analogous 
analysis, applying a stricter threshold of a large effect size (> 0.5).

This approach highlights the diagnostic potential of both the full 
protocol and its subsets, and it can serve as a foundation for developing 
effective classification models. Notably, the 1000(6) subset, despite 
utilizing the minimal number of diffusion gradient directions, 
demonstrates unexpectedly strong discriminatory power, particularly 
based on FA and RD. However, this subset is also the most susceptible 
to noise-related variability. In contrast, the full protocol 
(1000/2000(40)) shows higher sensitivity for MD and RD. Interestingly, 
RD exhibits comparable discriminatory performance across the full 
protocol and all its subsets.

5 Discussion and conclusion

The DTI metrics included in Table 2 show the impact of the MR 
protocol and its subsets on the accuracy of the measurement of a 
single diffusion tensor, here water in an isotropic phantom. The 
diversity of subsets and the use of the BSD method also allowed for 
a clear distinction between the influence of Gaussian noise and the 
physical phenomenon related to the inhomogeneity of magnetic 
field gradients, generating systematic errors with a specific spatial 
distribution. After operating the BSD calibration, the most 

beneficial improvement effects are observed for the 1000(20) subset. 
The MD standard deviation decreased more than 5 times, from 1.9 
to 0.37%, and the FA value decreased approximately 3.7 times from 
0.0353 to 0.0096. The improvement recorded for the primary 
protocol— 1000/2000(40) is significant, although less spectacular. 
We  note an approximately 3.4-fold reduction in the standard 
deviation of MD from 2.71 to 0.8% and a 1.4-fold decrease in FA 
from 0.0402 to 0.0283. Therefore, the removable component of 
systematic errors in the total noise for the MD measurement is as 
much as 80 and 70%, respectively. This effect will similarly apply to 
any apparent diffusion tensor in a voxel for any examined object. 
This is well illustrated by a strong SSD, typically p < 0.001, and an 
associated huge effect size, an effect size > 0.8 between the STD and 
BSD approaches.

The subsequent results in Table 3, Supplementary Table S1, and 
Supplementary Figures S1–S3 help us understand the impact of 
non-uniform magnetic field gradients in combination with the type 
of MR protocol’s subset on DTI metrics.

The effectiveness of distinguishing 50-person HC and MS groups 
with MD and FA parameters in the Whole Brain ROI is similar 
regardless of the STD or BSD protocol’s subset and approach adopted. 
In Table 3, we observe strong SSD (p < 0.001) combined with a large 
effect size (~ 0.4–0.6) between the mean values of the DTI metrics. 
Considering the group size (Supplementary Table S1), SSD with 
p < 0.001 is achieved already for 30 persons regardless of the protocol 
subset. Surprisingly, as demonstrated in Table 4, applying metrics for 
95 ROIs and the combined criteria, an SSD with p < 0.005 and an 
effect size greater than medium (0.3) or large (0.5), the most influential 
criterion is FA and subset 1000(6), i.e., with the minimum number of 

TABLE 4 Comparison of the effectiveness in differentiating between healthy controls (HC) and multiple sclerosis (MS) patients across 95 ROIs.

B val 
(dirs)

HC vs. MS

Medium effect size Large effect size

ANY MD FA AD RD ANY MD FA AD RD

1000/2000 (40)

STD 48.4% 38.9% 4.2% 16.8% 35.8% 4.2% 3.2% 0.0% 3.2% 3.2%

BSD 48.4% 38.8% 6.3% 16.8% 38.9% 5.3% 3.2% 0.0% 4.2% 3.2%

2000 (20)

STD 54.7% 46.3% 4.2% 16.8% 40.0% 4.2% 3.2% 0.0% 3.2% 3.2%

BSD 54.7% 45.3% 8.4% 16.8% 38.9% 4.2% 3.2% 0.0% 3.2% 3.2%

1000 (20)

STD 32.6% 24.2% 8.4% 16.8% 30.5% 1.1% 1.1% 0.0% 1.1% 1.1%

BSD 34.7% 26.3% 11.6% 16.8% 32.6% 2.1% 1.1% 0.0% 1.1% 2.1%

1000 (11)

STD 50.5% 25.3% 28.4% 16.8% 34.7% 5.3% 1.1% 3.2% 1.1% 2.1%

BSD 49.5% 29.5% 29.5% 16.8% 35.8% 6.3% 2.1% 4.2% 1.1% 2.1%

1000 (6)

STD 62.1% 25.3% 47.4% 12.6% 42.1% 13.7% 1.1% 12.6% 1.1% 2.1%

BSD 63.2% 25.3% 50.5% 12.6% 42.1% 15.8% 1.1% 14.7% 1.1% 2.1%

The table presents the percentage of the 95 ROIs in which statistically significant differences (SSD; p < 0.005) between HC and MS groups were observed for four DTI metrics: FA (fractional 
anisotropy), MD (mean diffusivity), AD (axial diffusivity), and RD (radial diffusivity). The “ANY” column indicates the percentage of ROIs where at least one of the four metrics met the SSD 
criterion together with the specified effect size. The left section of the table corresponds to a medium effect size threshold (> 0.3), and the right section to a large effect size threshold (> 0.5). A 
value of 100% denotes that SSDs with the given effect size were observed in all 95 ROIs for the respective protocol subset.
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directions of the diffusion gradient vector, regardless of the size of the 
measurement group.

In turn, the numerical values of MD and FA are highly variable 
depending on the protocol’s subset and insignificant due to the group 
size. The extreme MD variability reaches ~ 40% and occurs between 
subsets 2000(20) and 1,000(20). In the case of FA, this variability is 
even greater and reaches a value of ~50% when comparing the results 
for main protocol 1000/2000(40) and subset 1,000(6), ~ 0.021 and ~ 
0.031. At the same time, the BSD correction did not introduce any 
significant changes numerically. Note, however, that these values (and 
distributions) between approaches are characterized by a strong SSD 
with p < 0.001, combined with a huge effect size (effect size > 0.8). 
The small variability in metrics between the STD and BSD approaches 
is easier to understand by looking simultaneously at the extensive 
distributions of FA and MD (Figures S1-S3), which suggest the 
dominant influence of anatomical variation on mean FA and 
MD. Moreover, large ROIs can average the impact of systematic 
errors, which introduce much greater variation locally.

The above observations lead to several important conclusions. 
First, the primary correction of the MD and FA distributions is 
achieved by accounting for the actual spatial distribution of magnetic 
field gradients present during acquisition. As a result, increasing the 
number of signal averages (accumulations) has only a marginal 
effect in experiments with sufficiently high SNR. Crucially, this 
correction procedure is entirely independent of the imaged object; 
it depends solely on the MRI system, the sequence type, and specific 
acquisition parameters (20, 32).

Furthermore, comparing DTI-derived metrics across different 
acquisition protocols has limited interpretive value. These metrics 
should be evaluated within the context of a specific protocol, and only 
after verifying and correcting for the impact of spatially dependent 
systematic errors in each region of interest (ROI).

In addition, a recent study (30) demonstrated the effect of BSD 
correction on DTI metrics and tractography, while incorporating 
standard preprocessing steps commonly used in diffusion MRI 
studies. These steps included denoising (Local PCA), Gibbs 
oscillations correction, eddy current correction, motion correction, 
B1 inhomogeneity correction, and rigid body registration for 
geometric distortion correction. The findings confirmed that BSD 
maintains its effectiveness across these conditions, with denoising 
showing the most significant additional benefit. This reinforces the 
practical utility of BSD in clinical and research protocols aiming for 
higher anatomical precision.
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