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Phosphenes and the effects of 
charged particles on the visual 
system
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Objective: Review the evidence from space travel crews, early and recent 
experiments in particle accelerators, and observations in patients undergoing 
heavy ions treatments for tumors of the eye or skull that charged particles act 
on the visual system triggering the perception of phosphenes.
Results: The visual effects of charged particles are multi-modal in origin, act 
differently on the retina photoreceptors and neurons, and indicate a peculiar 
sensitivity to charged particles of the visual system. Acute toxicology in heavy 
ion treatment has been documented and should be  differentiated by quasi-
physiological actions.
Significance: The potential relevance of phosphenes as indicative of functional 
impairment stands as a possible variable in hadron-therapy, the proper 
monitoring of which may contribute to optimizing the treatment procedures 
and in the prediction of outcome.
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Highlights

	•	 Simple unstructured phosphenes first became a safety issue in space travels and then a 
common observation in hadron therapies.

	•	 The mechanisms of generation remain largely unknown to date. Their reports by 
astronauts or irradiated patients are often overlooked, possibly due to the peculiar and 
extreme conditions in space travel and the low priority in the case of therapies with 
limited or null alternatives.

	•	 Quantitative neurophysiological methodologies may help optimize the radiation 
treatment procedures and reduce the patients’ discomfort  - and improve the 
understanding of the treatment mechanisms.

1 Introduction

Charged particles can act on and interfere with the mechanisms involved in visual 
information processing. Evidence in this respect comes from early reports by space crew 
members and later by patients undergoing heavy ions treatment of tumors of the eye or skull 
who reported phosphenes, i.e., unstructured positive visual phenomena (light flashes) 
occurring in isolation and in the absence of alterations of consciousness. Structured or 
complex positive phenomena (photopsias, kinetopsia, visual distortions or hallucinations) have 
not been described. Patients undergoing proton radiotherapy occasionally reported non-visual 
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sensory percepts, often associated with phosphenes and with the brain 
regions receiving the highest doses corresponding to the anatomical 
structures associated with each type of percept (1–4). Non-visual 
percepts, either isolated or concomitant to phosphenes in multisensory 
perception, appear less frequent or exceptional in space (2, 3, 5–7). 
The origin of phosphenes in radiation activating structures of the retina 
or the optic nerve and some peculiar sensitivity of the visual system 
to charged particles have been hypothesized. Comparable percepts 
were reproduced in early human experiments in accelerator (8–14). 
The mechanisms of generation are conceivably complex and remain 
to be investigated in full detail. Occurrence, potential interference 
with CNS functions, and clinical relevance with respect to the 
pathophysiological conditions in which phosphenes are observable 
remain underestimated.

2 Phosphenes in disordered visual 
processing

Phosphenes are uncommon but can occur spontaneously also in a 
variety of physiological conditions such as transient deformation of the 
eye, accommodation, saccades, vivid lights, rhythmic light stimulation, 
etc. (15). The mechanical deformation of the eyeball, for instance, causes 
phosphenes by activating both center-on and center-off retinal ganglion 
cells (16). Excitation or the damage or functional impairment at any 
portion of the visual system (retina, afferent pathways or cortex) can 
result in positive visual phenomena, including phosphenes. These are 
reported in severe visual loss and by subjects using neuroactive drugs 
(mostly alcohol and hallucinogens), and occasionally in other disorders 
of the CNS (15, 17). The incidence of simple phosphenes in epilepsy is 
low (<1%) and limited to the focal involvement of visual cortex. They 
are by contrast quite common in the aura preceding pain in migraine 
attacks. Most studies agree in estimating the occurrence of phosphenes 
in a portion up to ~90% of adult migraneurs, irrespective of their 
experiencing visual auras with or without migraine. Functional testing 
of the visual cortex by transient magnetic stimulation (TMS) has 
documented a neuronal hyperexcitability in migraine with aura 
compared to both migraineurs without it and controls (18–23). In 
contrast, the threshold of TMS-induced phosphenes did not differ in a 
study comparing migraine without aura, migraine with aura, and 
control groups (68 ± 9.5% vs. 75 ± 12%, vs. 80 ± 11%, respectively) (24). 
The visual aura in migraines is associated with reduced cerebral blood 
flow and increased BOLD signals (25–27). Migraine, migraine aura 
without pain and headache are reportedly common during space 
traveling (with unclear incidence) and have been mimicked in studies 
on Earth (28, 29).

Colors and the perception of movement can result from the 
stimulation of basal occipital areas in the fusiform and lingual gyri and 
of the parieto-occipital and basal temporo-occipital junctions, 
respectively. Activation/damage of specific portions of the visual 
system has been correlated to structured or complex positive visual 
phenomena (hallucination, etc.), but no topographic selectivity (or 
significantly higher incidence) has been found thus far for simple 
percepts like phosphenes (15, 17, 30, 31). Bilateral cortical activation 
covering the entire visual cortices was observed by fMRI in patients 
with Leber’s hereditary neuropathy of optic nerve reporting induced 
phosphenes (32). Phosphenes have been reported during hypothalamic 
deep brain stimulation (33).

3 Particle-related phosphenes

3.1 Phosphenes in space missions

Crewmembers on Apollo, Skylab, MIR and International Space 
Station (ISS) missions reported phosphenes occurring spontaneously 
in the form of unstructured light flashes. Reports appear to have been 
quite common since the first years of space exploration, according to 
early NASA reports. About 80% of astronauts reported having 
perceived phosphenes at least in few missions and often over several 
orbits, according to a retrospective survey (5). Detailed reports have 
described flashes, sparkles, zigzag lines, supernova or the like, either 
static or apparently moving across the visual field or toward the 
observer (vertical motion does not seem to have been observed) (5, 
6). Colors (e.g., yellowish, pale green or blue) were described only 
occasionally. Although with individual differences, phosphenes 
occurred at average rates that varied depending on the spacecraft 
shielding, orbital height and latitude and were correlated to the cosmic 
radiation flux, which in orbit is modulated by the Earth magnetic field. 
Their rate varied between ~0.02 and ~16 per minute, it was higher 
near the magnetic poles than in equatorial latitudes and highest 
during the passages across the South Atlantic Anomaly over Brazil 
where the magnetic field is lower in altitude. About 1.3 phosphenes per 
minute on average were reported outside the geomagnetic shield 
during the transit to the Moon (2, 6, 8, 9, 13, 34, 35). A temporal 
correlation between phosphenes and particles flux also providing 
information about the particle trajectory and charge was detected by 
particle detectors onboard the MIR station (13, 35) and in the 
International Space Station (2).

3.2 Phosphenes in heavy ions therapies

Phosphenes have been observed during early exposure to X-ray and 
then in patients undergoing carbon ion or proton therapies of tumors 
of the eye or head (1, 2, 14, 36–39), with reported incidence increasing 
with the interest on the possible mechanisms of generation. They appear 
common and are described by over 2/3 of subjects according to 
retrospective surveys and prospective studies. White light flashes are 
reportedly more common in carbon ion treatment, but blue/violet 
percepts proved the more frequent across all treatments with colors also 
depending on light/dark adaptation and on the distance of local 
irradiation from the fovea and the predominant stimulation of rods or 
cones (4, 36, 39). Phosphenes are usually reported by patients as mildly 
unpleasant; dose, age, history of food allergies or longer duration of 
disease can predict higher intensity of perception (4, 40). A retrospective 
study of patients undergoing head or neck proton radiotherapy indicates 
that small numbers of protons can evoke neuronal responses on a 0.1 s 
time scale able to startle conscious percepts comparable to those from 
normal sensory inputs; the regions of the brain receiving the highest 
doses reportedly correspond to the anatomical structures associated 
with each type of percept (14, 39). The relationship of phosphenes 
incidence with the accelerator beam positions and the tumor distance 
from the fovea and the optic disk in patients with skull base tumors 
suggest an origin with irradiation of the retina or anterior portion of the 
optic nerve (14, 37, 38) that may deserve comparison with the effects of 
direct electrical stimulation of the optic nerve or visual cortex. 
Monitoring by standard EEG and retinal and cortical electrophysiology 
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at the end of a full session of 12C treatments of skull chordomas and 
chondrosarcomas unsuitable for radical surgery described both 
improvement due to reduction of the mass tumor in most patients and 
acute functional impairment of small severity and possibly transient in 
about 1/3 of subjects (41). The correlation between these 
electrophysiological indicators of functional impairment and the 
incidence of phosphenes has not been investigated, nor has the possible 
relevance as potential markers of retinal or brain damage in the 
prediction of outcome (42). Abnormal olfactory sensations 
(phantosmias), either isolated or most often accompanied by phosphenes, 
proved relatively frequent in a prospective study; the association of these 
percepts has been proposed as due to direct/indirect irradiation of 
brain structures.

3.3 Studies in particle accelerator

3.3.1 Early human experiments
Phosphenes comparable to those described by astronauts were 

reproduced under controlled experimental conditions in particle 
accelerators in the early 70s’ (5, 37). The eyes of healthy volunteers 
(usually the scientists themselves) were exposed to single particles or 
collimated particle bursts in the hundred MeV energy domain. Bursts 
of few relativistic muons, pions, neutrons, nonrelativistic helium, 
nitrogen, carbon ions, etc. were tentatively applied to identify the 
differences between and the possible relevance of the particle physical 
properties. Minimally ionizing particles emitting Cerenkov radiation 
(i.e., the effect of charged particles traveling through a medium at speed 
higher than the light in the same medium) produced visible light and 
the volunteers reported large phosphenes as predictable. Discrete 
phosphenes were nevertheless reported also with highly ionizing 
particles (e.g., HZE nuclei) at energies below the threshold producing 
Cerenkov visible light, but always and only upon passage through the 
posterior portions of the eye. Phosphenes were described as short in 
duration, without after-image, with approximate correlation between 
the irradiated retina and the portion of visual field in which phosphenes 
were subjectively located. Motion in the same direction of the beam was 
often reported (10–12, 43–45). The perception of phosphenes following 
exposure to accelerated nitrogen nuclei below Cerenkov threshold had 
an estimated efficiency between 10 and 40%, with the differences among 
subjects and across studies being possibly accounted for by the 
experimental conditions, number of particles, etc. (8, 10, 11). Indirect 
Cerenkov visible radiation can be produced also by ions below threshold 
via a direct Cerenkov emission (1, 46) as phosphenes of diffuse 
bluish light.

3.3.2 Electrophysiological experiments in rodents
The eyes of anesthetized wild-type mice were rhythmically 

irradiated with short (~5 ms) bursts of 12C ions under control 
conditions in particle accelerator, with the beam collimated in 
diameter and directed approximately perpendicular to the eye 
posterior pole. 12C ions evoked electrophysiological retinal mass 
responses comparable to those generated by light and initiated 
retinal events yielding to a cortical response, with increased 
latencies and decreased amplitudes of both responses. The results 
appeared compatible with mechanisms of 12C action mimicking 
the light in triggering the retinal photoreceptors. However, the 
retinal response amplitude increased linearly to a maximum at 

~2000 ions/burst (0.72 mGy/burst) intensity to then decline at 
higher numbers of ions/burst in an inverted-U relationship (47). 
The association of 12C bursts with light stimuli (white flashes) in 
the same animal and sequence of stimuli reduced the amplitude 
of waves a and b of the mass electroretinogram and increased the 
amplitude and phase-locking to stimulus of the (post-synaptic) 
oscillatory retinal responses and of cortical responses (48). These 
findings collectively suggest a complex action of 12C ions on (and 
functional interference with) retinal structures/mechanisms 
resulting in cortical activation that exceeds a direct action of 
photoreceptors (47, 48).

4 Particle-related positive visual 
phenomena and CNS functions

Retinal photoreceptors and neurons in the retina and cortex are 
sensitive to ionizing agents and can respond to their action with 
transient functional changes. Phosphenes have been reported by 
subjects exposed to X-rays, with the electroretinogram amplitude 
correlating with the X-rays intensity; an action on the rhodopsine 
proteic component opsin starting a cascade of reactions leading to a 
visual sensation has been suggested (49, 50). Focal electrical 
stimulation of striate visual cortices V1 and V2 during neurosurgery 
evoked simple phosphenes, while stimulation of the extrastriate areas 
or temporal regions evoked complex visual phenomena (15, 51, 52). 
In early studies, electrical stimulation of discrete points of the human 
visual cortex produced corresponding punctuated sensation of light 
in both sighted and blind subjects. Systematic investigation on the 
size, luminosity and position in visual space of phosphenes induced by 
discrete electrical stimulation of the retina and optic nerve has been 
instrumental in the tentative development of prostheses for the blind; 
electric stimulation is thought to evoke phosphenes by opening 
voltage-sensitive ion channels and by-passing the chemically gated 
channels in stimulated neurons (53–58). Magnetic stimulation of the 
retina or cortex induces phosphenes via complex mechanisms of action 
and depending on the stimulate position and functional status 
(59–62).

A suggested alternative mechanism of generation is a local 
disinhibition of neuronal structures which can result in increased 
neuronal excitability due to deafferentation (the release phenomenon). 
In this regard, any local cause of deafferentation within the visual 
system able to interfere with information processing via functional 
impairment (e.g., miscoded neuronal function) or due to anatomic 
damage (macular degeneration, glaucoma, cataract, macular holes and 
other retinopathies, lesions of visual pathways or cortices) can result 
in a release mechanism and in the perception of positive visual 
phenomena (14, 63). Retinal or cortical damage has not been observed 
in in vivo rodent studies with direct retinal stimulation below the 
Cerenkov threshold (47). However, detrimental effects on synaptic 
density and myelination in response to exposure to high-energy 
charged particles have been reported (64). Significant retinal damage 
(apoptosis in vascular endothelial cells, significant changes in 
regulated protein expression, cellular structure, immune response and 
metabolic function) have been observed in mice after 35 days in space 
and were reduced by artificial gravity (65).

The findings collectively suggest some action of heavy ions 
on photoreceptors and a parallel activation of postsynaptic 
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currents in inner retina, with modalities not necessarily 
comparable to those of light, but nevertheless able to trigger the 
retinal cascade to cortical activation (48). Studies on patients 
with retinitis pigmentosa and mutant mice have documented 
activation of the visual cortex in response to light also after 
photoreceptors extensive damage (49, 66–68). Subsets of 
intrinsically photosensitive retinal ganglion cells have been 
identified in animals. In primates, these cells project to the lateral 
geniculate nucleus and reportedly merge with the retinal 
pathways to cortex that transfer visual information to 
be  processed into visual images (69–71); some role in the 
generation of phosphenes has been suggested (38). Transient 
depression of neuronal activity (often referred to as spreading 
depression in rodent models) can be  associated to increased 
released of K+, propagation of Ca2+ between glia and neuronal 
cells or glutamate action (15, 72) and has been observed in 
cortex, hippocampus, and in superior colliculus and retina.

Evidence suggests that photon emission can mediate in networks 
function as an additional signal enabling cell-to-cell communication and 
coupling depending on the neuronal physiological state (73). Bovine 
rhodopsin irradiated with 12C ions in suspension was activated by ions as 
it was by light. The process was mediated by lipid peroxidation and 
successive chemiluminescence and the bleaching process proved 
reversible under these experimental conditions. These findings indicate a 
12C ions-induced recombination of radicals possibly responsible for the 
release of photons with subsequent bleaching of rhodopsin and the 
triggering of mechanisms generating phosphenes (74, 75).

5 Comments

Different mechanisms are suggested to mediate in the production 
of phosphenes and are individually or collectively eligible as generating 
processes (38). However, the interest on the issue has encompassed 
different scientific contexts, with varying technological background, 
rationale, and experimental approaches. Research on the topic has 
been fragmentary rather than systematic, and the available evidence 
may suggest limited depth of investigation. The different radiation and 
conditions of irradiation causing phosphenes propose the transfer of 
energy as a conceivable common mechanism activating photoreceptors 
and/or neuronal cells and their interaction in the retinal cascade. 
Interactions between the charged particles action and the retina and/
or the CNS functional status of the stimulated cells or network are also 
conceivable. The Cerenkov radiation measured in particle accelerator 
experiments was compatible with the estimated threshold sensitivity 
to photons of the retina photoreceptors, with mechanisms of 
generation mimicking light (10, 12). Indirect Cerenkov light due to 
nuclear interactions/radioactive decay or direct activation/radical 
excess within the retina are also possible. Models and experiments 
nevertheless estimated a threshold number of ionizations per sensitive 
volume below the Cerenkov threshold, indicating effects on the rod 
outer segment or photochemical molecules at the energies compatible 
with those used for ocular proton therapy (11) or able to activate 
network functions (1, 2, 42, 63). A direct action of ionizing particles 
on photoreceptors or neural tissues in the retina appears compelling 
but is not conclusive. Direct effect on brain neurons remains 
undocumented and in  vivo and in  vitro experiments implicate 
mechanisms of action on the visual system that could be  more 
complex than hypothesized and depend to a relevant extent on the 

activated cells or structures. The bilateral cortical activation covering 
the entire visual cortices observed by fMRI when patients reported 
phosphenes for instance indicates a relevant impact on visual function 
mediated by magnification factors (16, 32). Several subjective 
characteristics of the phosphenes reported in space, in in vivo/in vitro 
experiments, and during hadron therapy are similar, but a scale 
problem result of the wide range of the ions number needed to 
generate a subjective phosphene or obtain a chemical or 
electrophysiological response. Small numbers of particles may elicit a 
subjective phosphene in space, although not every single ion can, with 
and estimated efficiency in the order of 10−2–10−3. The threshold 
in vivo animal models is ~103 ions; higher flux appears necessary both 
in in vitro models and in patients undergoing hadron therapies (2). 
The functional status of the stimulated areas and network are also 
conceivable. For instance, about 25% of subjects do not report 
perceiving phosphenes upon magnetic occipital stimulation (76). The 
estimated radiation release in hadron therapy accounts for both 
normal tissues and target tumors, so that single pulse delivery or full 
irradiation are to be  considered in in  vivo and in  vitro studies, 
respectively.

Evidence from laboratory tests suggests that the phosphenes 
reported by astronauts may reflect transient functional impairment. 
Their relevance as potential early markers of later biological tissue 
damage remain largely unknown and would add health hazard to the 
effects of microgravity, isolation, disruption of circadian rhythm, 
impaired sleep dynamics, and hypercapnia associated with space 
travel [e.g., (77)]. Long-duration space travels nevertheless impose 
conditions that are known to interfere with and may have 
detrimental effects on the visual system and CNS functions in 
humans also irrespective of heavy ions exposure (7, 78–82). The 
limited number of particles triggering phosphenes in space may 
indicate a limited risk or reinforce the hypothesis of higher 
sensitivity of the visual system to radiation direct/indirect action due 
to the prolonged permanence in microgravity (73), and combined 
effects of particles and microgravity in space appear therefore 
peculiarly probable. Strategies to counterbalance the effects of 
microgravity have been suggested and methods to shield astronauts 
from cosmic radiation have been devised and are being tested (7, 
83–87). On the contrary, the effects of therapeutic irradiation on the 
photoreceptors and nervous system and the mechanisms originating 
phosphenes in patients have been largely overlooked thus far, most 
likely because of the low priority of these phenomena in the 
estimated cost–benefit ratio of a therapeutic approach with limited 
or no alternatives. Acute side-effects on encephalic nervous tissues 
have been described in patients during and immediately after 12C 
treatments of skull tumors (41), but long-term monitoring is not yet 
available and the possible relevance of phosphenes as early markers 
of visual impairment has not been and should be investigated in full 
detail. The action of particles on the visual system may be deemed 
of limited relevance in the extreme conditions of space travel, but 
further research may devise application in therapeutic procedures 
that are becoming routinary and better tolerated by patients. The 
correlation of phosphenes and their conditions of occurrence in 
hadron therapies with quantitative neurophysiological measures 
may provide additional information on the pathophysiology of 
charged particles effects on CNS tissues. More significant could 
be this information in further improving the procedures of hadron 
treatments and the prediction of outcome, and in reducing the 
patients’ discomfort (88).
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