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Multiple sclerosis (MS) is a chronic neuroinflammatory disease driven by immune-
mediated central nervous system damage, often leading to progressive disability.
Accurate segmentation of MS lesions on MRl is crucial for monitoring disease and
treatment efficacy; however, manual segmentation remains time-consuming and
prone to variability. While deep learning has advanced automated segmentation,
robust performance benefits from large-scale, diverse datasets, yet data pooling
is restricted by privacy regulations and clinical performance remains challenged
by inter-site heterogeneity. In this proof-of-concept work, we aim to apply and
adopt Federated Learning (FL) in a real-world hospital setting. We assessed FL for
MS lesion segmentation using the self-configuring nnU-Net model, leveraging
512 MRI cases from three sites without sharing raw patient data. The federated
model achieved Dice scores ranging from 0.66 to 0.80 across held-out test sets.
While performance varied across sites, reflecting data heterogeneity, the study
demonstrates the potential of FL as a scalable and secure paradigm for advancing
automated MS analysis in distributed clinical environments. This work supports
adopting secure, collaborative Al in neuroimaging, offering utility for privacy-
sensitive clinical research and a starting point for medical Al development, bridging
the gap between model generalizability and regulatory compliance.

KEYWORDS

federated learning, MRI lesion segmentation, privacy-preserving Al, distributed deep
learning, multi-site training

1 Introduction

Multiple sclerosis is a chronic autoimmune disorder of the central nervous system (CNS)
and is a leading cause of non-traumatic neurological disability among young adults (1). MS
affects more than 2.8 million individuals worldwide (2). The disease is characterized by
inflammatory demyelinating CNS lesions (3), which appear as hyperintense areas in white
matter on T2-weighted/FLAIR MRI and are crucial for diagnosis and monitoring disease
progression. Lesion burden correlates with disability (4), making accurate lesion segmentation
vital for evaluating treatment efficacy.

Manual MS lesion segmentation is the clinical gold standard but is labor-intensive and
prone to observer variability. Recent convolutional neural network approaches, including 3D
U-Net variants, have achieved Dice scores of 0.6-0.8 for automated MS lesion segmentation
on benchmark datasets (5). We employed nnU-Net, a self-configuring framework with strong
performance across diverse medical segmentation tasks (6). Clinical adoption of automated
segmentation methods remains limited due to the heterogeneity of MRI data, including
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variations in acquisition protocols, scanner types, and lesion
characteristics across patient populations. Models trained on single-
center data may generalize poorly to external data due to distribution
shifts (7). Privacy regulations limit data sharing across centers,
limiting the ability to curate sufficiently large and diverse training
datasets. This fragmentation of data impedes the development of
generalizable AT models and continues to hinder machine learning
(ML) translation into clinical settings (8).

Federated learning (FL) has emerged as a promising solution by
enabling collaborative model training without exchanging raw data.
In a federated learning paradigm, each institution (client) trains a
local copy of the global model on-site. Instead of transferring patient
data, only the model’s learned parameters (e.g., weight updates) are
shared with a central server. The server aggregates the updates from
the participating clients to construct a consensus global model,
enabling collaborative learning while addressing privacy concerns and
utilizing otherwise inaccessible datasets. Despite its promise, FL is still
in the early stages of medical deployment (9) Two studies from the
same research group have investigated FL for MS lesion segmentation.
These studies used simulated FL environments with clinical and public
datasets (fewer than 200 subjects across scenarios) and reported
moderate Dice scores ranging from 54 to 77% (10, 11). A recent study
(12) also investigated FL for MS lesion segmentation as part of a
broader benchmark of five neuroimaging tasks, conducted in a
simulated FL environment, reporting Dice scores ranging from 63.2
to 70.2% on MSSEG dataset (13).

In contrast, our study deploys a federated learning framework for
MS lesion segmentation in a real-world, multi-institutional setting,
addressing legal and regulatory constraints that often hinder clinical
translation. These challenges, typically underexplored in simulated
environments, are addressed through a secure, end-to-end deployment
in which each site retains full ownership and control of its data,
demonstrating the practical feasibility of integrating FL into clinical
practice under strict data governance. We trained and evaluated the
model across three clinical institutions on a total of 512 MRI cases,
integrating both academic research and routine clinical data.
Specifically, we aim to establish a federated architecture for distributed
image analysis and assess the feasibility of training a model for
segmenting T2-weighted hyperintense MS lesions across sites. By
demonstrating FLs application to MS lesion segmentation, we aim to
strengthen the groundwork for privacy-preserving, collaborative Al
in neuroimaging.

2 Methods
2.1 Federated framework architecture

To enable privacy-preserving, multi-center training for MS lesion
segmentation, we extended our federated learning platform with
imaging capabilities by integrating it with an established open-source
framework for radiology image processing. Specifically, we utilized
Kaapana, an open-source platform described in (14, 15), to coordinate
local imaging processing and computational workflows. Kaapana is a
modular toolkit for medical image analysis that enables decentralized
data access, data management, and remote execution of containerized
algorithms. It supports private cloud development and integrates
seamlessly with local clinical IT infrastructure. The platform employed
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a client-server FL architecture to train the model across three
participating sites. Each client maintained a local copy of the model
and trained it on its own dataset of MR images. A central server acted
as the coordinating node, aggregating received model parameters
using the Federated Averaging (FedAvg) algorithm, which computes
a weighted average of the clients’ model weights (16). To address
operational, security and collaboration network scalability needs in
real-world clinical environments, we extended our setup with
additional enterprise-grade computational governance capabilities
developed by Apheris, enabling institutions to collaborate securely on
distributed data within a governed and privacy-preserving framework.
This integration allowed all collaborating institutions to retain
end-to-end control over algorithm execution. Although open-source
solutions offer transparency and adaptability, their integration into
clinical workflows can introduce operational overhead, including the
need for manual code reviews. To mitigate this challenge and reduce
risk, we implemented a centralized algorithm review process with a
controlled algorithm pull mechanism from a central container
registry, ensuring reproducibility, data and model governance, and
streamlined collaboration without exposing sensitive data.

By design, the federated model should be exposed to a wider
variety of imaging patterns (patient demographics, scanner types,
artifact profiles) than any single-site model, ideally resulting in a more
generalizable model. MRI data were preprocessed using a standardized
pipeline applied consistently across all sites to ensure uniform
orientation and registration. We employed nnU-Net, which
automatically configures its architecture, preprocessing, and training
pipelines to the given dataset, enabling site-specific adaptation and
efficient deployment with minimal computational and implementation
overhead (6). The model was trained across sites using a uniform
configuration and shared hyperparameters. Each site used locally
managed infrastructure, typically comprising GPUs with at least
24 GB of VRAM (NVIDIA Turing or newer) and at least 64 GB of
RAM. The training was done in a synchronous federated manner such
that all sites participated in each round. By the end of training, the
final federated model was evaluated on held-out test sets at each
participating site.

Throughout the federated training, no MR images or patient
identifiers were ever exchanged. Only data fingerprints, containing
image sizes, voxel spacings, and intensity characteristics for model
initialization, along with model parameters were shared during FL
iterations. Dataset fingerprints were required for the adaptive, rule-
based configuration of the segmentation pipeline, including the
selection of the patch size, network topology, and batch size, all of
which depend on image properties (6). This approach together with a
decentralized architecture inherently preserves data privacy, as an
adversary cannot directly access the underlying images through the
central server. To further secure communications, all network traffic
between the server and client nodes was encrypted using state-of-
the-art protocols. Each participating site deployed and operated a
local platform within its own firewall, allowing the central
orchestration server to invoke nnU-Net federated training workflows
on local data. We implemented local basic authentication for the
nodes and an external identity and access mechanism for the central
node. This design enables more autonomous, isolated and efficient
deployment at each site. Node authentication within the federated
network is based on a centrally generated token that each site receives
via independent media during registration. This token includes: 1. an
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SSL certificate, 2. an authentication token, 3. connection details of the
central instance and 4. a symmetrical encryption key as an additional
protection mechanism for data in transit. To simplify deployment and
avoid dependencies on potential vulnerabilities in the open-source
network stack, we opted not to implement a dedicated virtual network
infrastructure for federated nodes. Instead, we introduced a
symmetric encryption layer implemented explicitly at the federated
client and server applications. Due to its inherent speed, this
mechanism was well-suited for encrypting client-generated weights
at each round. Additionally, it served as a safeguard to ensure secure
communication between clients and the central node, effectively
replicating the protection typically provided by a virtual
private network.

This setup guarantees the authenticity of the contributing clients
and prevents spoofing or tampering within the federated network.
Each client application maintained a list of approved datasets and
workflows for federated processing, allowing site personnel to
contribute to model training without relinquishing control over their

10.3389/fneur.2025.1620469

data. This approach is compliant with data protection regulations and
addresses the ethical concerns of data sharing.

The federated learning architecture (illustrated in Figure 1)
supports the following key user workflows:

1. Model publication by ML Engineer - A locally tested model is
converted into its federated version and uploaded to a central
model repository. Once approved by the site Data Custodian,
it becomes available for execution at the corresponding sites.
Upload of data assets and data access policies by the Data
Custodian - At each site, the Data Custodian defines which
models are authorized to access the uploaded data. This enables
Gateway agents to accept requests to execute approved
ML models.

Federated Workflow Execution by Data Scientist - Using the
Python SDK, the Data Scientist interacts with the Federated
Learning Orchestrator to initiate computation pods at the
federated nodes (workers) and the central platform

federated node.
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’ ) C2.4 Approval
W publish Model to _ C2.?'.’> o \'cllorkﬂow
repository Container [€4—— anager
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FIGURE 1

High-level solution architecture showing the integration of Kaapana and Apheris into a single solution. This extended architecture allows site personnel
to control processing pipelines executed on their data. It supports three primary user workflows and illustrates basic component interactions at a single
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(aggregator), in accordance with the approved data access
policies. This setup facilitates the full execution of nnU-Net
training across the participating sites.

2.2 Description of datasets

This is a multi-center, multi-country study utilizing anonymized
MRI data from patients with MS. The study involved in-house data
from a previous Roche-sponsored trial at our site (Site A, 149 cases,
each consisting of paired Tlw and FLAIR images), as well as
anonymized observational data from two academic medical centers:
one in Switzerland (Site B, 325 cases) and one in Germany (Site C, 38
cases). A total of 512 expert-annotated MRI cases were used, of which
380 were allocated to training and validation. Patients were uniquely
assigned to either the training/validation or test sets to avoid data
leakage and ensure unbiased model evaluation. In accordance with
data protection principles, all data remained local at each site and were
never shared centrally.

The datasets included 1 mm isotropic 3D T2-weighted/FLAIR
and T1-weighted sequences (with a tolerance of 0.1 mm, ranging
from 0.9 to 1.1 mm). Scans were acquired on Siemens, Philips, and GE
Medical Systems scanners at a field strength of 3 Tesla, and each site
followed its own routine clinical MRI protocol, resulting in some
heterogeneity in image resolution and contrast. Site A contributed
data from a range of scanner models across the three vendors: Siemens
(Skyra, Verio, Prisma, Prisma_fit, TrioTim), Philips (Achieva, Achieva
dStream, Intera, Ingenia), and GE Medical Systems (Signa HDxt,
Discovery MR750, SIGNA Premier). Site B provided data acquired on
Siemens Skyra and Skyra Fit scanners, while Site C used the Siemens
Skyra Fit. Table 1 summarizes dataset characteristics across sites. The
diversity of imaging sources and clinical presentations should reduce
site-specific biases and enhance generalizability.

To ensure data consistency, T1-weighted images were registered
to their corresponding FLAIR sequences, and automated quality
control was applied to identify potential image quality issues. This
diverse dataset, representing multiple sites with varying imaging
protocols, was used to assess the federated approach under realistic
conditions of inter-site heterogeneity.

2.3 Preprocessing for image
standardization

A standardized automated preprocessing pipeline was applied to
ensure data consistency across all sites. This process included
automated quality control procedures assessing key image properties.
Signal-to-noise ratios (SNR) were computed in modality-specific
anatomical regions to estimate overall image quality. T1w SNR was

10.3389/fneur.2025.1620469

calculated in the brain parenchyma, while FLAIR SNR was calculated
in the cerebrospinal fluid. Artifact presence was estimated using the
MAI-Lab sorting and artifacts detection tool (17), and cropping was
detected by evaluating brain coverage across anatomical boundaries.
Voxel dimensions were validated against the expected isotropic
resolution (1.0 £ 0.1 mm), and inter-modality brain mask volume
similarity was assessed to detect major discrepancies or modality-
specific artifacts. All MRI data were reoriented to a standardized axial
orientation to ensure uniform spatial alignment. T1-weighted images
were registered to their corresponding FLAIR images, correcting for
positional misalignment. These preprocessing steps were performed
locally at each site using Kaapana and integrated into the federated
learning workflow, ensuring uniformity in the input data across sites
for subsequent model training.

2.4 Model selection and training

We selected nnU-Net for its robust performance across diverse
medical segmentation tasks, offering automatic adaptation and
competitive results without manual customization (6). nnU-Net
handles preprocessing, architecture selection, and postprocessing,
reducing the need for extensive manual intervention. It is also well-
suited for 3D multi-modal input, automatically configuring an
appropriate 3D U-Net architecture based on input image dimensions
and hardware constraints.

Local training at each site adhered to the standard nnU-Net
training configuration and hyperparameters, with configurable
values set to a learning rate of 0.01, weight decay of 3 x 107%, 250
training batches per epoch, and 33% foreground oversampling. The
model used the standard Dice loss combined with cross-entropy, as
provided by the default configuration of nnU-Net. We conducted
50 rounds of federated training, with each round corresponding to
one local epoch at each site. Limiting local training to a single
epoch helped prevent models from overfitting to local data and
drifting from the global objective. Training progress was monitored
by tracking site-level training and validation losses after each
federated round to ensure stability and detect potential divergence.
After each round, the server aggregated client weight updates using
the FedAvg algorithm to generate a new global model, which was
then redistributed to all sites.

The final global model obtained after 50 rounds of federated
training was evaluated independently at each site using its respective
held-out test set. Model evaluation at the three participating sites
included both quantitative metrics such as Dice score, sensitivity, and
precision, as well as a qualitative review by a neuroradiologist to assess
overall performance, including true positive detection and tendencies
to miss lesions across anatomical regions. To benchmark against a
non-federated scenario, we trained and tested a baseline nnU-Net

TABLE 1 Summary of site-specific data including number of cases, scanner vendors, and lesion characteristics.

Train/Validation cases Test cases

Scanner vendors

Median Lesion
count

Median Lesion

volume (cc)

Site A 105 44 Siemens, Philips, GE 4.54 [2.35-9.36] 44 [25-67]
Site B 247 78 Siemens 4.90 [1.53-13.81] 33 [19-55]
Site C 28 10 Siemens 2.48[0.58-3.91] 27 [8-65]
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model locally using our site’s data. This enabled a comparison between
the performance of the federated model and the locally trained model,
both evaluated on the same test set from our institution.

2.5 Privacy and security considerations

Patient privacy was a core requirement of our FL framework,
which inherently avoids sharing raw imaging data. All images were
anonymized at their source by removing identifying metadata (e.g.,
DICOM headers), ensuring that no personally identifiable information
was accessible. Federated training was conducted within protected
compute environments, with each site’s data remaining on secure local
infrastructure. Our configuration follows enterprise-grade governance
principles, ensuring that each client site retains full control over which
algorithms are executed on its data. This level of control allows
individual node administrators to prevent the execution of
unauthorized or potentially malicious code, thereby strengthening
overall system security.

As described in the Architecture section, only sites that received
a secret, unique token were allowed to contribute to the central model
thus
communications between sites and the central server were

updates, limiting potential poisoning attacks. Since
TLS-encrypted, and additionally encrypted at the sites with a
symmetric key shared within the token, the risk of an adversarial
attack was minimal. The central cloud-based environment employed
AWS Well-Architected Framework mechanisms, with access to the
Federated Orchestrator restricted to a predefined IP range. This setup
limited the marginal risk of reconstruction or inference attacks and
allowed the use of original parameters and weights from

individual nodes.

10.3389/fneur.2025.1620469

While FL reduces data privacy risks by design, it is not entirely
immune to threats such as model inversion or membership inference
attacks. To mitigate these risks, we adopted strict security principles
integrated directly into the framework. Execution of any machine
learning code or federated learning configuration requires explicit
approval from each participating site. Comprehensive encryption and
tightly controlled access to both site and central nodes further
minimize the risk of sensitive data leakage or attacks by unauthorized,
potentially malicious actors.

From a regulatory standpoint, this study adhered to data
protection laws. Since only model parameters and not raw data were
exchanged, each institution maintained full control over its data. Our
framework serves as a starting point for multi-center collaborations,
promoting secure Al development in medical imaging.

3 Results
3.1 Quantitative analysis

We conducted 50 rounds of federated training, with each round
corresponding to one local epoch per site. In our setting, preliminary
experiments with additional local epochs per round resulted in abrupt
performance degradation, which may reflect FedAvgs sensitivity to
data heterogeneity (18). This aligns with observations in the literature
where non-IID data or class imbalances can cause gradient
misalignment, driving local models away from the global objective
(19). Model performance over 50 federated rounds is shown in
Figure 2. Most reductions in training and validation losses occurred
within the first 10-15 rounds, after which learning progressed more
gradually. As the system retains only model weights from the final
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training round, we adopted a fixed training schedule rather than an
adaptive early stopping strategy based on convergence. Extended
training revealed that additional rounds improved performance at
certain sites, while others experienced a decline, potentially due to
model drift or overfitting to dominant patterns. Although 50 rounds
may not represent the global optimum, this configuration provided a
balanced trade-off across all participating sites.

To assess model performance, we compared a locally trained
model to its federated counterpart using a held-out test set of 44 MRI
cases from our site. Both models were trained using the same
hyperparameters and configuration to ensure a fair comparison. A
local nnU-Net model trained for 50 epochs using only our site’s
training set achieved a mean Dice score of 0.88 + 0.04, sensitivity of
0.85+ 0.05, and precision of 0.90 £+ 0.05 on our site’s test set. In
comparison, the federated model, trained for 50 rounds with one local
epoch per round across the three sites, achieved a mean Dice score of
0.80 + 0.07 on the same test set. While the federated model showed a
lower Dice score, it demonstrated higher sensitivity (0.89 + 0.07 vs.
0.85), indicating improved lesion detection, albeit with reduced
precision. One-sided Wilcoxon tests indicated that the local model
had significantly higher Dice and precision (p = 5.7 x 107" for both).
In contrast, the federated model showed significantly higher sensitivity
based on a one-sided paired t-test (p = 2.4 x 1077). In a clinical context,
higher sensitivity is valuable for minimizing the risk of missed lesions;
however, the corresponding decrease in precision reflects a higher rate
of false positives, which may result in unwarranted diagnostic
procedures, increased clinician workload, and patient distress.

To evaluate the cross-site generalizability of the federated model,
we evaluated it on held-out test sets from the other two participating
sites, comprising 78 and 10 cases, where it achieved mean Dice scores
of 0.71+0.15 and 0.66 £ 0.16, respectively. These results are
summarized in Table 2. A Kruskal-Wallis test across all sites showed
significant site-dependent variability in Dice scores (p = 3.05 x 107°).
Given the limited test sample size at Site C, we further conducted a
two-sided Mann-Whitney U test between Site A and Site B, which
also indicated a statistically significant difference in Dice scores
between the two sites (p =3 x 107°).

Figure 3 presents the distribution of performance metrics for each
site, with Sites A and B showing relatively more consistent distributions
and Site C exhibiting broader variability, reflecting inter-site
differences in model generalization. Although performance varied,
likely due to differences in imaging protocols, scanner types, or
annotation standards, the model maintained moderate segmentation
performance across diverse clinical environments without access to
raw patient data. Importantly, federated training does not preclude
subsequent site-level adaptation. Fine-tuning the global model on
local data can help capture site-specific patterns, offering a balanced

TABLE 2 Federated model performance on the test set from each
participating site.

Site Dice Sensitivity Precision
Score

Site A 0.80 + 0.07 0.89 + 0.07 0.74 +0.11

Site B 0.71+0.15 0.74+0.11 0.70 +0.17

Site C 0.66 + 0.16 0.64 +0.19 0.74+0.23

Metrics are reported as mean + standard deviation for Dice score, sensitivity, and precision,
highlighting inter-site variability in segmentation accuracy.
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approach that preserves the robustness gained from diverse data while
recovering the precision of locally optimized models.

3.2 Qualitative assessment

To complement the quantitative evaluation, a qualitative
radiological assessment was conducted to examine the alignment
between visual observations and metric-based performance. A board-
certified neuroradiologist and MS expert assessed aspects not fully
captured by global quantitative metrics, such as pathological
plausibility (e.g., false negatives and false positives), anatomical
consistency (e.g., periventricular, subcortical, and other region-
specific biases), and morphological correctness (e.g., small versus large
lesions). The expert reviewed lesion masks generated by (1) the
federated model trained across all sites and (2) a model trained solely
on local data from our site. As in the quantitative evaluation, the
comparison was performed on outputs generated from the held-out
test set at our site, with the models’ outputs reviewed side by side to
identify clinically meaningful differences in segmentation behavior.

Figure 4 presents a visual comparison on a FLAIR slice from our
site’s test set, with model predicted segmentation masks overlaid on
the image. The results highlight key differences between the models,
with the federated model detecting more lesions, reflecting higher
sensitivity, but also introducing more false positives. While further
validation is warranted, these findings demonstrate the feasibility of
federated learning for automated MS lesion segmentation,
underscoring its potential for broader clinical application.

4 Discussion

This Proof of Concept study demonstrates the end-to-end
technical feasibility of deploying federated learning as a scalable,
privacy-preserving framework across clinical institutions, each with
distinct privacy constraints, data governance policies, and technical
environments. Our work addresses a gap often overlooked in
simulated FL research by preserving full data governance at each site
while supporting scalable algorithm integration and institutional
participation. By integrating Kaapana and Apheris, our framework
enables autonomous data curation and enforces consensus-based
algorithm approval prior to execution at each site, enhancing both
privacy and operational security. This design allows each institution
to manage its own imaging workflows while safeguarding against
unauthorized computation, making the approach particularly well-
suited for sensitive clinical environments. This federated setup is
inherently portable and supports scalable, efficient deployment. It can
be extended to additional institutions by deploying a platform instance
at each site with secure client-to-server communication. This modular
architecture emphasizes flexibility, reproducibility, and compatibility
with diverse governance policies, enabling broader future adoption.

Building on this infrastructure, we evaluated the federated model
on the held-out test set from each participating site. For comparative
analysis, we also compared its performance on our site’s held-out test
set relative to a model trained and tested locally. Although the
federated model showed a lower Dice score compared to the locally
trained model at our site, it achieved higher recall, which may indicate
improved lesion detection. This trade-off reflects a core challenge in
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Density plots of segmentation metrics across sites. The plots show the distribution of (a) Dice score, (b) sensitivity, and (c) precision for Site A, Site B,

and Site C, reflecting inter-site variability in segmentation performance.

(b)

FIGURE 4

(d

Comparative visualization of lesion segmentation between training paradigms: (a) FLAIR MRI slice without annotations; (b) Ground truth manual
segmentation; (c) Prediction from the local model (trained solely on our data); (d) Prediction from the federated model (trained across three sites). The
federated model detects more lesions but also introduces additional false positives, reflecting the trade-off between sensitivity and precision.

FL as it requires balancing global generalization with site-specific
optimization. The observed performance gap in Dice score likely
stems from the federated model’s exposure to heterogeneous, non-I1ID
data across institutions, which encourages learning generalized
representations rather than overfitting to any specific site’s patterns.
Federated models are optimized to perform robustly across diverse
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data distributions, enhancing sensitivity to subtle or atypical lesions
that may be underrepresented in any single site’s dataset. However,
this improvement in sensitivity was accompanied by reduced
precision, as the federated model might not fully adapt to site-specific
imaging features and annotation styles. This misalignment may cause
the model to over-segment or misclassify challenging regions,
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resulting in an increased number of false positives. Additionally, while
local training on homogeneous data can converge rapidly, federated
learning may require more rounds to achieve comparable performance
due to the challenges of learning from fragmented and non-IID
data distributions.

Beyond performance trade-offs, our study highlights several
practical challenges that are often overlooked in simulated FL settings.
First, in synchronous FL workflows, training requires all sites to
remain active; resource outages or downtime at any site can halt the
entire federated round. Second, training local models for comparison
with the federated model requires technical expertise at all
participating sites, which may not always be readily available. In
contrast, participation in federated training and quantitative
evaluation of the federated model in our setup did not require
machine learning expertise. Third, centralized baseline models trained
on pooled multi-site data, which are commonly used as performance
upper bounds for federated models, are often infeasible in real-world
clinical settings due to data privacy regulations, as was the case in our
study. These constraints underscore the gap between FL in theory and
its real-world implementation.

It is also worth noting that the federated model in this Proof of
Concept study was not intended to optimize performance, and thus
was only trained on a relatively small dataset (380 cases), whereas many
deep learning studies rely on datasets exceeding 1,000 cases (20) or
even tens of thousands in population-scale initiatives like UK Biobank
(e.g.» 39,694 subjects (21)). While expanding to larger, more diverse
cohorts is expected to improve generalizability, site-specific accuracy
gains may require complementary strategies. For instance, fine-tuning
the federated model on local data can improve local performance, but
risks catastrophic forgetting, where local adaptation distorts
generalizable representations learned during federated training,
leading to degraded performance on external datasets. To address this,
personalized FL strategies such as FedBN (22), which retains local
batch normalization statistics to account for domain shifts, and Ditto
(23), which optimizes a personalized objective while maintaining
alignment with the global model, have shown promise in non-IID
settings. Additionally, adaptive aggregation adjusts client contributions
to better manage data skew, with methods like FedProx (24)
introducing a proximal term to reduce client drift and improve
convergence stability.

While this study demonstrates the technical feasibility of FL in
real-world settings, future research should explore integrating adaptive
aggregation, personalized FL strategies, and expanding datasets to
further improve model performance in heterogeneous environments.
Overall, these findings establish a starting point for adopting federated
learning in clinical practice, with potential for future scaling to multi-
modal and longitudinal MS studies.

Software and resources

The federated learning infrastructure was implemented using the
open-source Kaapana platform (https://github.com/kaapana/kaapana),
with the nnU-Net training pipeline available at https://github.com/
kaapana/kaapana/tree/develop/data-processing/processing-pipelines/
nnunet. Additional computational governance capabilities were
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supported by Apheris (https://www.apheris.com), enabling secure
collaboration across participating institutions.
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