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Multiple sclerosis (MS) is a chronic neuroinflammatory disease driven by immune-
mediated central nervous system damage, often leading to progressive disability. 
Accurate segmentation of MS lesions on MRI is crucial for monitoring disease and 
treatment efficacy; however, manual segmentation remains time-consuming and 
prone to variability. While deep learning has advanced automated segmentation, 
robust performance benefits from large-scale, diverse datasets, yet data pooling 
is restricted by privacy regulations and clinical performance remains challenged 
by inter-site heterogeneity. In this proof-of-concept work, we aim to apply and 
adopt Federated Learning (FL) in a real-world hospital setting. We assessed FL for 
MS lesion segmentation using the self-configuring nnU-Net model, leveraging 
512 MRI cases from three sites without sharing raw patient data. The federated 
model achieved Dice scores ranging from 0.66 to 0.80 across held-out test sets. 
While performance varied across sites, reflecting data heterogeneity, the study 
demonstrates the potential of FL as a scalable and secure paradigm for advancing 
automated MS analysis in distributed clinical environments. This work supports 
adopting secure, collaborative AI in neuroimaging, offering utility for privacy-
sensitive clinical research and a starting point for medical AI development, bridging 
the gap between model generalizability and regulatory compliance.
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1 Introduction

Multiple sclerosis is a chronic autoimmune disorder of the central nervous system (CNS) 
and is a leading cause of non-traumatic neurological disability among young adults (1). MS 
affects more than 2.8 million individuals worldwide (2). The disease is characterized by 
inflammatory demyelinating CNS lesions (3), which appear as hyperintense areas in white 
matter on T2-weighted/FLAIR MRI and are crucial for diagnosis and monitoring disease 
progression. Lesion burden correlates with disability (4), making accurate lesion segmentation 
vital for evaluating treatment efficacy.

Manual MS lesion segmentation is the clinical gold standard but is labor-intensive and 
prone to observer variability. Recent convolutional neural network approaches, including 3D 
U-Net variants, have achieved Dice scores of 0.6–0.8 for automated MS lesion segmentation 
on benchmark datasets (5). We employed nnU-Net, a self-configuring framework with strong 
performance across diverse medical segmentation tasks (6). Clinical adoption of automated 
segmentation methods remains limited due to the heterogeneity of MRI data, including 
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variations in acquisition protocols, scanner types, and lesion 
characteristics across patient populations. Models trained on single-
center data may generalize poorly to external data due to distribution 
shifts (7). Privacy regulations limit data sharing across centers, 
limiting the ability to curate sufficiently large and diverse training 
datasets. This fragmentation of data impedes the development of 
generalizable AI models and continues to hinder machine learning 
(ML) translation into clinical settings (8).

Federated learning (FL) has emerged as a promising solution by 
enabling collaborative model training without exchanging raw data. 
In a federated learning paradigm, each institution (client) trains a 
local copy of the global model on-site. Instead of transferring patient 
data, only the model’s learned parameters (e.g., weight updates) are 
shared with a central server. The server aggregates the updates from 
the participating clients to construct a consensus global model, 
enabling collaborative learning while addressing privacy concerns and 
utilizing otherwise inaccessible datasets. Despite its promise, FL is still 
in the early stages of medical deployment (9) Two studies from the 
same research group have investigated FL for MS lesion segmentation. 
These studies used simulated FL environments with clinical and public 
datasets (fewer than 200 subjects across scenarios) and reported 
moderate Dice scores ranging from 54 to 77% (10, 11). A recent study 
(12) also investigated FL for MS lesion segmentation as part of a 
broader benchmark of five neuroimaging tasks, conducted in a 
simulated FL environment, reporting Dice scores ranging from 63.2 
to 70.2% on MSSEG dataset (13).

In contrast, our study deploys a federated learning framework for 
MS lesion segmentation in a real-world, multi-institutional setting, 
addressing legal and regulatory constraints that often hinder clinical 
translation. These challenges, typically underexplored in simulated 
environments, are addressed through a secure, end-to-end deployment 
in which each site retains full ownership and control of its data, 
demonstrating the practical feasibility of integrating FL into clinical 
practice under strict data governance. We trained and evaluated the 
model across three clinical institutions on a total of 512 MRI cases, 
integrating both academic research and routine clinical data. 
Specifically, we aim to establish a federated architecture for distributed 
image analysis and assess the feasibility of training a model for 
segmenting T2-weighted hyperintense MS lesions across sites. By 
demonstrating FL’s application to MS lesion segmentation, we aim to 
strengthen the groundwork for privacy-preserving, collaborative AI 
in neuroimaging.

2 Methods

2.1 Federated framework architecture

To enable privacy-preserving, multi-center training for MS lesion 
segmentation, we  extended our federated learning platform with 
imaging capabilities by integrating it with an established open-source 
framework for radiology image processing. Specifically, we utilized 
Kaapana, an open-source platform described in (14, 15), to coordinate 
local imaging processing and computational workflows. Kaapana is a 
modular toolkit for medical image analysis that enables decentralized 
data access, data management, and remote execution of containerized 
algorithms. It supports private cloud development and integrates 
seamlessly with local clinical IT infrastructure. The platform employed 

a client–server FL architecture to train the model across three 
participating sites. Each client maintained a local copy of the model 
and trained it on its own dataset of MR images. A central server acted 
as the coordinating node, aggregating received model parameters 
using the Federated Averaging (FedAvg) algorithm, which computes 
a weighted average of the clients’ model weights (16). To address 
operational, security and collaboration network scalability needs in 
real-world clinical environments, we  extended our setup with 
additional enterprise-grade computational governance capabilities 
developed by Apheris, enabling institutions to collaborate securely on 
distributed data within a governed and privacy-preserving framework. 
This integration allowed all collaborating institutions to retain 
end-to-end control over algorithm execution. Although open-source 
solutions offer transparency and adaptability, their integration into 
clinical workflows can introduce operational overhead, including the 
need for manual code reviews. To mitigate this challenge and reduce 
risk, we implemented a centralized algorithm review process with a 
controlled algorithm pull mechanism from a central container 
registry, ensuring reproducibility, data and model governance, and 
streamlined collaboration without exposing sensitive data.

By design, the federated model should be exposed to a wider 
variety of imaging patterns (patient demographics, scanner types, 
artifact profiles) than any single-site model, ideally resulting in a more 
generalizable model. MRI data were preprocessed using a standardized 
pipeline applied consistently across all sites to ensure uniform 
orientation and registration. We  employed nnU-Net, which 
automatically configures its architecture, preprocessing, and training 
pipelines to the given dataset, enabling site-specific adaptation and 
efficient deployment with minimal computational and implementation 
overhead (6). The model was trained across sites using a uniform 
configuration and shared hyperparameters. Each site used locally 
managed infrastructure, typically comprising GPUs with at least 
24 GB of VRAM (NVIDIA Turing or newer) and at least 64 GB of 
RAM. The training was done in a synchronous federated manner such 
that all sites participated in each round. By the end of training, the 
final federated model was evaluated on held-out test sets at each 
participating site.

Throughout the federated training, no MR images or patient 
identifiers were ever exchanged. Only data fingerprints, containing 
image sizes, voxel spacings, and intensity characteristics for model 
initialization, along with model parameters were shared during FL 
iterations. Dataset fingerprints were required for the adaptive, rule-
based configuration of the segmentation pipeline, including the 
selection of the patch size, network topology, and batch size, all of 
which depend on image properties (6). This approach together with a 
decentralized architecture inherently preserves data privacy, as an 
adversary cannot directly access the underlying images through the 
central server. To further secure communications, all network traffic 
between the server and client nodes was encrypted using state-of-
the-art protocols. Each participating site deployed and operated a 
local platform within its own firewall, allowing the central 
orchestration server to invoke nnU-Net federated training workflows 
on local data. We  implemented local basic authentication for the 
nodes and an external identity and access mechanism for the central 
node. This design enables more autonomous, isolated and efficient 
deployment at each site. Node authentication within the federated 
network is based on a centrally generated token that each site receives 
via independent media during registration. This token includes: 1. an 
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SSL certificate, 2. an authentication token, 3. connection details of the 
central instance and 4. a symmetrical encryption key as an additional 
protection mechanism for data in transit. To simplify deployment and 
avoid dependencies on potential vulnerabilities in the open-source 
network stack, we opted not to implement a dedicated virtual network 
infrastructure for federated nodes. Instead, we  introduced a 
symmetric encryption layer implemented explicitly at the federated 
client and server applications. Due to its inherent speed, this 
mechanism was well-suited for encrypting client-generated weights 
at each round. Additionally, it served as a safeguard to ensure secure 
communication between clients and the central node, effectively 
replicating the protection typically provided by a virtual 
private network.

This setup guarantees the authenticity of the contributing clients 
and prevents spoofing or tampering within the federated network. 
Each client application maintained a list of approved datasets and 
workflows for federated processing, allowing site personnel to 
contribute to model training without relinquishing control over their 

data. This approach is compliant with data protection regulations and 
addresses the ethical concerns of data sharing.

The federated learning architecture (illustrated in Figure  1) 
supports the following key user workflows:

	 1.	 Model publication by ML Engineer - A locally tested model is 
converted into its federated version and uploaded to a central 
model repository. Once approved by the site Data Custodian, 
it becomes available for execution at the corresponding sites.

	 2.	 Upload of data assets and data access policies by the Data 
Custodian - At each site, the Data Custodian defines which 
models are authorized to access the uploaded data. This enables 
Gateway agents to accept requests to execute approved 
ML models.

	 3.	 Federated Workflow Execution by Data Scientist - Using the 
Python SDK, the Data Scientist interacts with the Federated 
Learning Orchestrator to initiate computation pods at the 
federated nodes (workers) and the central platform 

FIGURE 1

High-level solution architecture showing the integration of Kaapana and Apheris into a single solution. This extended architecture allows site personnel 
to control processing pipelines executed on their data. It supports three primary user workflows and illustrates basic component interactions at a single 
federated node.
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(aggregator), in accordance with the approved data access 
policies. This setup facilitates the full execution of nnU-Net 
training across the participating sites.

2.2 Description of datasets

This is a multi-center, multi-country study utilizing anonymized 
MRI data from patients with MS. The study involved in-house data 
from a previous Roche-sponsored trial at our site (Site A, 149 cases, 
each consisting of paired T1w and FLAIR images), as well as 
anonymized observational data from two academic medical centers: 
one in Switzerland (Site B, 325 cases) and one in Germany (Site C, 38 
cases). A total of 512 expert-annotated MRI cases were used, of which 
380 were allocated to training and validation. Patients were uniquely 
assigned to either the training/validation or test sets to avoid data 
leakage and ensure unbiased model evaluation. In accordance with 
data protection principles, all data remained local at each site and were 
never shared centrally.

The datasets included 1 mm isotropic 3D T2-weighted/FLAIR 
and T1-weighted sequences (with a tolerance of ±0.1 mm, ranging 
from 0.9 to 1.1 mm). Scans were acquired on Siemens, Philips, and GE 
Medical Systems scanners at a field strength of 3 Tesla, and each site 
followed its own routine clinical MRI protocol, resulting in some 
heterogeneity in image resolution and contrast. Site A contributed 
data from a range of scanner models across the three vendors: Siemens 
(Skyra, Verio, Prisma, Prisma_fit, TrioTim), Philips (Achieva, Achieva 
dStream, Intera, Ingenia), and GE Medical Systems (Signa HDxt, 
Discovery MR750, SIGNA Premier). Site B provided data acquired on 
Siemens Skyra and Skyra Fit scanners, while Site C used the Siemens 
Skyra Fit. Table 1 summarizes dataset characteristics across sites. The 
diversity of imaging sources and clinical presentations should reduce 
site-specific biases and enhance generalizability.

To ensure data consistency, T1-weighted images were registered 
to their corresponding FLAIR sequences, and automated quality 
control was applied to identify potential image quality issues. This 
diverse dataset, representing multiple sites with varying imaging 
protocols, was used to assess the federated approach under realistic 
conditions of inter-site heterogeneity.

2.3 Preprocessing for image 
standardization

A standardized automated preprocessing pipeline was applied to 
ensure data consistency across all sites. This process included 
automated quality control procedures assessing key image properties. 
Signal-to-noise ratios (SNR) were computed in modality-specific 
anatomical regions to estimate overall image quality. T1w SNR was 

calculated in the brain parenchyma, while FLAIR SNR was calculated 
in the cerebrospinal fluid. Artifact presence was estimated using the 
MAI-Lab sorting and artifacts detection tool (17), and cropping was 
detected by evaluating brain coverage across anatomical boundaries. 
Voxel dimensions were validated against the expected isotropic 
resolution (1.0 ± 0.1 mm), and inter-modality brain mask volume 
similarity was assessed to detect major discrepancies or modality-
specific artifacts. All MRI data were reoriented to a standardized axial 
orientation to ensure uniform spatial alignment. T1-weighted images 
were registered to their corresponding FLAIR images, correcting for 
positional misalignment. These preprocessing steps were performed 
locally at each site using Kaapana and integrated into the federated 
learning workflow, ensuring uniformity in the input data across sites 
for subsequent model training.

2.4 Model selection and training

We selected nnU-Net for its robust performance across diverse 
medical segmentation tasks, offering automatic adaptation and 
competitive results without manual customization (6). nnU-Net 
handles preprocessing, architecture selection, and postprocessing, 
reducing the need for extensive manual intervention. It is also well-
suited for 3D multi-modal input, automatically configuring an 
appropriate 3D U-Net architecture based on input image dimensions 
and hardware constraints.

Local training at each site adhered to the standard nnU-Net 
training configuration and hyperparameters, with configurable 
values set to a learning rate of 0.01, weight decay of 3 × 10−5, 250 
training batches per epoch, and 33% foreground oversampling. The 
model used the standard Dice loss combined with cross-entropy, as 
provided by the default configuration of nnU-Net. We conducted 
50 rounds of federated training, with each round corresponding to 
one local epoch at each site. Limiting local training to a single 
epoch helped prevent models from overfitting to local data and 
drifting from the global objective. Training progress was monitored 
by tracking site-level training and validation losses after each 
federated round to ensure stability and detect potential divergence. 
After each round, the server aggregated client weight updates using 
the FedAvg algorithm to generate a new global model, which was 
then redistributed to all sites.

The final global model obtained after 50 rounds of federated 
training was evaluated independently at each site using its respective 
held-out test set. Model evaluation at the three participating sites 
included both quantitative metrics such as Dice score, sensitivity, and 
precision, as well as a qualitative review by a neuroradiologist to assess 
overall performance, including true positive detection and tendencies 
to miss lesions across anatomical regions. To benchmark against a 
non-federated scenario, we trained and tested a baseline nnU-Net 

TABLE 1  Summary of site-specific data including number of cases, scanner vendors, and lesion characteristics.

Site Train/Validation cases Test cases Scanner vendors Median Lesion 
volume (cc)

Median Lesion 
count

Site A 105 44 Siemens, Philips, GE 4.54 [2.35–9.36] 44 [25–67]

Site B 247 78 Siemens 4.90 [1.53–13.81] 33 [19–55]

Site C 28 10 Siemens 2.48 [0.58–3.91] 27 [8–65]
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model locally using our site’s data. This enabled a comparison between 
the performance of the federated model and the locally trained model, 
both evaluated on the same test set from our institution.

2.5 Privacy and security considerations

Patient privacy was a core requirement of our FL framework, 
which inherently avoids sharing raw imaging data. All images were 
anonymized at their source by removing identifying metadata (e.g., 
DICOM headers), ensuring that no personally identifiable information 
was accessible. Federated training was conducted within protected 
compute environments, with each site’s data remaining on secure local 
infrastructure. Our configuration follows enterprise-grade governance 
principles, ensuring that each client site retains full control over which 
algorithms are executed on its data. This level of control allows 
individual node administrators to prevent the execution of 
unauthorized or potentially malicious code, thereby strengthening 
overall system security.

As described in the Architecture section, only sites that received 
a secret, unique token were allowed to contribute to the central model 
updates, thus limiting potential poisoning attacks. Since 
communications between sites and the central server were 
TLS-encrypted, and additionally encrypted at the sites with a 
symmetric key shared within the token, the risk of an adversarial 
attack was minimal. The central cloud-based environment employed 
AWS Well-Architected Framework mechanisms, with access to the 
Federated Orchestrator restricted to a predefined IP range. This setup 
limited the marginal risk of reconstruction or inference attacks and 
allowed the use of original parameters and weights from 
individual nodes.

While FL reduces data privacy risks by design, it is not entirely 
immune to threats such as model inversion or membership inference 
attacks. To mitigate these risks, we adopted strict security principles 
integrated directly into the framework. Execution of any machine 
learning code or federated learning configuration requires explicit 
approval from each participating site. Comprehensive encryption and 
tightly controlled access to both site and central nodes further 
minimize the risk of sensitive data leakage or attacks by unauthorized, 
potentially malicious actors.

From a regulatory standpoint, this study adhered to data 
protection laws. Since only model parameters and not raw data were 
exchanged, each institution maintained full control over its data. Our 
framework serves as a starting point for multi-center collaborations, 
promoting secure AI development in medical imaging.

3 Results

3.1 Quantitative analysis

We conducted 50 rounds of federated training, with each round 
corresponding to one local epoch per site. In our setting, preliminary 
experiments with additional local epochs per round resulted in abrupt 
performance degradation, which may reflect FedAvg’s sensitivity to 
data heterogeneity (18). This aligns with observations in the literature 
where non-IID data or class imbalances can cause gradient 
misalignment, driving local models away from the global objective 
(19). Model performance over 50 federated rounds is shown in 
Figure 2. Most reductions in training and validation losses occurred 
within the first 10–15 rounds, after which learning progressed more 
gradually. As the system retains only model weights from the final 

FIGURE 2

Validation Dice (top left), training loss (top right), and validation loss (bottom) across 50 federated rounds. Each curve represents one of the three 
participating sites (Site A: pink, Site B: orange, Site C: blue).
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training round, we adopted a fixed training schedule rather than an 
adaptive early stopping strategy based on convergence. Extended 
training revealed that additional rounds improved performance at 
certain sites, while others experienced a decline, potentially due to 
model drift or overfitting to dominant patterns. Although 50 rounds 
may not represent the global optimum, this configuration provided a 
balanced trade-off across all participating sites.

To assess model performance, we  compared a locally trained 
model to its federated counterpart using a held-out test set of 44 MRI 
cases from our site. Both models were trained using the same 
hyperparameters and configuration to ensure a fair comparison. A 
local nnU-Net model trained for 50 epochs using only our site’s 
training set achieved a mean Dice score of 0.88 ± 0.04, sensitivity of 
0.85 ± 0.05, and precision of 0.90 ± 0.05 on our site’s test set. In 
comparison, the federated model, trained for 50 rounds with one local 
epoch per round across the three sites, achieved a mean Dice score of 
0.80 ± 0.07 on the same test set. While the federated model showed a 
lower Dice score, it demonstrated higher sensitivity (0.89 ± 0.07 vs. 
0.85), indicating improved lesion detection, albeit with reduced 
precision. One-sided Wilcoxon tests indicated that the local model 
had significantly higher Dice and precision (p = 5.7 × 10−14 for both). 
In contrast, the federated model showed significantly higher sensitivity 
based on a one-sided paired t-test (p = 2.4 × 10−7). In a clinical context, 
higher sensitivity is valuable for minimizing the risk of missed lesions; 
however, the corresponding decrease in precision reflects a higher rate 
of false positives, which may result in unwarranted diagnostic 
procedures, increased clinician workload, and patient distress.

To evaluate the cross-site generalizability of the federated model, 
we evaluated it on held-out test sets from the other two participating 
sites, comprising 78 and 10 cases, where it achieved mean Dice scores 
of 0.71 ± 0.15 and 0.66 ± 0.16, respectively. These results are 
summarized in Table 2. A Kruskal-Wallis test across all sites showed 
significant site-dependent variability in Dice scores (p = 3.05 × 10−5). 
Given the limited test sample size at Site C, we further conducted a 
two-sided Mann–Whitney U test between Site A and Site B, which 
also indicated a statistically significant difference in Dice scores 
between the two sites (p = 3 × 10−5).

Figure 3 presents the distribution of performance metrics for each 
site, with Sites A and B showing relatively more consistent distributions 
and Site C exhibiting broader variability, reflecting inter-site 
differences in model generalization. Although performance varied, 
likely due to differences in imaging protocols, scanner types, or 
annotation standards, the model maintained moderate segmentation 
performance across diverse clinical environments without access to 
raw patient data. Importantly, federated training does not preclude 
subsequent site-level adaptation. Fine-tuning the global model on 
local data can help capture site-specific patterns, offering a balanced 

approach that preserves the robustness gained from diverse data while 
recovering the precision of locally optimized models.

3.2 Qualitative assessment

To complement the quantitative evaluation, a qualitative 
radiological assessment was conducted to examine the alignment 
between visual observations and metric-based performance. A board-
certified neuroradiologist and MS expert assessed aspects not fully 
captured by global quantitative metrics, such as pathological 
plausibility (e.g., false negatives and false positives), anatomical 
consistency (e.g., periventricular, subcortical, and other region-
specific biases), and morphological correctness (e.g., small versus large 
lesions). The expert reviewed lesion masks generated by (1) the 
federated model trained across all sites and (2) a model trained solely 
on local data from our site. As in the quantitative evaluation, the 
comparison was performed on outputs generated from the held-out 
test set at our site, with the models’ outputs reviewed side by side to 
identify clinically meaningful differences in segmentation behavior.

Figure 4 presents a visual comparison on a FLAIR slice from our 
site’s test set, with model predicted segmentation masks overlaid on 
the image. The results highlight key differences between the models, 
with the federated model detecting more lesions, reflecting higher 
sensitivity, but also introducing more false positives. While further 
validation is warranted, these findings demonstrate the feasibility of 
federated learning for automated MS lesion segmentation, 
underscoring its potential for broader clinical application.

4 Discussion

This Proof of Concept study demonstrates the end-to-end 
technical feasibility of deploying federated learning as a scalable, 
privacy-preserving framework across clinical institutions, each with 
distinct privacy constraints, data governance policies, and technical 
environments. Our work addresses a gap often overlooked in 
simulated FL research by preserving full data governance at each site 
while supporting scalable algorithm integration and institutional 
participation. By integrating Kaapana and Apheris, our framework 
enables autonomous data curation and enforces consensus-based 
algorithm approval prior to execution at each site, enhancing both 
privacy and operational security. This design allows each institution 
to manage its own imaging workflows while safeguarding against 
unauthorized computation, making the approach particularly well-
suited for sensitive clinical environments. This federated setup is 
inherently portable and supports scalable, efficient deployment. It can 
be extended to additional institutions by deploying a platform instance 
at each site with secure client-to-server communication. This modular 
architecture emphasizes flexibility, reproducibility, and compatibility 
with diverse governance policies, enabling broader future adoption.

Building on this infrastructure, we evaluated the federated model 
on the held-out test set from each participating site. For comparative 
analysis, we also compared its performance on our site’s held-out test 
set relative to a model trained and tested locally. Although the 
federated model showed a lower Dice score compared to the locally 
trained model at our site, it achieved higher recall, which may indicate 
improved lesion detection. This trade-off reflects a core challenge in 

TABLE 2  Federated model performance on the test set from each 
participating site.

Site Dice 
Score

Sensitivity Precision

Site A 0.80 ± 0.07 0.89 ± 0.07 0.74 ± 0.11

Site B 0.71 ± 0.15 0.74 ± 0.11 0.70 ± 0.17

Site C 0.66 ± 0.16 0.64 ± 0.19 0.74 ± 0.23

Metrics are reported as mean ± standard deviation for Dice score, sensitivity, and precision, 
highlighting inter-site variability in segmentation accuracy.
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FL as it requires balancing global generalization with site-specific 
optimization. The observed performance gap in Dice score likely 
stems from the federated model’s exposure to heterogeneous, non-IID 
data across institutions, which encourages learning generalized 
representations rather than overfitting to any specific site’s patterns. 
Federated models are optimized to perform robustly across diverse 

data distributions, enhancing sensitivity to subtle or atypical lesions 
that may be underrepresented in any single site’s dataset. However, 
this improvement in sensitivity was accompanied by reduced 
precision, as the federated model might not fully adapt to site-specific 
imaging features and annotation styles. This misalignment may cause 
the model to over-segment or misclassify challenging regions, 

FIGURE 3

Density plots of segmentation metrics across sites. The plots show the distribution of (a) Dice score, (b) sensitivity, and (c) precision for Site A, Site B, 
and Site C, reflecting inter-site variability in segmentation performance.

FIGURE 4

Comparative visualization of lesion segmentation between training paradigms: (a) FLAIR MRI slice without annotations; (b) Ground truth manual 
segmentation; (c) Prediction from the local model (trained solely on our data); (d) Prediction from the federated model (trained across three sites). The 
federated model detects more lesions but also introduces additional false positives, reflecting the trade-off between sensitivity and precision.
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resulting in an increased number of false positives. Additionally, while 
local training on homogeneous data can converge rapidly, federated 
learning may require more rounds to achieve comparable performance 
due to the challenges of learning from fragmented and non-IID 
data distributions.

Beyond performance trade-offs, our study highlights several 
practical challenges that are often overlooked in simulated FL settings. 
First, in synchronous FL workflows, training requires all sites to 
remain active; resource outages or downtime at any site can halt the 
entire federated round. Second, training local models for comparison 
with the federated model requires technical expertise at all 
participating sites, which may not always be  readily available. In 
contrast, participation in federated training and quantitative 
evaluation of the federated model in our setup did not require 
machine learning expertise. Third, centralized baseline models trained 
on pooled multi-site data, which are commonly used as performance 
upper bounds for federated models, are often infeasible in real-world 
clinical settings due to data privacy regulations, as was the case in our 
study. These constraints underscore the gap between FL in theory and 
its real-world implementation.

It is also worth noting that the federated model in this Proof of 
Concept study was not intended to optimize performance, and thus 
was only trained on a relatively small dataset (380 cases), whereas many 
deep learning studies rely on datasets exceeding 1,000 cases (20) or 
even tens of thousands in population-scale initiatives like UK Biobank 
(e.g., 39,694 subjects (21)). While expanding to larger, more diverse 
cohorts is expected to improve generalizability, site-specific accuracy 
gains may require complementary strategies. For instance, fine-tuning 
the federated model on local data can improve local performance, but 
risks catastrophic forgetting, where local adaptation distorts 
generalizable representations learned during federated training, 
leading to degraded performance on external datasets. To address this, 
personalized FL strategies such as FedBN (22), which retains local 
batch normalization statistics to account for domain shifts, and Ditto 
(23), which optimizes a personalized objective while maintaining 
alignment with the global model, have shown promise in non-IID 
settings. Additionally, adaptive aggregation adjusts client contributions 
to better manage data skew, with methods like FedProx (24) 
introducing a proximal term to reduce client drift and improve 
convergence stability.

While this study demonstrates the technical feasibility of FL in 
real-world settings, future research should explore integrating adaptive 
aggregation, personalized FL strategies, and expanding datasets to 
further improve model performance in heterogeneous environments. 
Overall, these findings establish a starting point for adopting federated 
learning in clinical practice, with potential for future scaling to multi-
modal and longitudinal MS studies.

Software and resources

The federated learning infrastructure was implemented using the 
open-source Kaapana platform (https://github.com/kaapana/kaapana), 
with the nnU-Net training pipeline available at https://github.com/
kaapana/kaapana/tree/develop/data-processing/processing-pipelines/
nnunet. Additional computational governance capabilities were 

supported by Apheris (https://www.apheris.com), enabling secure 
collaboration across participating institutions.
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