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The brain contains approximately 100 billion neurons and over 200 billion glial 
cells, which are integral to the neuronal networks that support normal brain 
function in the central nervous system. The complexity of the brain makes the 
diagnosis and treatment of neurodegenerative disease particularly challenging. 
Neuroinflammation and neuronal cell death contribute to the development of 
neurodegenerative diseases such as dementia. Dementia refers to a decline in 
memory and thinking ability, affecting approximately 55 million people worldwide. 
Owing to the association of multiple factors, including amyloid-β plaque, tau-
fibrillary tangles, neuroinflammation, nutritional defects, and genetic mutations, the 
exact cause of the most common type of dementia, Alzheimer’s disease, remains 
elusive. These multiple factors may cause damage to neurons and glial cells, leading 
to neurodegeneration. Very few therapeutics are available for neurodegenerative 
diseases due to the limited understanding of their pathogenesis, resulting in the 
lack of biomarkers and drug targets. Recent attention has shifted toward addressing 
modifiable risk factors such as unhealthy diets and lifestyles to delay the onset 
of Alzheimer’s disease. Unhealthy diets that consist of saturated fatty acids and 
refined sugars, with other multiple risk factors, increase neuroinflammation and 
oxidative stress, furthering cognitive decline and progression of neurodegeneration. 
Mitigating these risk factors with antioxidants, anti-inflammatory-based nutrition, 
and multidomain lifestyle intervention, which may include physical exercise, 
cognitive stimulation, and social engagement, may delay the development of 
neurodegenerative diseases and cognitive decline. In this review, we focus on 
the role of neuroinflammation in contributing to neurodegeneration and dietary 
influence in Alzheimer’s disease.
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Introduction

Neurons and glial cells construct neural networks and synapses, maintaining a healthy 
microenvironment within the brain. Glial cells provide essential support for the axonal 
function and synaptic plasticity of neurons, and they participate as integral mediators of 
neuronal networks in the central nervous system (CNS) (1, 2). Specifically, astrocytes and 
microglia are the primary supporting glial cells in the CNS, where they respond to stress, 
infection, and injury, and survey the microenvironment (3).

Neurodegeneration is the progressive loss of functional neurons, often triggered by 
neuroinflammation, oxidative stress, glial activation, and cerebrovascular damage. It ultimately 
results in neuronal cell death and is associated with neurodegenerative diseases such as 
Alzheimer’s disease (AD). The pathological features of these diseases include inflammation, 
genetic defects, altered energy metabolism, abnormalities in cytoskeletal structure and 
proteostasis, synaptic network defects, and pathological protein aggregation (4). 
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Neuroinflammation is triggered by various insults, including infection, 
toxic metabolites, stress, or metabolic disturbances, which activate 
microglia to a proinflammatory stage, resulting in the secretion of 
proinflammatory cytokines. Without clinical interventions, 
neuroinflammation can lead to neurodegeneration, disability, and, 
ultimately, death. Although the causes and pathological mechanisms 
of AD are not yet clearly identified, many associated causes and 
noticeable pathologies of AD have been established. The three major 
pathologies in AD patients are (i) accumulation of amyloid-β (Aβ) 
particles in the brain, (ii) tubulin associated unit (tau) fibrillation in 
the neurons, and (iii) hyperactivated microglia and neuroinflammation 
in the brain (5, 6). The risk factors of AD include non-modifiable and 
modifiable factors, and the synergistic effects of these risk factors 
contribute to the development of AD (7). It is particularly crucial to 
address modifiable risk factors such as unhealthy diets and lifestyles 
to delay the development of AD.

The current stage of AD research and the remaining questions are 
briefly reviewed, followed by an examination of neuroinflammation 
and the interactions between microglial activation and neuronal cell 
health in AD. Moreover, we examine well-established diets to delay 
and/or reduce the risk of AD. Finally, we  review emerging gut 
microbiome research and the modulation of brain health through the 
regulation of communication between the gut and the brain. We aim 
to highlight the impact of healthy diets on AD and improved 
neuronal health.

Alzheimer’s disease

AD affects over 7 million Americans, and its typical symptoms 
include memory loss, language problems, impaired reasoning, and 
aggressive behavior (8). Eventually, the shrinking of the brain cortex 
and atrophy will lead to cognitive failure (5). Single-nucleus RNA 
sequencing of human prefrontal cortex data suggests that AD 
pathology is associated with alterations in gene expression in synaptic 
signaling, chromatin organization, lipid metabolism, mRNA and 
tRNA metabolic processes, and mitochondrial function, suggesting 
multifaceted disease mechanisms (9). There are two types of AD: the 
first is familial AD, which is caused by dominant genes (e.g., the 
presenilin-1 and presenilin-2 genes and the amyloid precursor protein 
gene) and accounts for 5–10% of AD cases. The second type, 
accounting for 90–95% of AD, is sporadic AD, which is caused by a 
combination of genetic factors (e.g., polymorphisms of apolipoprotein 
E and variants of triggering receptors expressed on myeloid cells 2) 
and environmental factors, such as cardiovascular health, diet, 
physical activity, and social engagement (5, 10, 11). Although the 
cause of sporadic AD is poorly understood due to the complexity of 
the brain’s structure and function, age is the most significant risk 
factor for sporadic AD, considering that 50% of AD occurs in 
populations of 80 years and older. A combination of age, genetics, 
female sex, low education, neuroinflammation, cognitive inactivity, air 
pollution, unhealthy diet, and unhealthy lifestyle may lead to 
progressive AD (12).

Amyloid precursor protein (APP) is an integral membrane protein 
highly expressed in neuronal synapses (13). APP plays a role in nerve 
growth and repair after injury and is hypothesized to aid in nervous 
system development, synaptogenesis, and axonal growth guidance 
(14). In the normal brain, the turnover of APP occurs when α- and 

γ-secretases cleave APP into smaller peptides, specifically the 
40-amino acid form Aβ40, which are soluble and subject to 
degradation. In the AD brain, however, β- and γ-secretases cleave APP 
into the 42 amino acid peptide Aβ42, an insoluble form of amyloid 
monomers, which are sticky and attract more Aβ monomers to form 
plaques near the neurons and interfere with synaptic signal 
transduction (5). Genetic mutations in APP proteins or mutations in 
the γ-secretase have been linked to AD (13). Targeting APP genes or 
γ-secretase for gene therapy might be  an interesting therapeutic 
approach to reduce plaque accumulation.

Tau proteins have microtubule binding domains to stabilize 
microtubules and cytoskeleton structures, and regulate axonal 
transport and synaptic function in the neuron (15). In AD, tau 
filaments become hyperphosphorylated (i.e., p-tau), causing p-tau 
filaments to detach from microtubules due to a conformational change 
and contribute to neurodegeneration. The p-tau fibrils form clumps, 
recruiting more p-tau to create neurofilament tangles within the 
neuron. It is unknown why the cellular clearance mechanisms in 
neurons do not remove these abnormal proteins. The accumulation of 
these tau neurofilament tangles may interrupt electrical signaling in 
neurons, leading to neuron death. As tau molecules have been found 
in blood samples, the significance of tau modulation as a blood 
biomarker in AD has been emphasized for further investigation (16).

Resting microglia actively survey the cerebral environment to 
maintain brain homeostasis. Upon pathogen invasion or 
inflammation, microglia are activated and secrete cytokines to resolve 
inflammation. Activated microglia secrete either anti-inflammatory 
cytokines, such as interleukin-10 (IL-10) and IL-13, which contribute 
to tissue repair and neuroprotection (3), or pro-inflammatory 
cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1β, which 
contribute to the pathogenesis and neurotoxicity. In AD, abundant 
hyperactivated proinflammatory microglia are localized around Aβ 
plaques and recruit reactive astrocytes, which have a detrimental 
impact on the microenvironment (17). The activated proinflammatory 
astrocytes are unable to remove Aβ plaques and further induce 
neurotoxicity (3). These observations suggest that modulating the 
proinflammatory reaction of microglia in the brain may be an effective 
treatment option for reducing AD risk and neuroinflammation.

Neuroinflammation

Healthy glial cells secrete anti-inflammatory cytokines and play 
significant roles in neuroinflammation by providing defense against 
invading pathogens (18). Astrocytes are abundant glial cell types in 
the CNS, which help regulate fluid and ion homeostasis, controlling 
blood flow, protecting neurons from excitotoxic injury by clearing 
excessive neurotransmitters, promoting the formation of synapses, 
and contributing to the blood–brain barrier (BBB) construction and 
maintenance (19). Pathological attack and nerve injury activate 
astrocytes into an anti-inflammatory type through changes in their 
phenotype, function, and gene expression, which in turn lead to 
neuroinflammation (20). Proinflammatory cytokines reactivate 
astrocytes into a proinflammatory type, leading to the production of 
neurotoxic and neurodegenerative cytokines, as well as reactive 
oxygen species (ROS). Additionally, reactivated proinflammatory 
astrocytes upregulate the expression of the complement system, 
resulting in neurotoxicity. For example, reactive astrocytes secrete 
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complement 3 (C3), which signals to the C3a receptor (C3aR) on 
neuronal membranes, thereby aggravating neuronal function (21). 
Targeted inhibition of the binding of C3 and C3aR on neuronal 
membranes might be  a meaningful approach to 
mitigate neurodegeneration.

Astrocytes are the primary producers of Apolipoprotein E (ApoE), 
and the APOE genes encode three types of ApoE proteins (ApoE2, 
ApoE3, and ApoE4) that are involved in lipid metabolism as 
cholesterol transporters in the brain. APOE ɛ4 allele is a high-risk 
factor linked to impaired memory and cognitive decline, presenting 
astrocyte activation and higher accumulation of Aβ plaques in 
sporadic AD (3). ApoE4 protein may increase the sequestration of 
cholesterol and interfere with myelination in the brain, which is 
associated with AD pathology (22). Recently, the interaction between 
astrocytes and microglia has been recognized as a critical factor in 
both neuroinflammation and neurodegeneration. For example, the 
interaction of C3 from proinflammatory astrocytes and C3aR on 
proinflammatory microglia regulates microglial phagocytosis function 
(21). Therefore, it is imperative to understand the role of crosstalk 
between astrocytes and microglia in AD pathogenesis.

Microglia are the primary resident immune cells in the CNS. In 
the normal brain, microglia eliminate foreign molecules that cross the 
tightly guarded BBB membrane, which allows only small lipophilic 
molecules with low permeability to pass through and prevent the 
accumulation of cellular debris and unwanted proteins, such as Aβ 
amyloid (23). Microglia express the triggering receptor expressed on 
myeloid cell 2 (TREM2) on their membrane, where TREM2 modulates 
the phagocytosis of ApoE and Aβ amyloid plaques (11, 24, 25).

In hyperactivated microglia, however, proinflammatory cytokines 
are released, which, together with reactive proinflammatory astrocytes, 
may trigger destructive signals for neurons and lead to the 
accumulation of Aβ plaques and tau fibrillation in neurons (26). The 
hyperactivated microglia may exhibit reduced phagocytosis, resulting 
in the accumulation of Aβ42 amyloid plaques and problems with 
immunosurveillance in the brain, leading to neuroinflammation and 
neuronal death (3, 23, 27). Cell-based therapies targeting the depletion 
of activated microglia or the replenishment of healthy microglia may 
be an interesting therapeutic option (28). Another possible microglial 
function in the diseased brain may be the modulation of TREM2 
receptor binding to Aβ plaques, which further recruits amyloid 
particles around neurons, ultimately leading to neurodegeneration in 
AD (24, 29). In addition, hyperactivated microglia may participate in 
the phagocytosis of insoluble p-tau and the spreading of p-tau through 
exosome secretion (11, 30). Although microglia interact with Aβ 
plaques via several mechanisms, including phagocytosis, immune 
hyperactivity, and exosome secretion, it is unclear whether microglial 
dysfunction is the cause or effect of AD (25, 29, 30).

Highly pathological neuroinflammation in the CNS is associated 
with activation of glia, production of proinflammatory cytokines and 
chemokines, infiltration of peripheral immune cells, edema, and 
increased BBB permeability and BBB failure (31). Multiple factors, 
including environmental toxins, toxic metabolites, infections, and 
stress, contribute to neuroinflammation. Air pollutants activate glial 
cells and induce oxidative stress and cerebrovascular damage in the 
CNS (32). Pesticides and heavy metals can cause cellular damage, 
triggering inflammatory responses that are associated with the 
production of ROS and neuroinflammation (33). Stressful life 
experiences are related to elevated proinflammatory cytokines, leading 

to the activation of cortical microglia and alterations in brain structure 
and function that increase the risk of neurodegenerative diseases (34). 
It remains unclear exactly how neuroinflammation drives the 
progression of neurodegenerative diseases, as it can have both 
protective and detrimental effects, depending on the context and stage 
of the disease.

Dietary influences and 
neuroinflammation

Twelve modifiable risk factors account for more than 40% of 
worldwide dementia cases (35). These modifiable risk factors include 
less education, hearing loss, traumatic brain injury, hypertension, 
alcohol, obesity, smoking, depression, social isolation, physical 
inactivity, diabetes, and air pollution (8, 35, 36). Because these risk 
factors are interconnected, addressing several of them can lead to a 
significant improvement in cognitive function. Epidemiological 
studies suggest that dietary changes may protect against cognitive 
decline and dementia, and modifiable lifestyle and environmental 
factors, including cardiovascular health and physical activities, may 
influence AD development and pathology (11, 37, 38). Nutrition is an 
essential modifiable factor affecting cardiovascular health and 
metabolic risk that can delay cognitive decline and dementia in the 
aging population (39).

Three types of anti-inflammatory and antioxidant diets may 
be beneficial for brain health and lower AD risk: The Mediterranean 
diet (MeDi), dietary approaches to stop hypertension (DASH), and 
Mediterranean-DASH intervention for neurodegenerative delay 
(MIND) (40). MeDi is characterized as high in vegetable oils and low 
in saturated fat and emphasizes high intake of fruits, green leafy 
vegetables, whole grains, legumes, olive oils, nuts, and seeds, moderate 
consumption of fish, and low consumption of dairy products, alcohol, 
red and processed meats, resulting in neuroprotective effects assessed 
by cognitive tests such as episodic-, working-, semantic memory and 
visuospatial ability (41–43). High adherence to MeDi was associated 
with the preservation of brain structure and brain metabolic activity, 
as well as lower AD risk in American adults (44, 45). The DASH diet 
was developed to reduce blood pressure by consuming foods rich in 
potassium, calcium, and fiber, while limiting sodium, saturated fats, 
total fats, and cholesterol, and is associated with delayed cognitive 
decline and reduced AD risk (46). Hypertension is associated with 
reduced cerebral perfusion, leading to decreased oxygenation in the 
brain, causing brain atrophy and brain shrinkage, resulting in 
cognitive decline and increased risk for AD and dementia (47). DASH 
is based on a low intake of sodium to reduce the risk of hypertension 
and dementia and is characterized by a high consumption of fruits, 
vegetables, nuts, whole grains, and low-fat dairy products, as well as 
fish, and a low consumption of red and processed meats, tropical oils, 
sweetened beverages, and sweets (48). The MIND diet is designed to 
provide neuroprotection and reduce AD risk with slower cognitive 
decline. The MIND diet is a hybrid of the MeDi and DASH diets, 
incorporating additional brain-healthy food groups that have been 
purportedly linked to a decreased risk of dementia (49). The diet is 
based on the intake of 10 brain-healthy foods (i.e., leafy green 
vegetables, other vegetables, nuts, berries, beans, whole grains, fish, 
poultry, olive oil, and wine) to boost brain health and limit animal and 
high saturated fat, resulting in a significant reduction of AD risk (49). 
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Additionally, the ketogenic diet (KD), a very high-fat and 
low-carbohydrate diet, can improve cognitive ability and quality of life 
in patients with mild to severe AD by using ketone as fuel for the brain 
(50–52). While dysfunctional glucose transporters in the brain may 
contribute to cognitive decline in AD, a ketone or a high-fat intake in 
the KD diet as an alternative energy source could reduce the oxidative 
burden for the brain (51, 52).

Neuroprotective bioactive compounds, such as omega-3 fatty 
acids, vitamin E, vitamin B, and choline, help maintain brain health 
and support optimal brain function. Immune modulators, including 
polyphenols, antioxidants, and unsaturated fats, may reduce the risk 
of systemic inflammation and oxidative stress and improve cognitive 
function and neuroinflammation in the brain (53–57). 
Docosahexaenoic acid found in fatty fish may reduce the accumulation 
of p-tau tangles and increase lipoprotein receptor 11, which in turn 
diminishes Aβ levels (54, 58). Polyunsaturated fatty acids found in 
vegetables, whole grains, nuts, seeds, and fruits may provide benefits 
against AD. Short-chain fatty acids (SCFAs, e.g., acetate, propionate, 
butyrate) are produced by the fermentation of dietary fibers by gut 
bacteria in the colon (59). SCFAs can enhance gut barrier integrity, 
regulate glucose and lipid metabolism, and modulate the immune 
system and inflammatory response (59, 60).

Additionally, modifiable lifestyles, including exercise, cognitive 
activity, social engagement, and systemic health determinants, can 
influence the development of AD (61). The Finnish Geriatric 
Intervention Study to Prevent Cognitive Impairment and Disability 
(FINGER) demonstrated that a multidomain lifestyle intervention can 
improve or maintain cognitive function in older adults at risk (38, 62, 
63). An observational study of cognitive health in Black and White 
Americans and between genders found that participants with high 
adherence to MIND had a 4% reduced risk of cognitive impairment 
compared to the low adherence group (64). High adherence to healthy 
diets and healthy lifestyles may contribute to a reduction in cognitive 
decline and the risk of AD (36, 61).

Gut microbiome and 
neuroinflammation

Bidirectional interaction between the gastrointestinal tract and 
the CNS allows signals to travel from the brain to reach the gut or 
from the gut to the brain through the gut-brain axis. The gut-brain 
axis may provide feedback for reducing neuroinflammation and 
oxidative stress (65). Additionally, the oral cavity serves as a primary 
gateway to the digestive tract and maintains a diverse population of 
microorganisms, the oral microbiota (66–68). The gut and oral 
microbiome play a significant role in determining how the diet can 
elicit effects on the whole body, including the CNS. A diverse 
microbiota produces metabolic byproducts, such as SCFAs, folate, and 
vitamin K, that influence various metabolic processes, 
neurotransmitter regulation, and immune signaling (60, 69).

The composition of microbiota in each individual is highly 
variable, and the diversity of microbiota in the gut is crucial for 
maintaining a healthy gut microbiome within the body (70, 71). The 
low microbial diversity or microbial imbalances in the gut are linked 
to neuroinflammation and AD (72–74). For example, 16S rRNA 
analysis of stool samples from AD patients revealed a lower gut 
microbiota diversity and a higher abundance of proinflammatory 

bacteria, such as Escherichia and Enterobacter, compared to controls 
(65, 72, 73). Gut microbiota regulates amyloid deposition, as 
evidenced by studies using antibiotic treatment in an amyloidosis 
mouse model and fecal microbiome transplant in a germ-free/
gnotobiotic mouse model (75, 76). The antibiotic treatment in the 
amyloidosis mice leads to a lower Aβ amyloid plaques than the 
controls, and fecal microbiota transplantation methods into germ-
free/gnotobiotic mice result in drastically a higher cerebral Aβ 
amyloid pathology than the controls (75, 76). In addition, treating the 
tauopathy mouse expressing human isoforms of APOE4 with 
antibiotics resulted in reduced tau pathology and decreased 
neurodegeneration (77, 78). Additionally, periodontitis is associated 
with low cognitive performance and AD, suggesting the oral 
microbiome may contribute to AD development (66, 67).

Dietary prebiotics are indigestible nutritional fibers that are 
fermented by gut bacteria in the large intestine, and produce 
SCFA. SCFA contributes to a decrease in neuroinflammation and a 
significant reduction in Aβ plaque deposition (79–81). The MeDi and 
DASH diets include abundant dietary fiber, which provides 
neuroprotective effects by increasing the diversity of microbiota and 
producing anti-inflammatory metabolites. The MeDi diet offers high 
fiber for the gut microbiota, which in turn produces SCFA metabolites 
that influence glial cells to adopt an anti-inflammatory function in the 
brain (46, 47). Moreover, the modified Mediterranean-ketogenic diet 
(MMKD), which allows an increased intake of vegetables and fruits, 
along with fats and proteins derived from healthy sources, alters the 
gut microbiota and increases beneficial SCFAs (50, 51).

Probiotics are live microorganisms present in certain fermented 
foods, such as yogurt, that play a pivotal role in restoring the gut 
microbiota’s composition, confer health benefits to the host, and 
influence host immune responses (82). Two common probiotics, such 
as Bifidobacterium and Lactobacillus, can help establish a healthy gut 
microbiome by strengthening intestinal barriers and reducing 
inflammation (83). For example, the traumatic brain injury mouse 
model, after receiving probiotic mixtures that included Lactobacillus 
species, reduced neuroinflammation and modified gut microbiome 
diversity (84). Modifying the gut microbiome composition and 
diversity through prebiotics and probiotics, therefore, may reduce 
neuroinflammation and delay AD.

Discussion

AD is the most common type of dementia, accounting for over 
120,000 deaths in the US in 2022 (85). The exact cause of the disease 
is still unclear. Still, many research efforts point to multiple risk factors 
such as genetics, age, neuroinflammation, and unhealthy diet and 
lifestyle contributing to AD development. Limited treatments are 
available to delay AD development, such as small molecules (e.g., 
glutamate modulators, acetylcholinesterase inhibitors) to improve 
synaptic function and immunotherapy (e.g., anti-Aβ: lecanemab, 
donanemab, or anti-β/γ-secretases) to remove plaques and reduce tau 
tangles, but have had modest success (7, 8, 86, 87).

The development of AD therapeutics is hindered by a lack of 
understanding of the causes of AD, the few diagnostic tools for early 
diagnosis, and difficulties in creating biomimetic clinical disease 
models (88). For example, the tau transgenic mice have significant 
limitations in accurately recapitulating the complexity of human 
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tauopathy, such as age-dependent, anatomical changes seen in human 
AD (27). Emerging diagnostic technologies may help alleviate this 
situation, for example, blood tests based on Aβ and p-tau217 proteins 
have successfully predicted AD diagnosis with 88–92% accuracy (89). 
Alternative 3D human in  vitro AD models that maintain spatial 
geometry and neuron-glial cell interactions seen in the human brain 
are being developed (90, 91). In addition, 3D human brain organoids 
provided the spatial architecture of the brain and enabled cell–cell 
interactions, recapitulating the neuron-glial cellular network (91). 
Identification of biomarkers and therapeutic targets for AD using 
biomimetic 3D human in  vitro/organoid models may provide 
opportunities for better drug development (92).

Neuroinflammation acts as a double-edged sword in AD, 
providing beneficial anti-inflammatory and detrimental 
proinflammatory effects. In AD mouse models, depletion of microglia 
by inhibitors of colony-stimulating factor 1 receptor has been shown 
to reduce plaque accumulation, neuroinflammation, and improve 
cognition (93, 94). TREM2-activating antibodies can enhance 
microglial phagocytosis, leading to increased microglial activity 
around amyloid plaques and improved cognition in AD mice (95). 
Therefore, modulating neuroinflammation by timely regulation of 
microglial function using targeted anti-inflammatory drugs may be a 
practical approach to treating AD patients.

Addressing modifiable risk factors of AD may help improve 
cognitive health. A diet that enhances anti-inflammatory and 
antioxidant function, as well as cardiac health, is one of the most 
significant modifiable factors. MeDi, DASH, MIND, and MMKD diets 
may promote anti-inflammatory and antioxidant effects, 
neuroprotection, and contribute to healthy aging.

The oral and gut microbiome can trigger inflammation in the 
brain, increase BBB permeability, and amyloid plaque deposition, 
contributing to AD pathogenesis (96, 97). Maintaining a healthy oral 
and gut microbiome with prebiotics and probiotics will be crucial in 
delaying the onset of AD.
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