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Objective: To identify significant predictors and construct a validated nomogram 
for predicting post-stroke cognitive impairment no dementia (PSCIND) risk 
among first-ever mild ischemic stroke (MIS) patients.
Methods: This retrospective cohort study analyzed 242 first-ever MIS 
patients categorized into normal cognitive (n = 137) and PSCIND (n = 105) 
groups. Comprehensive data encompassing demographic characteristics, 
laboratory parameters, cerebral small vessel disease (CSVD) imaging markers, 
neuropsychological assessments, and ischemic stroke lesion characteristics were 
collected. Predictor selection was conducted through least absolute shrinkage 
and selection operator (LASSO) regression analysis, followed by multivariable 
logistic regression for nomogram construction. Model performance was 
assessed through discrimination (area under the curve), calibration (calibration 
plots, Hosmer-Lemeshow test), and clinical utility (decision curve analysis).
Results: Eight independent predictors were identified: age (OR = 1.060, 95% 
CI: 1.016–1.106), education level (OR = 0.917, 95% CI: 0.845–0.995), type 2 
diabetes mellitus (OR = 9.407, 95% CI: 3.761–23.528), superoxide dismutase 
(OR = 0.951, 95% CI: 0.931–0.972), uric acid (OR = 1.006, 95% CI: 1.002–1.010), 
homocysteine (OR = 1.058, 95% CI: 1.027–1.091), strategic infarcts (OR = 4.566, 
95% CI: 2.148–9.707), and severe CSVD burden (OR = 3.818, 95% CI: 1.842–7.911). 
The nomogram exhibited excellent discrimination (AUC = 0.886) accompanied 
by satisfactory calibration (Hosmer-Lemeshow χ2 = 14.542, p = 0.104). Decision 
curve analysis showed clinical utility across threshold probabilities of 6–100%.
Conclusion: This validated nomogram incorporating clinical, biochemical, and 
neuroimaging biomarkers provides a robust tool for individualized PSCIND 
risk assessment in first-ever MIS patients, with potential to guide targeted 
interventions and cognitive monitoring.
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Introduction

Stroke remains a foremost global health challenge (1), with post-
stroke cognitive impairment (PSCI) emerging as a predominant 
debilitating disabling neuropsychiatric sequelae (2, 3). A multicenter 
study demonstrated that up to 44% of stroke survivors develop PSCI 
within the first 6 months post-event (4, 5), imposing a substantial 
burden on long-term functional outcomes. PSCI is defined as 
cognitive deficits persisting for 3–6 months post-stroke, categorized 
into two clinical subtypes: post-stroke cognitive impairment no 
dementia (PSCIND) and post-stroke dementia (PSD) (5). As an early 
stage of PSCI, PSCIND is characterized by measurable cognitive 
decline without fulfilling dementia diagnostic criteria, thereby serving 
as a critical window for early intervention.

Despite preserved basic activities of daily living, individuals with 
PSCIND exhibit significantly compromised quality of life metrics (5). 
A meta-analysis synthesizing 23 prospective cohorts revealed a pooled 
PSCIND prevalence of 38% during the first post-stroke year (6). 
Alarmingly, approximately 25% of PSCIND cases progress to PSD in 
the absence of timely interventions, underscoring the urgency of early 
identification and management (7). Nevertheless, validated predictive 
tools for PSCIND remain conspicuously absent in clinical practice.

Ischemic stroke, constituting 62% of global stroke incidence (8), 
presents unique diagnostic and therapeutic challenges in PSCI 
management. Mild ischemic stroke (MIS), operationally defined by 
National Institutes of Health Stroke Scale (NIHSS) scores ≤5 (9, 10), 
represents more than half of incident ischemic cerebrovascular events 
(11). Notably, the subtle neurological deficits characteristic of MIS 
frequently result in systematic underassessment of cognitive domains, 
despite neuropsychological evidence indicating high PSCI prevalence 
in MIS patients (5, 12). This clinical oversight stems from the 
misconception that mild neurological symptoms equate to negligible 
cognitive consequences. While current evidence highlights MIS 
populations as priority targets for PSCI prevention, critical knowledge 
gaps persist regarding PSCIND predictors in first-ever MIS patients, 
with a paucity of validated prediction models tailored to this subgroup.

To address these challenges, this retrospective study systematically 
evaluates demographic, biochemical, and neuroimaging predictors of 
PSCIND in first-ever MIS patients. We aim to develop and validate a 
clinically actionable, visualization-enhanced prediction tool. This 
model seeks to enable individualized PSCIND risk assessment, 
thereby informing targeted interventions to mitigate cognitive decline 
and improve long-term outcomes in this vulnerable population.

Methods

Patients

This prognostic modeling study employed a retrospective cohort 
design using data from the Neurology Department of Hebei General 
Hospital (August 2019–December 2022). Inclusion criteria comprised: 
(a) age ≥50 years; (b) first-ever MIS (NIHSS score ≤5) confirmed by 
neuroimaging; (c) availability of complete clinical variables and 
neuropsychological assessments. Exclusion criteria were rigorously 
applied to minimize confounding: (a) transient ischemic attack or 
pre-stroke cognitive impairment (documented by medical records or 
caregiver reports); (b) comorbidities potentially influencing cognitive 

assessments, such as active epilepsy/seizure disorders, traumatic brain 
injury history and major psychiatric disorders (e.g., schizophrenia, severe 
depression); (c) unavailable 3–6 month follow-up data in the institutional 
database; (d) recurrent cerebrovascular events during 3–6 month 
follow-up period; (e) diagnosis of PSD during the 3–6 month follow-up 
period; (f) anti-dementia medications were used during the 3–6 month 
follow-up period. The flow chart of participant selection is illustrated in 
Supplementary Figure S1. The diagnostic prediction model was 
developed and reported in full compliance with the Transparent 
Reporting of a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) statement, specifically following the Type 1b 
framework (development using existing data from a single-center 
retrospective cohort) (13). Conducted in compliance with the 
Declaration of Helsinki, this study obtained ethical clearance from the 
Ethics Committee of Hebei General Hospital (No.2025-LW-0124).

Evaluation of post-stroke cognitive 
impairment no dementia

Standardized neuropsychological evaluations were administered 
to all participants, incorporating three validated measures: the 
Beijing-adapted Montreal Cognitive Assessment,1 alongside 
assessments of basic (BADL) and instrumental (IADL) activities of 
daily living. Initial cognitive and functional evaluations were 
conducted within 14 days post-MIS onset, with follow-up 
assessments scheduled at 3–6 months. Cognitive impairment was 
defined using education-adjusted MoCA cutoff criteria based on 
Chinese normative data. Cognitive impairment thresholds were 
defined according to Chinese normative data with education-
stratified cutoffs: ≤13 for illiterate individuals, ≤19 for those with 
1–6 years of educational attainment, and ≤24 for individuals with 7 
or more years of education (14). PSCIND diagnosis required: (a) 
MoCA scores below education-adjusted thresholds at 3–6 month 
follow-up; (b) no or mild impairment in both BADL and IADL, 
thereby excluding dementia (2, 15, 16). Based on these criteria, first-
ever MIS patients were stratified into two groups: PSCIND and 
normal cognitive group.

Predictor selection and data acquisition

Candidate predictors were retrospectively collected from electronic 
medical records and structured clinical assessments. Demographic 
variables included age, sex, educational attainment, and body mass 
index. Clinical parameters comprised smoking/alcohol use history, 
type 2 diabetes mellitus (T2DM) diagnosis, hypertension status, 
coronary heart disease history, and admission systolic/diastolic blood 
pressure (SBP/DBP). Fasting venous blood samples (≥8 h) were 
analyzed for metabolic, inflammatory, oxidative stress, and coagulation 
biomarkers, including fasting plasma glucose (FPG), lipid profile 
components [triglycerides, total cholesterol, high-density, low-density 
and very low density lipoprotein cholesterol, apolipoprotein A, 
apolipoprotein B, and lipoprotein (a)], superoxide dismutase (SOD), 

1  MoCA; www.mocatest.org.
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homocysteine (Hcy), and uric acid (UA), and fibrinogen. Neurological 
evaluations incorporated NIHSS for acute stroke severity and the 
modified Rankin Scale (mRS) for functional outcomes. Ischemic stroke 
subtypes were classified into three categories based on neuroimaging 
characteristics: (1) multiple infarcts (≥2 distinct vascular territories), 
(2) strategic infarcts (functionally critical regions including the 
thalamus, caudate nucleus, frontal cortex, medial temporal lobe, and 
angular gyrus), or (3) small-artery occlusion (subcortical lesions 
<20 mm). Cerebral small vessel disease (CSVD) burden was quantified 
using a validated total CSVD score (range: 0–4) derived from four 
neuroimaging markers, as detailed in our prior studies (17). A 
threshold score >2 defined severe CSVD burden.

Statistical analysis

Statistical analyses were performed using SPSS 26.0 (IBM Corp., 
Armonk, NY) and R 4.2.3 (R Foundation for Statistical Computing, 
Vienna, Austria). Normally distributed continuous variables were 
summarized as mean ± standard deviation, non-normally distributed 
variables as median (interquartile range), and categorical variables as 
frequencies (%). Group comparisons employed independent t-tests 
for parametric data, Mann–Whitney U tests for nonparametric data, 
and χ2 tests for categorical variables, based on distributional 
assumptions. To mitigate multicollinearity and overfitting, least 
absolute shrinkage and selection operator (LASSO) regression 
(“glmnet” package) identified optimal predictors for PSCIND in first-
ever MIS patients. Variables retained through LASSO regression were 
entered into multivariable logistic regression to develop the final 
predictive model, which was graphically represented through a static 
nomogram (“rms” package) and an interactive web-based visualization 
tool (“DynNom” and “shiny” packages) deployed as a Shiny 
application. Model evaluation encompassed four key assessments: (1) 
discrimination capacity measured by receiver operating characteristic 
(ROC) curve analysis [quantified by area under the curve (AUC)]; (2) 
calibration accuracy evaluated through calibration plots with Hosmer-
Lemeshow testing; (3) clinical applicability determined via decision 
curve analysis (DCA); and (4) predictive overall performance 
quantified by the Brier score (<0.25 indicating superior performance). 
Internal validation with 2000 bootstrap resamples enhanced model 
reliability, with statistical significance set at two-tailed p < 0.05.

Results

Participants characteristics

The study cohort comprised 242 first-ever MIS patients with a 
median age of 65 years (male predominance: 67.8%). Participants were 
stratified into normal cognitive (n = 137) and PSCIND (n = 105) 
groups. Comparative analysis demonstrated that PSCIND patients 
were significantly older, had lower educational attainment, and 
exhibited higher prevalence of hypertension and T2DM history. 
Biochemical analyses identified distinct biomarker patterns, with the 
PSCIND group displaying reduced SOD levels concomitant with 
elevated UA, fibrinogen, and Hcy levels relative to cognitively normal 
subjects. Neuroimaging assessments revealed significant between-
group differences in lesion distribution: PSCIND patients demonstrated 

greater prevalence of multiple infarcts (34.3% vs. 21.6%), strategic 
infarcts (63.8% vs. 39.4%), and severe CSVD burden (57.1% vs. 24.8%), 
alongside reduced incidence of small artery occlusion subtype (44.8% 
vs. 61.3%) compared to cognitively normal counterparts. All intergroup 
comparisons reached statistical significance (p < 0.05), with 
comprehensive comparative data detailed in Table 1.

Predictor selection for predictive model

All 30 candidate variables listed in Table  1 were subjected to 
LASSO regression analysis for PSCIND predictor identification. 
Figure  1A illustrates the coefficient trajectories across varying 
regularization parameters, demonstrating progressive feature shrinkage 
as λ increases. The optimal regularization parameter was determined 
through 10-fold cross-validation (Figure 1B), where model selection 
occurred at the λ value corresponding to the minimum deviance plus 
one standard error (right vertical dashed line). This analytical approach 
ultimately selected eight predictors retaining non-zero coefficients: age, 
education level, T2DM status, SOD levels, UA levels, Hcy levels, 
strategic infarcts, and severe CSVD burden.

Predictive model development and 
visualization

A multivariablelogistic regression model incorporating eight 
LASSO-selected predictors (age, education level, T2DM, SOD, UA, 
Hcy, strategic infarcts, and severe CSVD burden) was established to 
assess PSCIND risk in first-ever MIS patients. The analysis 
demonstrated significant associations between these predictors and 
PSCIND in Table 2: age (OR = 1.060, 95% CI: 1.016–1.106; p = 0.007), 
education level (OR = 0.917, 95% CI: 0.845–0.995; p = 0.037), T2DM 
(OR = 9.407, 95% CI: 3.761–23.528; p < 0.001), SOD (OR = 0.951, 
95% CI: 0.931–0.972; p < 0.001), UA (OR = 1.006, 95% CI: 1.002–
1.010; p = 0.005), Hcy (OR = 1.058, 95% CI: 1.027–1.091; p = 0.013), 
strategic infarcts (OR = 4.566, 95% CI: 2.148–9.707; p < 0.001), and 
severe CSVD burden (OR = 3.818, 95% CI: 1.842–7.911; p < 0.001).

A clinical nomogram incorporating these predictors was 
constructed to estimate individualized PSCIND risk (Figure 2). Each 
predictor is assigned points on the upper axis, with total scores 
corresponding to predicted probabilities on the lower scale through 
vertical alignment. To enhance clinical utility, we  developed an 
interactive web-based nomogram.2 For instance, a 60-year-old patient 
with 12-year education, T2DM history, Hcy 14 μmol/L, SOD 128 U/
mL, UA 286 μmol/L, thalamic infarct, and CSVD score of 2 would 
have a 78.4% predicted probability of developing PSCIND (Figure 3).

Predictive model validation

The model demonstrated excellent discriminative capacity through 
ROC curve analysis with 2000 bootstrap resampling validations, achieving 
an AUC of 0.886 (95% CI: 0.844–0.929) (Figure 4). Calibration accuracy 

2  Accessible at https://tengzhenjie.shinyapps.io/DynNomapp4/.
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was confirmed via bootstrap-corrected calibration curves (2000 
iterations) and Hosmer-Lemeshow test (χ2 = 14.542, p = 0.104), 
demonstrating strong concordance between predicted and observed 
probabilities (Figure 5). The model achieved a Brier score of 0.135 (<0.25 
threshold), confirming superior overall predictive accuracy. DCA 
demonstrated enhanced clinical utility across 6–100% threshold 
probabilities, outperforming alternative strategies in net clinical benefit 
(Figure 6).

Discussion

This study revealed a 43.4% prevalence of PSCIND in first-ever 
MIS patients and developed a validated clinical prediction model 

incorporating eight predictors: age, education level, T2DM, SOD, UA, 
Hcy, strategic infarcts, and severe CSVD burden. The model 
demonstrated robust discriminative capacity, excellent calibration, 
and clinical applicability, providing clinicians with a practical tool for 
early risk stratification in this population.

Advanced age and lower education emerged as critical 
demographic predictors, with each additional year of age 
(50–85 years) increasing PSCIND risk by 6% and each year of 
education reducing risk by 8%. These findings align with global 
evidence on socioeconomic and biological determinants of post-
stroke cognitive decline (2, 18). Notably, T2DM exhibited the 
strongest predictive value (OR = 9.407), aligning with meta-
analyses identifying diabetes as a principal risk modulator for 
PSCI (4).

TABLE 1  Characteristics of the study patients with first-ever MIS between normal cognitive group and PSCIND group.

Variable Total
(n = 242)

Normal cognitive group
(n = 137)

PSCIND group 
(n = 105)

p value

Age, median (IQR), year 65 (58–73) 63 (56–71) 68 (63–75) < 0.001*

Sex (male), n (%) 164 (67.8) 88 (64.2) 76 (72.4) 0.179

Education, median (IQR), year 9 (6–14) 12 (9–15) 9 (6–12) 0.001*

Body mass index, median (IQR), kg/m2 25.0 (22.9–27.6) 25.0 (23.0–27.4) 25.0 (22.9–27.7) 0.895

Smoking, n (%) 108 (44.6) 61 (44.5) 47 (44.8) 0.971

Alcohol use, n (%) 71 (29.3) 38 (27.7) 33 (31.4) 0.532

Hypertension, n (%) 148 (61.2) 75 (54.7) 73 (69.5) 0.019*

SBP, median (IQR), mmHg 148 (136–162) 147 (136–162) 148 (136–163) 0.976

DBP, mean ± SD, mmHg 84.6 ± 11.9 85.2 ± 11.8 83.8 ± 12.1 0.366

T2DM, n (%) 70 (28.9) 32 (23.4) 38 (36.2) 0.029*

Coronary heart disease, n (%) 29 (12.0) 16 (11.7) 13 (12.4) 0.868

FPG, median (IQR), mmol/L 5.25 (4.72–6.75) 5.29 (4.74–6.76) 5.16 (4.72–6.71) 0.678

TG, median (IQR), mmol/L 1.29 (0.96–1.78) 1.28 (0.95–1.73) 1.31 (0.96–1.89) 0.795

TC, median (IQR), mmol/L 4.57 (3.79–5.23) 4.59 (3.92–5.22) 4.38 (3.64–5.26) 0.234

HDL-C, median (IQR), mmol/L 1.06 (0.91–1.24) 1.07 (0.91–1.26) 1.03 (0.91–1.20) 0.229

LDL-C, median (IQR), mmol/L 2.99 (2.40–3.50) 3.05 (2.50–3.51) 2.85 (2.35–3.48) 0.145

VLDL-C, median (IQR), mmol/L 0.47 (0.28–0.65) 0.46 (0.28–0.63) 0.48 (0.28–0.70) 0.608

ApoA1, median (IQR), g/L 1.18 (1.03–1.36) 1.20 (1.04–1.37) 1.17 (1.01–1.36) 0.297

ApoB, median (IQR), g/L 0.81 (0.69–0.96) 0.83 (0.70–0.97) 0.79 (0.68–0.94) 0.252

Lp (a), median (IQR), mg/L 178 (100–313) 171 (95–317) 186 (103–310) 0.648

SOD, median (IQR), U/mL 142 (129–156) 150 (137–162) 133 (120–143) <0.001*

UA, median (IQR), μmol/L 296 (244–352) 281 (225–338) 308 (267–372) 0.001*

Fibrinogen, median (IQR), g/L 2.85 (2.40–3.34) 2.72 (2.26–3.16) 3.02 (2.66–3.52) <0.001*

Hcy, median (IQR), umol/L 14.3 (11.8–19.5) 12.9 (10.6–17.7) 16.8 (13.3–22.8) <0.001*

NIHSS, median (IQR), score 2 (1–3) 2 (1–3) 2 (1–3) 0.514

MRS, median (IQR), score 2 (1–3) 2 (1–3) 2 (2–3) 0.099

Multiple infarcts, n (%) 66 (27.3) 30 (21.6) 36 (34.3) 0.032*

Strategic infarcts, n (%) 121 (50.0) 54 (39.4) 67 (63.8) <0.001*

Small-artery occlusion, n (%) 131 (54.1) 84 (61.3) 47 (44.8) 0.010*

Severe CSVD burden, n (%) 94 (38.8) 34 (24.8) 60 (57.1) <0.001*

PSCIND, post-stroke cognitive impairment no dementia; IQR, interquartile range; SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2DM, type 2 diabetes 
mellitus; FPG, fasting plasma glucose; TG, triglyceride; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; VLDL-C, very low 
density lipoprotein cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; Lp (a), lipoprotein (a); SOD, superoxide dismutase; UA, uric acid; Hcy, Homocysteine; NIHSS, National 
Institutes of Health Stroke Scale; mRS, modified Rankin Scale. *Denotes significance at a p value of <0.05.
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Blood-based biomarker research has significantly improved PSCI 
diagnostic accuracy (19–21). Hcy has garnered significant attention 
as a readily measurable biomarker linked to neurological disorders, 
with emerging evidence supporting its role in PSCI and other 
cognitive impairments (22). A meta-analysis highlighted elevated Hcy 
as a potential early diagnostic marker for PSCI (23), aligning with our 

findings that higher Hcy levels significantly predicted PSCIND risk in 
first-ever MIS. However, a multicenter prospective study in MIS 
(NIHSS≤3) and transient ischemic attack patients reported no 
association between Hcy and 3-month PSCI incidence, though a 
gender-specific risk emerged at 12 months (24). These discrepancies 
may stem from cohort heterogeneity (e.g., stroke severity thresholds) 

FIGURE 1

Variable selection by LASSO regression model. (A) LASSO coefficient profiles of the 30 variables. (B) Eight variables with nonzero coefficients were 
selected by optimal λ. The two dotted vertical lines were drawn at the optimal scores by minimum criteria and 1 standard error criteria.
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FIGURE 2

Nomogram for the prediction of the probability of PSCIND risk in patients with first-ever MIS.

and inadequate stratification of PSCI subtypes (e.g., PSCIND vs. 
dementia), underscoring the need for extended follow-up and 
subgroup analyses by sex/age in future studies.

The prognostic utility of UA exhibits ongoing controversy: while 
multiple studies have identified elevated serum UA levels as a sensitive 
predictor for PSCI development (25, 26), others paradoxically suggest 
a protective effect of hyperuricemia against cognitive decline (27). 
Data from the China National Stroke Registry-III revealed a U-shaped 
relationship between UA levels and PSCI risk in males (28), yet a 
meta-analysis found no diagnostic utility for UA in PSCI prediction 
(29). Notably, prior studies often neglected PSCI subtype stratification, 
ischemic lesion assessment, and critical imaging markers like CSVD 
burden. By systematically accounting for these factors, our study 
identified elevated UA as a significant PSCIND predictor in first-ever 
MIS patients. This finding underscores the necessity of contextualizing 
UA measurements within broader cerebrovascular evaluations, 
though large-scale multicenter validation is warranted.

SOD, a pivotal antioxidant enzyme, indirectly reflects the systemic 
capacity to eliminate oxygen free radicals and is crucial in mitigating 

oxidative stress (30, 31). Experimental and clinical data demonstrate 
that reduced SOD activity contributes to cognitive disorder pathogenesis 
through chronic oxidative damage, vascular endothelial impairment, 
and blood–brain barrier compromise (32–34). Despite its 
pathophysiological significance, SOD has been insufficiently investigated 
in PSCI research. Although a previous study identified an association 
between low SOD levels and PSCI risk in MIS patients (NIHSS≤8), the 
investigation omitted critical exclusion criteria (e.g., recurrent strokes 
potentially confounding cognitive trajectories) and neglected PSCI 
subtype stratification (34). Our study newly establishes diminished SOD 
activity as an independent predictor (OR = 0.951), mechanistically 
implicating oxidative stress in PSCIND pathogenesis while highlighting 
antioxidant supplementation as a plausible therapeutic strategy-an 
innovative dimension previously absent in predictive models.

The neuroanatomical distribution of ischemic stroke lesions 
significantly influences the risk of PSCI (35). Strategic infarcts, defined 
as lesions affecting brain regions critical for higher cortical functions-
including the thalamus, caudate nucleus, frontal cortex, medial 
temporal lobe (including the hippocampus), and angular gyrus-have 

TABLE 2  Multivariate logistic regression analysis of the associated predictors for the risk of PSCIND in patients with first-ever MIS.

Variable β SE Wald χ2 p value OR 95% CI

Age 0.059 0.022 7.350 0.007 1.060 1.016–1.106

Education −0.087 0.041 4.355 0.037 0.917 0.845–0.995

T2DM 2.241 0.468 22.967 <0.001 9.407 3.761–23.528

SOD −0.050 0.011 20.651 <0.001 0.951 0.931–0.972

UA 0.006 0.002 7.861 0.005 1.006 1.002–1.010

Hcy 0.057 0.015 13.602 0.013 1.058 1.027–1.091

Strategic infarcts 1.519 0.385 15.578 <0.001 4.566 2.148–9.707

Severe CSVD burden 1.340 0.372 12.988 <0.001 3.818 1.842–7.911
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been identified as independent PSCI risk factors (36, 37). Previous 
studies have demonstrated the particular vulnerability of left middle 
frontal gyrus, anterior thalamic nuclei, and left angular gyrus in PSCI 
pathogenesis (37, 38). A study synthesizing data from 12 acute 
ischemic stroke cohorts further highlighted the strong association 
between PSCI and infarcts in the left frontotemporal lobe, left 
thalamus, and right parietal lobe (36). Our findings corroborate this 
evidence, identifying strategic infarcts as significant predictors of 
PSCIND in MIS patients (OR = 4.566). Nevertheless, the lack of 
granular anatomical stratification of infarct locations in our analysis 
highlights the need for future investigations to delineate region-
specific contributions to cognitive outcomes.

Compared to isolated CSVD imaging markers, CSVD burden 
assessment provides a more comprehensive evaluation of 
cerebrovascular injury and better aligns with cognitive diagnostic 
frameworks (39, 40). Sung et al. (41) demonstrated that severe baseline 
CSVD burden (total score ≥3) independently predicts 1-year PSCI 
incidence in first-ever MIS patients-a finding paralleling our observed 
association between severe CSVD burden and elevated PSCIND risk 
(OR = 3.818). However, Du et  al. (42) proposed an indirect 
relationship, where CSVD burden influences PSCI via disrupted brain 

FIGURE 3

Dynamic nomogram for the prediction of the probability of PSCIND risk in patients with first-ever MIS. An example for predicting the probability of 
having PSCIND risk in a first-ever MIS with online dynamic nomogram. A 60-year-old patient with 12-year education, T2DM history, hcy 14 μmol/L, 
SOD 128 U/mL, UA 286 μmol/L, thalamic infarct, and CSVD score of 2 demonstrates a predicted 78.4% probability of developing PSCIND.

FIGURE 4

ROC curve of the nomogram for predicting PSCIND in patients with 
first-ever MIS.
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FIGURE 5

Calibration curve of the nomogram for predicting PSCIND in patients with first-ever MIS.

FIGURE 6

DCA of the nomogram for predicting PSCIND in patients with first-ever MIS.

network connectivity rather than direct effects. A multicenter 
prospective study substantiated the prognostic value of CSVD burden, 
correlating baseline scores with impaired executive function, attention, 
and visuospatial abilities at 12-month follow-up (43). These collective 
findings underscore the necessity of incorporating CSVD burden-
rather than isolated markers-into PSCIND prediction models for first-
ever MIS patients.

This study introduces three principal advancements: (1) The first 
dedicated model for first-ever MIS patients; (2) Incorporation of novel 

oxidative stress (SOD) and neuroimaging (CSVD burden) biomarkers; 
(3) Development of an interactive web-based nomogram enhancing 
clinical translation. However, several limitations warrant 
consideration. First, its retrospective design and single-center data 
may introduce selection bias and limit generalizability. Second, the 
moderate sample size restricts statistical power for subgroup analyses. 
Third, potential attrition bias must be acknowledged, as 76 patients 
(23.9% of eligible cohort) were lost to follow-up. Fourth, although 
CSVD burden was incorporated as a composite metric, constituent 
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markers were not individually assessed. Fifth, Broad “strategic infarct” 
categorization obscures region-specific effects, necessitating finer 
anatomical stratification in future work. Prospective multi-center 
studies with larger cohorts and extended follow-up periods are needed 
to validate these findings and explore temporal biomarker dynamics.

Conclusion

We developed and validated an eight-predictor nomogram 
integrating demographic, biochemical, and neuroimaging parameters 
to assess PSCIND risk in first-ever MIS patients. The model’s 
discriminative accuracy and dynamic visualization interface facilitate 
early identification of high-risk individuals, enabling targeted 
interventions to mitigate cognitive decline. While demonstrating 
immediate clinical value, future large-scale multicenter studies 
integrating multi-omics approaches and neuroimaging biomarkers are 
warranted to enhance clinical implementation potential and elucidate 
underlying pathophysiological mechanisms.
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