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Outcomes following paediatric mild traumatic brain injury (mTBI) are extremely 
heterogenous. While emerging biomarkers promise enhanced prognostic accuracy, 
a critical question remains unanswered—which outcome measures provide the 
most accurate assessment of injury impact? In this article, we highlight barriers to 
selecting appropriate outcome measures, including variability in how outcomes 
are defined and the wide range of assessment tools used. With reference to the 
most recent literature, we  summarise current evidence of adverse outcomes 
following paediatric mTBI and highlight emerging candidate biomarkers of these 
outcomes. We  emphasise the unique challenges associated with interpreting 
outcome measures in younger patients, from the impact of developmental stage 
and assessment timing to the influence of injury-independent factors. We assert the 
need to consider these obstacles when designing and interpreting mTBI biomarker 
studies. To realise the potential of prognostic biomarkers, future research should 
prioritise establishing consensus definitions, compiling a set of accessible and 
comprehensive outcome measures, and capturing injury-independent factors 
through longitudinal study designs.
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1 Introduction

Traumatic brain injury (TBI) encompasses a wide range of conditions whereby the brain 
is structurally or functionally altered by a mechanical insult (1). Although TBIs are a leading 
cause of death and disability among young people worldwide, up to 90% are classified as ‘mild’ 
(i.e., Glasgow Coma Scale 13–15) (2, 3). Mild TBI (mTBI) with no structural neuroimaging 
abnormalities is also known as concussion (4). While mTBIs are unlikely to result in death or 
disability, poor medium-and long-term outcomes still occur. Indeed, a significant proportion 
of patients with mTBI endure persistent symptoms, ranging from headache to impaired 
attention and mood disturbance, all of which can be debilitating and life-changing (5).
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For more than 50 years, the Glasgow Coma Scale (GCS) has been 
central to the assessment of TBI severity, but the variability of outcomes 
following mTBI highlights the need for more granular classification of 
these injuries (6). In a statement to this unmet need, the National 
Institute of Neurological Disorders and Stroke recently recommended 
combining clinical assessment with biomarkers, imaging, and outcome 
modifying factors (CBI-M) in the evaluation of TBI (7). The proposed 
CBI-M framework promises to transform how TBI is characterised, 
managed, and studied (8). However, a key challenge remains: how can 
we  utilise these evaluations in the acute phase post-injury to 
distinguish who is more likely to experience adverse outcomes?

Inherent to this challenge is the need for scientific accuracy. 
Specifically, the distinction between biomarkers and outcome measures 
must be recognised. Biomarkers are measurable characteristics that 
indicate biological processes (9), while outcome measures capture 
functional impacts experienced by patients (10). Short-term outcomes, 
such as symptom scores, may be reliable predictors of longer-term 
outcomes, but this does not make them biomarkers unless they relate 
directly to biological processes. Recognising this distinction highlights 
an opportunity for both biomarkers and outcome measures collected 
longitudinally to be integrated into dynamic prediction models.

To date, considerable research has been dedicated to identifying 
diagnostic and prognostic biomarkers of TBI (Figure 1) (11, 12). In 
contrast, relatively little attention has been given to determining which 
outcome measures these emerging biomarkers should be validated 
against, and what additional factors need to be accounted for. The 
latter is particularly important in paediatric TBI, where age at injury 

(13), time since injury (14), and neurodevelopmental stage (15) can 
all strongly influence observed outcomes. There is also substantial 
heterogeneity in the outcome assessment tools used, and little 
consensus on which measures are most appropriate, with tools 
developed for moderate–severe TBI (GCS 3–12) often lacking 
sensitivity to impairments experienced after mTBI.

To accurately validate prognostic biomarkers of mTBI, it is critical 
that we first understand which outcome measures provide the best 
assessment of the effects of an injury. In this article, we draw on the 
expertise of a multidisciplinary team to (i) discuss barriers to selecting 
outcome measures for the validation of prognostic biomarkers; (ii) 
summarise current evidence of adverse outcomes following paediatric 
mTBI and highlight emerging candidate biomarkers of these 
outcomes; and (iii) highlight the unique challenges in assessing and 
interpreting outcomes in a paediatric population. We conclude by 
offering recommendations for future research.

2 Barriers to selecting outcome 
measures for validating prognostic 
mTBI biomarkers

2.1 Variability in definitions across the 
literature

The terminology used to describe and classify brain injuries 
continues to pose fundamental challenges. In 2023, a consensus 

FIGURE 1

Emerging fluid, neuroimaging, and neurophysiological biomarkers of TBI. Fluid biomarkers are organised according to components of TBI 
pathophysiology. Neuroimaging and neurophysiological biomarkers are grouped by technique or modality.
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definition and diagnostic criteria for mTBI were published by the 
American Congress of Rehabilitation Medicine (ACRM), while 
separately the definition of sport-related concussion (SRC) was 
updated (4, 16). The definition of SRC still lacks diagnostic criteria, 
and both the meaning and relevance of the term ‘sport-related’ 
remains unclear. Moreover, the terms ‘mTBI’ and ‘concussion’ 
continue to be  conflated in the literature, and the corresponding 
criteria used to recruit participants into studies are not always clear, 
limiting comparability and generalisability. Reaching consensus on an 
operational definition that encompasses both terms is vital to make 
progress in the field.

Considering outcomes, a clear definition of what constitutes 
abnormally prolonged recovery following mTBI is also essential to 
enable comparisons between studies and meta-analyses. Currently, 
temporal thresholds for abnormally prolonged recovery are 
inconsistent across the literature, spanning from 3 weeks to 3 months 
(17). Additionally, the domains by which recovery is assessed vary 
between studies, ranging from self-reported symptom resolution or 
resumption of usual activities to return to baseline assessment scores, 
among others. Given that approximately one in eight children remain 
symptomatic 3 months after mTBI (5), a consensus definition of 
abnormally prolonged recovery needs to be established. Terms used 
to describe this condition, including post-concussion syndrome (PCS) 
and persistent post-concussion symptoms (PPCS) must also 
be harmonised (17–19).

While diagnostic criteria for prolonged recovery have not been 
validated in children, a working paediatric definition has been 
proposed (17), nevertheless, the optimal temporal cut-off for 
prolonged recovery remains a key area of uncertainty, stressing the 
need for a better understanding of the natural evolution of mTBI in 
young people (20). Overcoming barriers to the long-term follow-up 
of paediatric patients will be central to sustaining the longitudinal 
studies needed to gain these insights.

2.2 Heterogeneity of assessment tools

mTBI can produce a broad range of symptoms, and as such, those 
in whom symptoms persist may present to various specialties, 
including neurology, neuropsychology, psychiatry, and sport and 
exercise medicine (21). Each specialty prioritises different outcomes 
according to their perspective and skillset, and different specialties 
often employ distinct methods to measure similar outcomes 
(Figure 2) (22).

Even within a specialty, different sites use different tools to assess 
the same domains, leading to considerable heterogeneity in both 
clinical practice and research. Assessment tools that were originally 
designed for clinical use, such as the immediate post-concussion 
assessment and cognitive test (ImPACT), are increasingly used as 
outcome measures in research (23). While these tools can help to 
measure symptom resolution and return to baseline cognitive 
performance, there is limited evidence to support their use beyond the 
acute phase (24).

Pragmatically, the choice of tool is often guided by practical 
constraints, which limit the applicability of lengthy, costly, or highly 
technical assessments. A consensus needs to be reached about which 
assessment tools should be used to provide a comprehensive view of 

meaningful outcomes, while minimising time and resource burden to 
ensure they can be  feasibly implemented in both clinical and 
research settings.

3 Current evidence of adverse 
outcomes following paediatric mTBI 
and emerging candidate biomarkers

Having highlighted the barriers posed by variable injury and 
outcome definitions and the heterogeneity of outcome assessment 
tools, in this section we summarise the range of adverse outcomes that 
have been demonstrated following paediatric mTBI to highlight 
opportunities for the development of prognostic biomarkers.

3.1 Neurological outcomes

Post-traumatic headache (PTH), which often resembles migraine 
or tension-type headache, is a common feature of prolonged recovery 
from mTBI, affecting over half of children with persistent symptoms 
(25, 26). While the pathophysiology of PTH is not fully understood, 
neuropeptides implicated in migraine (e.g., calcitonin gene-related 
peptide and nerve growth factor) have emerged as candidate 
biomarkers of headache after mTBI (27, 28). As no paediatric 
definition of PTH exists, studies validating prognostic biomarkers for 
PTH should use the most recent International Classification of 
Headache Disorders definition as their primary outcome (29). This 
defines PTH as headache reported to have developed within 7 days of 
mTBI, and persistent PTH as headache developing with 7 days and 
persisting for more than 3 months.

Other frequent neurological sequelae include vestibulo-ocular 
and oculo-motor dysfunction, resulting in dizziness, vertigo, nausea, 
and blurred vision (30, 31). These symptoms affect approximately one 
in four children with concussion and two out of three children with 
persistent post-concussion symptoms (30). Smooth pursuit, saccade, 
and vestibulo-ocular reflex abnormalities may be  identifiable on 
examination, and could be utilised as objective outcomes measures 
alongside self-reported symptoms (32). Additionally, gross motor 
deficits including postural instability, impaired balance, and gait 
abnormalities, may persist up to 12 months post-injury after mTBI 
(33, 34).

3.2 Cognitive outcomes

While cognitive symptoms often arise following mTBI, there is 
currently no evidence of a lasting effect on intellectual abilities (23, 35, 
36). Other cognitive domains, including executive function, reaction 
time, working memory, processing speed, and attention are variably 
affected in children with TBI across the spectrum of injury severity 
(37, 38). The balance of evidence currently suggests that these 
impairments tend to recover after a single mTBI, with the possible 
exception of executive function (23, 37, 38). In adults, a history of 
three or more mTBIs has been linked with impaired executive 
function, working memory, processing speed, and attention later in 
life (39, 40). However, the long-term cognitive effects of multiple 

https://doi.org/10.3389/fneur.2025.1620178
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Attwood et al. 10.3389/fneur.2025.1620178

Frontiers in Neurology 04 frontiersin.org

mTBIs in children and young adults remains poorly understood, 
highlighting an important area for future research.

Advanced neuroimaging may be more apt than fluid biomarkers 
to predict cognitive impairments arising from altered brain network 
performance following mTBI. For example, volumetric 
abnormalities in grey and white matter structures are associated 
with greater cognitive difficulties after moderate–severe TBI in 
children (41). In adults affected by TBI, fMRI reveals hypo-
connectivity within the default mode network (DMN) during 
performance of choice-reaction cognitive tasks, with a 
compensatory hyper-connectivity at rest (42). Using magnetic 
resonance spectroscopy (MRS), it has also been shown that frontal 
lobe gamma-aminobutyric acid (GABA) levels are associated with 
impaired working memory after mTBI (43), and subcortical levels 
of N-acetyl aspartate (NAA) are associated with cognitive outcomes 
up to 1 year after injury in children (44).

3.3 Psychiatric outcomes

According to parental reports, up to a quarter of young people 
experience significant psychological distress following mTBI (45). 
Children with mTBI are also more likely to exhibit internalising 
symptoms (e.g., anxiety, depression) and externalising symptoms (e.g., 
inattention, hyperactivity, aggression) compared to uninjured children 
(46). Longitudinal data suggest that the risk of affective and behavioural 
disorders, psychiatric hospitalisation, and self-harm may remain elevated 
for years following paediatric mTBI, compared to children with 
orthopaedic injuries (46, 47). Systematic reviews have found that a 
history of multiple mTBIs and pre-existing psychiatric illness are strong 
predictors of adverse psychiatric outcomes, and also highlight the 
importance of distinguishing between mental health symptoms and 
psychiatric diagnoses, noting that children with mTBI may experience 
symptoms which not reach diagnostic thresholds (46, 48).

FIGURE 2

A selection of tools used throughout childhood to assess the spectrum of domains affected by mild TBI.
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There is currently limited evidence to suggest that fluid biomarkers 
can predict psychiatric outcomes following TBI in adults. For example, 
in a trial of targeted interventions for chronic psychological issues 
following TBI, response to treatment (measured by post-traumatic stress 
and overall psychological health) was predicted by composite 
pre-intervention serum levels of glial fibrillary acidic protein (GFAP), 
ubiquitin c-terminal hydrolase L1 (UCH-L1), von Willebrand factor 
(vWF), brain lipid-binding protein (BLBP), and vascular endothelial 
growth factor A (VEGF-A) (49). In terms of neuroimaging, structural 
abnormalities in frontal white matter are associated with novel 
psychiatric disorders up to 2 years after mTBI in children aged 5–14 years 
(50). Traumatic axonal injury (TAI) detected by diffusion tensor imaging 
(DTI) has been associated with psychiatric disorders following severe 
TBI (51), but fMRI and positron emission tomography (PET) detect 
alterations associated with new-onset depression and post-traumatic 
stress disorder (PTSD) following mTBI, with many of these studies being 
performed in young adults (52).

3.4 Social outcomes

Approximately one in eight children affected by mTBI experience 
persistently reduced health-related quality of life beyond one-year 
post-injury, and a subgroup do not return to full levels of participation 
in their community or school (53, 54). While a single mTBI is 
associated with only transiently reduced academic performance (55, 
56) and no long-term effect on educational attainment, employment, 
or material standard of living (57), the effects of multiple mTBIs on 
social outcomes are not well understood. It is also important to 
consider whether conventional measures of these outcomes, such as 
academic performance, are sufficiently sensitive to injury-related 
impairments. Given that social disruption can have a significant and 
long-lasting effect on an individual’s life, further research into these 
outcomes is needed. Identifying robust associations between 
biomarkers and such complex outcomes may seem to be challenging. 
For example, a longitudinal study of structural brain development 
after mTBI in children aged 10–12 years found no differences in the 
thickness of cortical regions involved in social behaviour compared to 
uninjured controls (58). However, a recent study of military TBI in 
adults found that unemployment was associated with elevated plasma 
GFAP levels 8 years after injury (59). Further research is required to 
determine whether this relationship exists in paediatric mTBI cohorts.

3.5 Neurodegenerative outcomes

Numerous large meta-analyses have confirmed that a lifetime 
history of TBI is associated with a greater risk of dementia, although the 
risk associated with mTBI specifically remains unclear (60–63). Studies 
investigating the association between TBI and a post-mortem diagnosis 
of neurodegenerative disease have produced inconsistent findings (64). 
The neuropathological features of chronic traumatic encephalopathy 
(CTE) can be identified among former professional athletes and other 
individuals exposed to multiple mTBIs and repetitive head impacts 
(RHIs) (65–68). The duration of exposure to RHIs is associated with the 
extent of CTE pathology (69). However, the strength of this association 
is difficult to interpret in such highly selected cohorts, and the prevalence 
of individuals without CTE pathology after significant RHI exposure 

remains unclear (70, 71). Nevertheless, in one study, over 40% of brain 
donors aged under 30 with contact sports exposure displayed CTE 
pathology (72, 73). The paucity of human post-mortem material from 
children with RHI and mTBI limits our understanding of pathological 
changes in younger age groups. Including younger participants in 
prospective lifelong studies is therefore crucial to ensure that advances 
in the diagnosis and prediction of neurodegenerative outcomes are 
applicable across all age groups who may be  at risk. Levels of 
hyperphosphorylated tau (p-tau) in the plasma and cerebrospinal fluid 
(CSF) are potential fluid biomarkers of Alzheimer’s disease (AD) and 
CTE (74, 75). The relation of neuroimaging biomarkers to CTE is also 
under investigation (76, 77).

4 Challenges in assessing and 
interpreting outcomes of paediatric 
mTBI

4.1 The impact of developmental stage and 
assessment timing

When assessing a paediatric population, it is essential to consider 
which outcomes are most relevant at different developmental stages, 
and to use age-appropriate assessment tools, as shown in Figure 2. In 
children, age at injury can significantly influence outcomes (13). Brain 
development is neither uniform nor linear, with different regions 
maturing at different rates at each developmental stage (i.e., peri-natal, 
infancy, pre-school, early childhood, middle childhood, late 
childhood, adolescence) (78). Adolescence, for example, is a time of 
complex neurobiological maturation (e.g., synaptic pruning, 
myelination) that coincides with fluctuating biological (e.g., 
hormonal) and psychosocial (e.g., identity formation) variables (79).

Relatively little is known about how the timing of brain injury 
affects these processes, or how this may differ between sexes (80–82). 
However, epidemiological studies support the notion that cognitive 
abilities are most vulnerable during critical periods of development 
(83). For example, infancy and middle childhood appear to be when 
intellectual and behavioural domains are most vulnerable to 
disruption by TBI, while injury during early childhood or adolescence 
may be more likely to affect executive function (84–88). To capture the 
evolution of outcomes across developmental milestones, and examine 
deviations as they progress over time, longitudinal studies with long 
follow-up periods will be needed.

4.2 Capturing the influence of other 
injury-independent factors

Clinical evaluation of injury severity is currently the mainstay of 
predicting adverse outcomes following mTBI (89). For instance, a 
higher initial symptom burden is associated with longer time to 
recovery (defined by return to usual activities) (13, 14, 90). However, 
a wide range of factors beyond injury severity can influence mTBI 
outcomes (17, 21). These modifying factors include the circumstances 
surrounding the injury, such as the degree of emotional distress 
experienced, as well as a wide range of injury-independent factors, 
including: (i) patient factors (e.g., age, developmental stage, sex, 
ethnicity, education, coping style, premorbid conditions and medical 
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history) (13, 91, 92), (ii) management factors (e.g., rest, graduated 
return to activities, social isolation, screen time) (93–95), and (iii) 
environmental factors (e.g., socioeconomic status, peer relationships, 
family function, and other social determinants of health) (36, 96, 97).

The impact of these factors appears to accumulate over time, 
contributing to greater variability in cognitive, psychiatric, and social 
outcomes in studies with longer time since injury (21, 53, 97–99). 
Unless sufficiently accounted for, modifying factors are likely to 
confound any attempt to predict adverse outcomes following 
mTBI. This is particularly relevant to children and young adults, who 
face unique developmental challenges, often have less autonomy and 
capacity for self-advocacy, and may be more sensitive to environmental 
factors such as family functioning.

New approaches to TBI evaluation, such as the CBI-M framework, 
emphasise the importance of considering modifying factors at the 
initial assessment (100). While integrating clinical findings, 
biomarkers, and modifying factors entails a high degree of complexity, 
machine learning approaches are emerging as promising solutions 
(101, 102). However, further work is needed to identify the most 
influential modifying factors, which should then be systematically 
accounted for in studies seeking to validate predictive mTBI 
biomarkers, with reference to common data elements (21, 37, 103).

5 Discussion

While emerging biomarkers hold great promise for enhancing our 
ability to predict adverse outcomes following mTBI, careful 
consideration must first be given to selecting the outcome measures 
against which these emerging biomarkers are validated. To this end, 
future priorities include: (i) harmonising terminology used to describe 
brain injury and establishing consensus definitions and diagnostic 
criteria for prolonged recovery from mTBI through Delphi consensus 
processes; (ii) compiling a standardised set of accessible, 
comprehensive, and complementary outcome measure assessment 
tools, and (iii) developing effective methods to capture injury-
independent factors in longitudinal study designs. Addressing these 
priorities will be essential to advance care and improve outcomes for 
young people affected by mTBI.
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