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Association between glymphatic
dysfunction and cryptogenic
stroke risk in patients with patent
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cross-sectional study
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Background: Patent foramen ovale (PFO) is strongly associated with cryptogenic
stroke (CS), but the underlying mechanisms remain incompletely understood.
The glymphatic system plays a crucial role in central nervous system
homeostasis, and its dysfunction has been implicated in various neurological
disorders. This study aimed to evaluate the association between glymphatic
dysfunction, assessed by the ALPS (Analysis Along the Perivascular Space) index,
and the risk of cryptogenic stroke in patients with PFO.
Methods: This retrospective, single-center cross-sectional study enrolled
208 PFO patients, including 52 with cryptogenic stroke and 156 without a
history of stroke. All participants underwent brain MRI with diffusion tensor
imaging (DTI) to calculate the ALPS index. Clinical data, laboratory tests, and
echocardiographic parameters were collected. Multivariate logistic regression
was used to identify independent predictors of cryptogenic stroke, and receiver
operating characteristic (ROC) curve analysis was performed to assess the
diagnostic performance of the ALPS index.
Results: Patients with cryptogenic stroke exhibited significantly lower ALPS index
values compared to controls (1.31 ± 0.18 vs. 1.52 ± 0.21, p < 0.001). Multivariate
analysis demonstrated that a lower ALPS index (OR= 0.126, 95% CI: 0.059–0.273,
p < 0.001) was independently associated with cryptogenic stroke after adjusting
for confounders. The ALPS index showed excellent diagnostic performance,
with an AUC of 0.916 (95% CI: 0.876–0.956), yielding a sensitivity of 90.7% and
specificity of 82.2% at the optimal cut-off value.
Conclusion: In PFO patients, impaired glymphatic function, as indicated by
a lower ALPS index, was independently associated with an increased risk of
cryptogenic stroke. The ALPS index may serve as a promising non-invasive
imaging biomarker for stroke risk stratification in this high-risk population.
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Background

Stroke is the second leading cause of global economic burden
and one of the major causes of non-traumatic disability (1–
3). According to the TOAST classification for ischemic stroke,
∼30%−40% of ischemic stroke cases have no identifiable cause
and are classified as cryptogenic stroke (CS) (4–6). Incomplete
fusion of the septum primum and septum secundum during fetal
development can leave a small gap, commonly referred to as a
patent foramen ovale (PFO) (7). The prevalence of PFO in the
general adult population is estimated to be ∼25%−34% (8, 9).
Previous studies have reported that more than half of patients
with cryptogenic stroke have a coexisting PFO (4, 10), and this
proportion increases to 61% among individuals aged over 55 years
(11, 12). Furthermore, the presence of PFO is associated with a
threefold increased risk of stroke recurrence (7, 13–16). These
findings highlight the strong association between cryptogenic
stroke and PFO, underscoring the critical importance of preventing
stroke recurrence in this high-risk population (4, 17).

Cerebrospinal fluid (CSF) within the subarachnoid space
enters the brain parenchyma through perivascular spaces, where
it exchanges with interstitial fluid (18, 19). This process plays
a critical role in maintaining central nervous system (CNS)
homeostasis, functioning similarly to a lymphatic system (20, 21).
The glymphatic system facilitates the distribution and transport
of glucose, macromolecules, electrolytes, and pharmacological
agents injected into the CSF throughout the brain (22–24).
Moreover, it is increasingly recognized as being involved in the
pathophysiological processes and functional recovery of various
neurological disorders, including stroke, Alzheimer’s disease, and
traumatic brain injury (25–27). In addition, an increasing number
of studies have utilized diffusion tensor imaging analysis along the
perivascular space (DTI-ALPS) as a non-invasive method to assess
glymphatic system function in the brain (28–31).

Previous studies have suggested that patients with PFO may
experience states of hypoxia and hypoperfusion, which could
increase the burden of enlarged perivascular spaces (EPVS) and
contribute to glymphatic dysfunction in this population (32, 33).
However, despite increasing recognition of the glymphatic system’s
role in neurological diseases, little is known about the relationship
between glymphatic dysfunction and cryptogenic stroke in patients
with PFO. We hypothesized that glymphatic system dysfunction, as
reflected by a lower ALPS (Analysis Along the Perivascular Space)
index, is associated with an increased risk of cryptogenic stroke
in patients with PFO. The objective of this study was to evaluate
the association between ALPS index and cryptogenic stroke risk in
patients with PFO. This work aims to improve understanding of
how cardiac structural anomalies relate to glymphatic dysfunction
and to explore the potential of ALPS index as a biomarker for stroke
risk stratification.

Methods

Study design and population

This retrospective, single-center cross-sectional study was
conducted at Fuwai Hospital, Zhengzhou University between

January 2020 and December 2023. We consecutively enrolled 208
patients with PFO confirmed by contrast TEE (agitated saline with
Valsalva maneuver). Participants were divided into two groups: (1)
Cryptogenic stroke group (n = 52), diagnosed as embolic stroke
of undetermined source (ESUS) according to 2014 AHA/ASA
criteria after excluding other etiologies; and (2) Control group (n
= 156), consisting of PFO patients without a history of stroke,
enrolled during the same study period. Although demographic
balance was considered during recruitment, no formal matching
procedures were applied, and observed differences in age and sex
were accounted for in the multivariate analyses.

The study protocol was approved by the Institutional Review
Board of Fuwai Hospital. All participants provided written
informed consent.

Inclusion criteria and exclusion criteria

Inclusion criteria: (1) PFO with right-to-left shunt; (2)
Complete workup (MRI, vascular imaging, echocardiography,
thrombophilia tests). Exclusion criteria: (1) Stroke of determined
etiology (TOAST classification); (2) Active neurological diseases
(e.g., epilepsy, neurodegenerative disorders); (3) Contraindications
to MRI, including the presence of metallic implants or a glomerular
filtration rate (GFR) <30 mL/min/1.73 m²; (4) Poor imaging
quality precluding reliable analysis.

Definition and assessment of cryptogenic
stroke

Cryptogenic stroke was defined according to the 2014
American Heart Association/American Stroke Association criteria
for embolic stroke of undetermined source after excluding: (1)
Atherosclerosis: <50% stenosis in arteries supplying the infarct; (2)
Cardio-embolism: no atrial fibrillation (≥24-h Holter monitoring)
or other major sources (TTE/TEE-confirmed); (3) Small vessel
disease: no lacunar infarcts (≤1.5 cm with classic clinical-radiologic
correlation) (34, 35).

All patients underwent: (1) Brain MRI (DWI/FLAIR sequences
to confirm acute infarction); (2) Vascular imaging: MRA/CTA of
cervical and intracranial vessels; (3) Cardiac monitoring: ≥24-h
Holter with arrhythmia detection threshold set at ≥30 sec; (4)
Echocardiography: TTE to exclude structural abnormalities; TEE
with bubble study (agitated saline + Valsalva) to grade PFO shunt
(ISAC classification) and measure ISA (excursion ≥10 mm).

Laboratory measurements

Laboratory parameters were collected from fasting blood
samples and included hemoglobin levels, platelet count, neutrophil
count, lymphocyte count, fasting glucose, lipid profile (total
cholesterol, LDL, HDL, and triglycerides), and estimated
glomerular filtration rate (GFR). Behavioral factors, such as current
smoking (defined as smoking at least one cigarette per day within
the past 30 days) and alcohol consumption, were also documented.
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Transthoracic echocardiography (TTE)

All participants underwent standardized transthoracic
echocardiography (TTE). Left ventricular ejection fraction
(LVEF) was measured using the biplane Simpson’s method from
apical four-chamber and two-chamber views (36, 37). Right
ventricular systolic pressure was estimated from the peak tricuspid
regurgitation jet velocity using the Bernoulli equation.

Contrast-enhanced transesophageal
echocardiography (TEE)

Contrast-enhanced transesophageal echocardiography (TEE)
was performed using a Philips EPIQ 7C ultrasound system
equipped with an X7–2t transducer. A contrast study was
conducted by injecting 10 mL of agitated saline during a
standardized Valsalva maneuver. The right-to-left shunt was
graded according to International Consensus criteria: Grade 1
(<10 microbubbles), Grade 2 (10–30 microbubbles), and Grade
3 (>30 microbubbles observed in the left atrium) (38, 39).
Morphological features assessed included maximal PFO tunnel
diameter (measured at end-diastole in the bicaval view), PFO
tunnel length (measured as the septal overlap distance at 90◦ view),
and the presence of interatrial septal aneurysm (ISA), defined as
an interatrial septal excursion ≥10 mm during the cardiac cycle
(40, 41).

Assessment of ALPS index

All participants underwent brain magnetic resonance imaging
(MRI) on a 3.0 Tesla system using a 64-channel phased-array
head coil. Diffusion tensor imaging (DTI) data were acquired
using a single-shot spin-echo echo-planar imaging (EPI) sequence.
The imaging parameters were as follows: b-values of 0 and 1,000
s/mm², 64 diffusion-encoding directions, repetition time (TR) of
8,000 ms, echo time (TE) of 85 ms, voxel resolution of 2×2×2
mm3, and total acquisition time of ∼8 min and 32 s. Image
preprocessing and ALPS index calculation were performed using
the FMRIB Software Library (FSL, version 6.0). Preprocessing steps
included eddy current correction, motion artifact removal, and
skull stripping using the Brain Extraction Tool (BET). Regions
of interest (ROIs) were manually placed on fractional anisotropy
(FA) maps by two experienced neuroradiologists blinded to clinical
data. The ROIs targeted projection fibers (PF) located along
the lateral ventricular body and association fibers (AF) located
superior to the PF in the corona radiata. Interobserver agreement
was excellent, with an intraclass correlation coefficient (ICC)
of 0.89 for ROI placement. The ALPS index was calculated by
summing the diffusivity along the x-axis (Dxx) in the projection
and association fiber ROIs and dividing this by the sum of
the diffusivity along the y-axis in the projection fibers (Dyy)
and the diffusivity along the z-axis in the association fibers
(Dzz), with higher ALPS index values indicating better glymphatic
system function.

Statistical analysis

All statistical analyses were performed using SPSS version
26.0 (IBM Corp., Armonk, NY, USA). Continuous variables were
expressed as mean ± standard deviation (SD) and compared
between groups using independent-sample t-tests. Categorical
variables were presented as counts and percentages, and compared
using the chi-square test or Fisher’s exact test, as appropriate.
Univariate logistic regression analyses were conducted to identify
potential factors associated with cryptogenic stroke. Variables with
a p-value < 0.05 in univariate analyses were further included
in multivariate logistic regression models to identify independent
predictors. Odds ratios (ORs) with 95% confidence intervals
(CIs) were reported. The associations between ALPS index and
echocardiographic parameters were assessed using linear regression
models. Three models were constructed: Model 1 was unadjusted,
Model 2 was adjusted for age, sex, and body mass index (BMI),
and Model 3 was additionally adjusted for systolic blood pressure,
diastolic blood pressure, and years of education. The diagnostic
performance of the ALPS index in predicting cryptogenic stroke
was evaluated using receiver operating characteristic (ROC) curve
analysis. The area under the curve (AUC) with 95% CI was
calculated, and the optimal cut-off value was determined based
on the Youden index. Sensitivity and stratified analyses. To
address potential residual age confounding, we performed age-
restricted sensitivity analyses limited to participants aged ≤55
years (primary) and ≤60 years (secondary), refitting multivariable
logistic regression models using the same covariate set as in
the main analysis. To explore effect modification by right-to-left
shunt burden and interatrial septal aneurysm (ISA), we conducted
stratified analyses by shunt grade (ISAC Grades 1–3) and by
ISA status (present vs absent), reporting stratum-specific odds
ratios (ORs) and 95% confidence intervals (CIs). Interaction was
tested by including product terms (ALPS × shunt grade; ALPS
× ISA) and by likelihood-ratio tests comparing models with
and without interaction terms. A p-value < 0.05 was considered
statistically significant.

Results

Baseline characteristics

A total of 208 patients with PFO were included in the
analysis, comprising 156 individuals without stroke (control
group) and 52 patients with cryptogenic stroke. As shown in
Table 1, patients with cryptogenic stroke were significantly older
than those in the control group (53.61 ± 14.32 vs. 48.23 ±
16.14 years, p = 0.021). The proportion of male participants
was higher in the stroke group (59.62%) compared to controls
(43.59%), with a statistically significant difference (p = 0.038).
Furthermore, the prevalence of hypertension (48.08% vs. 32.69%,
p = 0.047), hyperlipidemia (30.77% vs. 18.59%, p = 0.049),
and current smoking (40.38% vs. 28.85%, p = 0.012) was
significantly greater in the cryptogenic stroke group. There were
no significant differences between the groups in the prevalence of
diabetes mellitus (p = 0.118) or coronary artery disease (CAD)
(p = 0.342).
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TABLE 1 Baseline characteristics of study participants.

Variable Control group (n = 156) Cryptogenic stroke (n = 52) p-value

Age (years), mean ± SD 48.23 ± 16.14 53.61 ± 14.32 0.021∗

Male gender, n (%) 68 (43.59%) 31 (59.62%) 0.038∗

Hypertension, n (%) 51 (32.69%) 25 (48.08%) 0.047∗

Diabetes mellitus, n (%) 22 (14.10%) 12 (23.08%) 0.118

Hyperlipidemia, n (%) 29 (18.59%) 16 (30.77%) 0.049∗

CAD, n (%) 19 (12.18%) 9 (17.31%) 0.342

Current smoking, n (%) 45 (28.85%) 21 (40.38%) 0.012∗

Data are presented as mean ± standard deviation (SD) or number (%). ∗p < 0.05 indicates statistical significance.
CAD, coronary artery disease.

TABLE 2 Echocardiographic characteristics of study participants.

Variable Control group (n = 156) Cryptogenic stroke (n = 52) p-value

ISA, n (%) 47 (30.13%) 29 (55.77%) <0.001∗

Prominent Eustachian valve, n (%) 9 (5.77%) 5 (9.62%) 0.342

PFO tunnel length (mm), mean ± SD 10.87 ± 3.92 11.24 ± 3.45 0.514

PFO tunnel diameter (mm), mean ± SD 1.82 ± 0.97 2.31 ± 1.05 0.003∗

LV EF (%), mean ± SD 57.89 ± 5.83 58.76 ± 4.91 0.275

ISA, interatrial septal aneurysm; LV EF, left ventricular ejection fraction. ∗p < 0.05 indicates statistical significance.

Echocardiographic characteristics

Echocardiographic parameters were compared between the
control group and patients with cryptogenic stroke, all of whom
had PFO. As shown in Table 2, the incidence of interatrial septal
aneurysm (ISA) was significantly higher in the stroke group
compared to controls (55.77% vs. 30.13%, p < 0.001). In contrast,
the presence of a prominent Eustachian valve did not differ
significantly between the groups (9.62% vs. 5.77%, p = 0.342).
The PFO tunnel diameter was significantly larger in patients with
cryptogenic stroke (2.31 ± 1.05 mm vs. 1.82 ± 0.97 mm, p =
0.003), while no significant difference was observed in PFO tunnel
length (11.24 ± 3.45 mm vs. 10.87 ± 3.92 mm, p = 0.514). Left
ventricular ejection fraction (LV EF) was comparable between the
groups (58.76 ± 4.91% vs. 57.89 ± 5.83%, p = 0.275).

Laboratory and imaging biomarkers

The laboratory and imaging biomarkers of PFO patients were
compared between the control and cryptogenic stroke groups
(Table 3). There were no significant differences between the
groups regarding hemoglobin, platelet count, neutrophil count,
lymphocyte count, glucose level, or LDL cholesterol (all P >0.05).
However, patients with cryptogenic stroke exhibited significantly
higher total cholesterol levels (203.18 ± 48.57 vs. 186.75 ± 46.32
mg/dL, p = 0.009) and triglyceride levels (161.82 ± 72.95 vs. 131.46
± 68.37 mg/dL, p < 0.001), along with lower HDL cholesterol levels
(46.83 ± 12.64 vs. 51.27 ± 13.95 mg/dL, p = 0.023), compared
to controls. Additionally, the glomerular filtration rate (GFR) was
slightly higher in the stroke group (93.15 ± 19.82 vs. 86.73 ± 22.45

mL/min/1.73 m², p = 0.028). Importantly, the ROPE score, an
indicator of the likelihood of a stroke being related to a PFO, was
significantly higher in the cryptogenic stroke group (6.39 ± 1.81 vs.
4.82 ± 2.07, p < 0.001). Furthermore, the ALPS index, reflecting
glymphatic system function, was significantly lower in patients with
cryptogenic stroke compared to controls (1.31 ± 0.18 vs. 1.52 ±
0.21, p < 0.001).

Univariate and multivariate logistic
regression analyses

Univariate logistic regression analyses identified several
variables associated with cryptogenic stroke among PFO patients
(Table 4). In the univariate analysis, current smoking (OR =
1.672, 95% CI: 1.483–1.792, p = 0.028), lower ALPS index (OR =
0.187, 95% CI: 0.091–0.354, p < 0.001), higher ROPE score (OR
= 1.773, 95% CI: 1.654–1.891, p = 0.005), elevated triglyceride
levels (OR = 1.841, 95% CI: 1.723–1.952, p = 0.009), and higher
glucose levels (OR = 1.618, 95% CI: 1.405–1.731, p = 0.042)
were significantly associated with an increased risk of cryptogenic
stroke. Left ventricular ejection fraction (LV EF) was also positively
associated (OR = 1.725, 95% CI: 1.612–1.863, p = 0.017). In
the multivariate logistic regression analysis, a lower ALPS index
(OR = 0.126, 95% CI: 0.059–0.273, p < 0.001) and elevated
triglyceride levels (OR = 1.719, 95% CI: 1.602–1.835, p = 0.008)
remained independently associated with cryptogenic stroke after
adjusting for potential confounders. Left ventricular ejection
fraction (LV EF) also showed a statistical association (OR = 1.682,
95% CI: 1.573–1.794, p = 0.013); however, given the biological
implausibility of this directionality and the possibility of residual
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TABLE 3 Laboratory and imaging biomarkers of the study groups.

Variable Control Group (n = 156) Cryptogenic Stroke (n = 52) p-value

Hemoglobin (g/dL) 13.08 ± 1.87 13.52 ± 1.89 0.083

Platelets (103/μL) 258.34 ± 76.21 245.67 ± 69.83 0.198

Neutrophil (103/μL) 4.97 ± 2.14 5.43 ± 2.38 0.142

Lymphocyte(103/μL) 2.09 ± 0.82 2.24 ± 0.77 0.214

Glucose (mg/dL) 102.31 ± 25.89 107.65 ± 26.12 0.163

Total cholesterol (mg/dL) 186.75 ± 46.32 203.18 ± 48.57 0.009∗

LDL (mg/dL) 110.92 ± 34.87 119.43 ± 37.25 0.087

HDL (mg/dL) 51.27 ± 13.95 46.83 ± 12.64 0.023∗

Triglycerides (mg/dL) 131.46 ± 68.37 161.82 ± 72.95 <0.001∗

GFR (mL/min/1.73 m²) 86.73 ± 22.45 93.15 ± 19.82 0.028∗

ROPE Score 4.82 ± 2.07 6.39 ± 1.81 <0.001∗

ALPS Index 1.52 ± 0.21 1.31 ± 0.18 <0.001∗

LDL, low-density lipoprotein; HDL, high-density lipoprotein; GFR, glomerular filtration rate; ROPE, risk of paradoxical embolism. ∗p < 0.05 indicates statistical significance.

TABLE 4 Univariate and multivariate logistic regression analysis for cryptogenic stroke prediction.

Variables Univariate analysis Multivariate analysis∗

OR (95% CI) p-value OR (95% CI) p-value

Age 1.512 (0.687–1.625) 0.312 – –

Diabetes mellitus 1.428 (0.502–1.538) 0.351 – –

Current smoking 1.672 (1.483–1.792) 0.028 1.497 (0.693–1.608) 0.254

Sex 1.387 (0.491–1.496) 0.382 – –

Hyperlipidemia 1.583 (0.572–1.702) 0.231

LV EF (%) 1.725 (1.612–1.863) 0.017 1.682 (1.573–1.794) 0.013

ISA 1.462 (0.423–1.573) 0.394

PFO diameter (mm) 1.295 (0.845–1.487) 0.156

Hemoglobin (g/dL) 1.529 (0.754–1.642) 0.198 – –

Total cholesterol (mg/dL) 1.376 (0.612–1.498) 0.275 – –

Triglycerides (mg/dL) 1.841 (1.723–1.952) 0.009 1.719 (1.602–1.835) 0.008

Glucose (mg/dL) 1.618 (1.405–1.731) 0.042 1.248 (0.453–1.359) 0.368

ROPE Score 1.773 (1.654–1.891) 0.005 1.556 (0.812–1.667) 0.147

ALPS Index 0.187 (0.091–0.354) <0.001 0.126 (0.059–0.273) <0.001

GFR (mL/min/1.73 m²) 1.331 (0.487–1.442) 0.324

LV EF, left ventricular ejection fraction; ISA, interatrial septal aneurysm; ROPE, risk of paradoxical embolism; GFR, glomerular filtration rate.

confounding or collinearity, this finding should be interpreted with
caution and not regarded as evidence of a causal relationship.

Association between ALPS index and
echocardiographic characteristics

Linear regression analyses were conducted to evaluate the
association between ALPS index values and echocardiographic
features among PFO patients (Table 5). In the unadjusted Model

1, PFO tunnel length was significantly negatively associated with
ALPS index (β =−0.007, 95% CI: −0.012 to −0.002, p = 0.004), as
was PFO tunnel diameter (β =−0.015, 95% CI: −0.025 to −0.005,
p = 0.008). After adjustment for age, sex, and BMI in Model 2,
the negative association between tunnel length and ALPS index
remained significant (β = −0.017, 95% CI: −0.028 to −0.006, p
= 0.003), whereas the association for tunnel diameter showed a
marginal trend (β = −0.024, 95% CI: −0.048 to 0.000, p = 0.052).
In the fully adjusted Model 3, which accounted for age, sex, BMI,
systolic blood pressure, diastolic blood pressure, and education
duration, the inverse association between tunnel length and ALPS
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TABLE 5 Linear regression analysis between ALPS levels and echocardiographic findings among PFO patients.

Model 1 Model 2 Model 3

β (95% CI) p-values β (95% CI) p-values β (95% CI) p-values

PFO tunnel length (mm) −0.007 (−0.012, −0.002) 0.004 −0.017 (−0.028, −0.006) 0.003 −0.024 (−0.041, −0.007) 0.006

PFO tunnel diameter
(mm)

−0.015 (−0.025, −0.005) 0.008 −0.024 (−0.048, 0.000) 0.052 −0.156 (−0.744, 0.432) 0.603

Model 1, unadjusted model; Model 2, adjusted for age, sex, BMI; Model 3, adjusted for age, sex, BMI, Systolic blood pressure, diastolic blood pressure, and education duration.
Bold values indicate statistically significant results, representing positive/meaningful findings (∗p < 0.05).

index persisted (β = −0.024, 95% CI: −0.041 to −0.007, p =
0.006), while the association between tunnel diameter and ALPS
index was no longer significant (β = −0.156, 95% CI: −0.744
to 0.432, p = 0.603).

Diagnostic performance of ALPS index

The ROC curve was used to evaluate the diagnostic
performance of the ALPS index in predicting cryptogenic stroke
among patients with PFO (Figure 1). The results demonstrated
a high discriminative ability, with an AUC of 0.916 (95% CI:
0.876–0.956). At the optimal cut-off value, the ALPS index yielded
a sensitivity of 90.7% and a specificity of 82.2% for identifying
cryptogenic stroke, suggesting that the ALPS index may serve as a
reliable imaging biomarker for early detection and risk stratification
in PFO-related cryptogenic stroke.

Proposed mechanisms linking patent
foramen ovale to cryptogenic stroke
via glymphatic dysfunction

A schematic illustration summarizing the hypothesized
mechanisms linking PFO to cryptogenic stroke is presented in
Figure 2. Panel A depicts paradoxical embolism and the systemic
bypass of vasoactive substances via a patent foramen ovale,
allowing them to directly enter the cerebral circulation. Panel B
illustrates how these embolic or biochemical insults may disrupt
the blood–brain barrier and impair glymphatic flow by affecting
perivascular clearance. In Panel C, downstream consequences
of glymphatic dysfunction—including neuroinflammation,
metabolite accumulation, and increased vulnerability to ischemia—
are shown to collectively raise the risk of cryptogenic stroke. This
illustration highlights the convergence of embolic and clearance
failure mechanisms in PFO-related cerebrovascular events.

Sensitivity and stratified analyses

In age-restricted analyses (≤55 years and ≤60 years), the
association between lower ALPS index and cryptogenic stroke
was directionally consistent with the primary model. In stratified
analyses, the ALPS–stroke association was observed across shunt-
grade strata and by ISA status. Formal tests for interaction
by shunt grade and by ISA did not indicate strong statistical

FIGURE 1

Diagnostic performance of the ALPS index in predicting cryptogenic
stroke.

evidence of effect modification. Full estimates are provided in
Supplementary Tables S1,S2.

Discussion

In this study, we found that a lower ALPS index, reflecting
impaired glymphatic system function, was significantly associated
with an increased risk of cryptogenic stroke among PFO patients.
The ALPS index demonstrated strong diagnostic performance,
with an AUC of 0.916, and remained an independent predictor
of cryptogenic stroke after adjustment for clinical confounders.
Additionally, longer PFO tunnel length was independently
correlated with lower ALPS index values, suggesting a potential link
between structural cardiac anomalies and glymphatic dysfunction.

Interestingly, LV EF showed a statistical association with
cryptogenic stroke in our model. However, this finding is
counterintuitive from a biological standpoint, as higher ejection
fraction is generally protective. We consider this association to be
spurious, likely reflecting residual confounding or collinearity with
other clinical variables, rather than a true causal effect. Thus, it
should be interpreted with caution and requires validation in larger,
independent cohorts.
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FIGURE 2

Proposed mechanisms linking patent foramen ovale to cryptogenic stroke via glymphatic dysfunction. Schematic representation of the hypothesized
pathophysiological pathways by which a patent foramen ovale (PFO) may contribute to cryptogenic stroke through glymphatic system dysfunction.
(A) Paradoxical embolism and vasoactive substances (e.g., serotonin, CGRP) bypass pulmonary filtration via PFO and enter cerebral circulation. (B)
These circulating factors disrupt the blood–brain barrier and impair perivascular cerebrospinal fluid (CSF) flow, leading to reduced glymphatic
clearance. (C) Glymphatic dysfunction promotes neuroinflammation and the accumulation of neurotoxic metabolites, ultimately increasing
susceptibility to ischemic injury and stroke. This central illustration highlights the interaction between embolic and clearance-based mechanisms in
the pathogenesis of PFO-related cryptogenic stroke.

Epidemiological studies have shown that the prevalence of
PFO is ∼61% among patients with cryptogenic stroke, compared
to 19% in patients with ischemic stroke of determined etiology
(42). Consistently, in the present study, we found that the
prevalence of cryptogenic stroke among PFO patients was 25%
(52 out of 208 cases), further supporting the strong association
between PFO and cryptogenic stroke. Several mechanisms have
been extensively studied in the pathogenesis of PFO-related stroke,
including paradoxical embolism, in situ thrombus formation, atrial
structural and hemodynamic abnormalities, and the presence of
interatrial septal aneurysm (43, 44). Furthermore, in patients with
a history of cryptogenic vascular events, randomized trials have
demonstrated that percutaneous PFO closure significantly reduces
the risk of recurrent stroke and transient ischemic attack compared
to medical therapy alone (45). Percutaneous closure has been
shown to be superior to medical therapy in preventing stroke
recurrence (46, 47).

Fluid-attenuated inversion recovery sequences were used to
identify stroke lesions and other brain abnormalities (30, 48).
DTI-ALPS a technique based on DTI, was employed as a non-
invasive method to evaluate glymphatic system activity, which

had been demonstrated good stability and excellent interobserver
reliability (49–51). Previous studies have demonstrated that PFO
is associated with an increased burden of EPVS, reflecting
potential glymphatic dysfunction (32). Moreover, structural
and hemodynamic abnormalities related to PFO have been
implicated in cerebral ischemia and impaired waste clearance
(32, 33). Similarly, in our study, we found that patients with
PFO had significantly lower ALPS index values compared
to controls, indicating impaired glymphatic system function.
Furthermore, the lower ALPS index was independently associated
with an increased risk of cryptogenic stroke. On the other
hand, glymphatic impairment has been increasingly implicated
in the pathophysiology of stroke (52, 53). In subarachnoid
hemorrhage models, fibrinogen and other blood components
have been observed accumulating in enlarged perivascular
spaces, accompanied by reduced perivascular AQP4 expression
and marked neuroinflammatory responses (54–56). Research
further revealed impaired glymphatic inflow and delayed contrast
clearance compared to controls (57), along with increased
total and phosphorylated tau levels, suggesting compromised
waste clearance (58). Restoration of perivascular flow with
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tissue-type plasminogen activator partially improved glymphatic
function (59). Similarly, ischemic stroke models show perivascular
space dilation, loss of AQP4 polarity, and astrocyte activation
around infarcts (60). These findings collectively suggest that
glymphatic dysfunction may play a critical role in mediating brain
injury and impaired recovery following both hemorrhagic and
ischemic stroke.

We found that impaired glymphatic function, as indicated
by a reduced ALPS index, was identified as an independent
risk factor for cryptogenic stroke in patients with PFO. Multiple
mechanisms may underlie the increased stroke risk in PFO
patients. The paradoxical embolism hypothesis proposes that
venous thrombi bypass pulmonary filtration and enter cerebral
circulation via the PFO, leading to focal ischemia and blood–
brain barrier disruption. This process can independently initiate
or aggravate glymphatic dysfunction (61–64). In contrast, a
neuroinflammatory and clearance dysfunction model posits that
hemodynamic disturbances, hypoxia, and unfiltered vasoactive
substances (e.g., serotonin, CGRP) may disrupt CSF–interstitial
fluid exchange, compromise glymphatic flow, and promote
accumulation of neurotoxic metabolites (65–67). Third, vasoactive
and inflammatory substances, such as serotonin (5-HT) and
calcitonin gene-related peptide (CGRP), which would normally
be filtered by the pulmonary circulation, may directly access the
cerebral vasculature, promoting neuroinflammation and vascular
injury (68–70). Fourth, hemodynamic alterations associated with
PFO may increase circulatory resistance, facilitate microthrombus
formation, and aggravate BBB damage (71). These pathways may
be synergistic, with PDE triggering ischemia while glymphatic
failure impairs post-injury clearance, ultimately amplifying stroke
risk (72–74). Although the ALPS index demonstrated strong
discriminative performance in our cohort, this finding may partly
reflect overfitting. External validation in larger, independent,
multicenter datasets is required to confirm its robustness
and generalizability.

In our cohort, ISA was significantly more common in patients
with cryptogenic stroke compared to controls (55.7% vs. 30.1%),
consistent with its established role as a marker of high-risk
PFO. However, ISA did not retain statistical significance in the
multivariate regression analysis. This discrepancy may reflect
model instability given the modest sample size, and possible
collinearity between ISA, PFO structural parameters, and the
ALPS index. It is plausible that ISA contributes to stroke risk
primarily through embolic pathways, whereas ALPS index captures
the clearance-related dimension, leading to partial overlap in
explanatory power. Thus, ISA should still be considered a clinically
important risk factor, even though it did not emerge as an
independent predictor in our adjusted model.

Beyond mechanistic insights, the clinical application of the
ALPS index may offer valuable utility in risk stratification. As a
non-invasive biomarker of glymphatic dysfunction, the ALPS index
could help identify PFO patients at elevated risk of stroke who
might benefit from more aggressive management, including early
consideration of percutaneous closure. Conversely, patients with
preserved glymphatic function might be suitable for conservative
monitoring. Integrating ALPS index measurements into clinical
workflows could thus complement traditional assessments (e.g.,

ROPE score, shunt grade) to refine individualized decision-making
for stroke prevention.

Our findings support an association between impaired
glymphatic function, as reflected by a lower ALPS index, and
stroke occurrence. However, given the cross-sectional design,
causality cannot be inferred. It remains unclear whether glymphatic
dysfunction predisposes to stroke, or instead represents a
consequence of ischemic injury (e.g., AQP4 polarity loss,
EPVS dilation). Therefore, longitudinal studies with repeated
neuroimaging assessments are essential to clarify temporal
directionality. Moreover, prospective validation in larger and more
diverse populations is required to determine whether ALPS index
can serve as a reliable biomarker for stroke risk stratification.

Study limitations and future direction

Several limitations of this study should be acknowledged. First,
the cross-sectional design restricts causal inference. Although a
significant association between lower ALPS index and cryptogenic
stroke was observed, it remains unclear whether glymphatic
dysfunction is a cause or consequence of stroke. Prospective
cohort studies or interventional investigations, such as evaluating
ALPS index changes after PFO closure, are needed to clarify
this relationship. Second, potential selection bias may exist. This
was a single-center study, which may limit the generalizability
of the findings to broader PFO populations across different
regions and ethnicities. In addition, the control group consisted
of PFO patients without a history of stroke rather than healthy
individuals, which may have led to an underestimation of
effect sizes and a shift in baseline ALPS index values. Future
studies including healthy controls are warranted to validate and
extend our findings. Additionally, the control group consisted
of PFO patients without a history of stroke rather than healthy
individuals, which may have led to an underestimation of
the degree of ALPS index abnormalities. Third, there were
methodological limitations related to imaging. While DTI-
ALPS is a useful indirect marker of glymphatic function, it
does not directly quantify CSF–interstitial fluid exchange rates.
Future studies combining DTI-ALPS with advanced imaging
modalities, such as dynamic contrast-enhanced MRI or molecular
PET imaging, could provide more direct assessments. Fourth,
unmeasured confounders may have influenced the results. For
example, sleep quality and obstructive sleep apnea (OSA)—
both major modulators of glymphatic flow—were not assessed
in this study. Furthermore, the use of medications such
as statins and antihypertensives, which could influence lipid
metabolism, vascular function, and possibly ALPS index values,
was not systematically recorded. Finally, microembolic signals
(MES) on transcranial Doppler were not measured, which
could have provided valuable mechanistic information to help
disentangle embolic from clearance-related pathways. Future
studies should incorporate these parameters to enhance the
mechanistic and clinical interpretability of ALPS index findings
in PFO-related cryptogenic stroke. Additionally, the unexpected
positive association between LV EF and cryptogenic stroke may
reflect collinearity or residual confounding, and should not be
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considered as evidence of a causal relationship. Finally, challenges
remain regarding clinical translation. The optimal cut-off value
for the ALPS index requires validation in larger, multicenter
cohorts, and its relationship with stroke recurrence and long-
term outcomes was not assessed in this study. Future directions
include developing AI-assisted fully automated ALPS index
analysis pipelines to enhance reproducibility and integrating 7T
MRI and Q-space imaging techniques to achieve submillimeter
visualization of glymphatic pathways. Clinical applications may
also explore ALPS index-guided PFO management strategies,
with more aggressive interventions in patients with impaired
glymphatic function.

Conclusions

In summary, among PFO patients, impaired glymphatic
function, as indicated by a lower ALPS index, was independently
associated with an increased risk of cryptogenic stroke. The ALPS
index demonstrated strong discriminative performance in this
cohort and may represent a potential imaging biomarker for stroke
risk stratification. However, these findings are preliminary and
require validation in larger, independent cohorts before translation
into clinical practice. These findings highlight the interplay between
structural cardiac anomalies and central nervous system clearance
dysfunction, offering new insights into the pathophysiology of
cryptogenic stroke and potential targets for early risk assessment
and intervention.
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