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Chinese massage therapy (Tuina) 
inhibits motor neuron apoptosis 
in rats with sciatic nerve injury by 
regulating the cPLA2 and RhoA/
ROCK2 signaling pathways
Jiawei Sun 1, Yingqi Zhang 1, Zhifeng Liu 2, Hanyu Zhang 1, 
Jiayue Liu 1, Yue Xu 1, Rentuya Na 1, Hongzheng Zhang 1, 
Jiawang Yan 1 and Tianyuan Yu 1*
1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 
China, 2 Department of Tuina and Pain Management, Dongzhimen Hospital, Beijing University of 
Chinese Medicine, Beijing, China

Objective: To investigate whether Tuina therapy alleviated inflammation and 
motor neuron apoptosis in sciatic nerve injury (SNI) rats by regulating cytosolic 
phospholipase A2 (cPLA2) and Ras homolog family member A/Rho-associated 
coiled-coil comprising protein kinase 2 (RhoA/ROCK2) signaling cascades.

Methods: Four experimental cohorts were established utilizing 36 male 
Sprague–Dawley rats: control, sham, SNI, and TUI. We  implemented a sciatic 
nerve injury (SNI) model. At dthe mid-thigh level, sciatic nerves were exposed 
and crushed for 5 s using non-serrated forceps at points spaced approximately 
2 mm apart. Postoperatively, Tuina therapy (Chinese therapeutic massage, 
Tuina) was administered to evaluate its neuromodulatory effects. SNI models 
were established in the SNI and TUI cohorts. TUI cohorts applied with “Three-
Manipulation and Three-Acupoint” technique, which included pressing, 
plucking, and kneading on the acupoints Yinmen (BL37), Chengshan (BL57), and 
Yanglingquan (GB34). The control cohort underwent no intervention. The sham 
surgery and model cohorts underwent restraining interventions. Motor function 
was assessed using Basso, Beattie, and Bresnahan (BBB) scores and CatWalk gait 
analysis. Spinal cord (SC) histology was evaluated using hematoxylin and eosin 
and Nissl staining. NeuN-positive cells were quantified via immunofluorescence. 
Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and aquaporin-4 levels 
were determined through enzyme-linked immunosorbent assay. RhoA, ROCK2, 
Bax, Bcl-2, and cPLA2 mRNA levels were analyzed using real-time quantitative 
polymerase chain reaction. RhoA, ROCK2, Bax, Bcl-2, cPLA2, and p-cPLA2 
protein expressions were analyzed using western blotting to investigate the 
impact of Tuina therapy on nerve regeneration and apoptosis regulation.

Results: The TUI cohort showed better BBB scores and CatWalk results than the 
SNI cohort (all p < 0.001). Histological analysis revealed diminished inflammatory 
cell infiltration and increased neuronal survival. NeuN immunofluorescence 
indicated decreased motor neuron apoptosis in the anterior horn of the SC. 
Tuina therapy reversed TNF-α, IL-6, and aquaporin-4 levels (p < 0.01). The TUI 
cohort had lower mRNA expression of Bax, cPLA2, and ROCK2 (all p < 0.001), 
mRNA expression of RhoA (p <  0.01), and Bax, cPLA2, p-cPLA2, and RhoA/
ROCK2 levels (all p < 0.001) than the SNI cohort. Conversely, mRNA and protein 
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expression levels of Bcl2 were higher in the TUI cohort than in the SNI cohort 
(all p < 0.001).

Conclusion: Tuina therapy improved motor function in SNI rats by inhibiting 
motor neuron apoptosis via cPLA2 regulation, potentially via the RhoA/ROCK2 
signaling pathway.

KEYWORDS

peripheral nerve injury, Tuina, apoptosis, inflammatory response, CPLA2, RhoA/
ROCK2 pathway

Introduction

Peripheral nerve injury (PNI) represents a prevalent traumatic 
disorder characterized by motor, sensory, and autonomic dysfunction 
(1, 2). Motor neuron apoptosis in the spinal cord (SC) is a major cause 
of motor impairment (3, 4). The sciatic nerve, a regenerative mixed 
peripheral nerve, transmits sensory signals through the dorsal root 
ganglion (DRG) and motor signals via axons in the ventral horn of the 
SC (5). Despite the regenerative potential of peripheral nerves, 
achieving a full recovery remains challenging (6, 7). If left untreated, 
PNI can lead to symptoms such as numbness, tingling, burning, and 
severe pain, often resulting in long-term disability and functional loss 
(8). In the United  States and Europe, over 200,000 PNI-related 
surgeries are performed annually, incurring a total cost exceeding 
$100 billion (9), underscoring the need for innovative 
therapeutic strategies.

Tuina, a traditional Chinese therapeutic modality, is an effective, 
low-side-effect, complementary, and alternative therapy for PNI. It 
alleviates pain by releasing endogenous analgesic substances, 
promoting axonal and myelin regeneration through neurotrophic 
factor secretion, and suppressing excessive inflammation to treat 
nerve-related conditions (10, 11). Tuina relieves pain associated with 
SNI by modulating changes in 10 specific neurotransmitters in the SC 
(12). Additionally, owing to its ability to reduce neuronal apoptosis, 
Tuina is widely used for its neuroprotective effects against 
neurodegenerative diseases (13–15). This investigation examined the 
impact of Tuina therapy on SC inflammation and motor neuron 
apoptosis to improve motor dysfunction caused by sciatic nerve injury.

The local inflammatory response triggered by sciatic nerve injury 
is a key factor in spinal motor neuron apoptosis (16) because the 
release of inflammatory mediators creates a sustained inflammatory 
environment that affects the central nervous system and promotes 
motor neuron death (17). Cytosolic phospholipase A2 (cPLA2) is a 
principal mediator in inflammatory processes (18), and its 
phosphorylation intensifies this response. Conversely, suppressing the 
Ras homolog family member A/Rho-associated coiled-coil containing 
protein kinase 2 (RhoA/ROCK2) pathway reduces the release of 
pro-inflammatory factors and prevents apoptosis through mechanisms 
such as mitochondrial dysfunction and Bax/Bcl-2 signaling (19, 20). 

Therefore, targeting the RhoA/ROCK2 pathway is a promising 
strategy to reduce motor neuron apoptosis in the SC.

This study builds upon our prior RNA-seq evidence regarding 
Tuina therapy. Established research confirms that Tuina alleviates 
SNI-induced motor deficits by modulating apoptotic pathways and 
Ras signaling cascades (21, 22). Given that the Ras homolog family 
member A/Rho-associated coiled-coil containing protein kinase 2 
(RhoA/ROCK2) pathway the RhoA/ROCK2 pathway functions as a 
key apoptosis regulator within the Ras superfamily (23), this study 
aims to assess changes in RhoA/ROCK2 pathway proteins and 
apoptotic effectors following Tuina intervention, to elucidate the 
mechanism by which Tuina ameliorates motor dysfunction after PNI.

The SNI model simulated clinical PNI, enabling evaluation of 
neuropathic changes and nerve regeneration. The “Three-
Manipulation and Three-Acupoint” is a combination of manipulations 
and acupoints that we have studied and proven to be effective (1, 16, 
22). Yinmen (BL37) at the sciatic nerve trunk projection (biceps 
femoris); Chengshan (BL57) at the tibial nerve projection 
(gastrocnemius); and Yanglingquan (GB34) at the common peroneal 
nerve projection (tibialis anterior). Following 20 intervention sessions, 
significant improvements in neuromuscular structure and 
demonstrated significant effects of the “Three-Manipulation and 
Three-Acupoint.”

Although the mechanical effects of Tuina on sciatic nerve 
injury are known to improve spinal motor neuron survival by 
inhibiting inflammation and apoptosis, whether this process is 
regulated by the cPLA2 and RhoA/ROCK2 signaling pathways 
remains unclear. To address these questions, we established SNI 
models in rats to assess the effects of Tuina on motor neuron 
protection, inflammation, apoptosis, and the cPLA2 and RhoA/
ROCK2 pathways. This study is the first-time to investigate the 
involvement of the RhoA/ROCK2 signaling pathway in Tuina’s 
therapeutic effects.

Methods

Animals and groups

Male Sprague–Dawley rats aged 8 weeks (200 ± 10 g) were 
acquired from Beijing SPF Biotechnology Co., Ltd. (SCXK [Beijing] 
2019–0010, Beijing, China). They were maintained within the 
barrier facility at the Beijing University of Chinese Medicine Animal 
Center under a 12-h light/dark cycle with unrestricted access to food 
and water, allowing a 7-day adaptation period before 
experimentation. In total, 36 rats were arbitrarily split into four 
experimental cohorts [blank control (CON), sham model (SHA), 

Abbreviations: BBB, Basso, Beattie, and Bresnahan; cPLA2, Cytosolic phospholipase 

A2; DRG, Dorsal root ganglion; ELISA, Enzyme-linked immunosorbent assay; H&E, 

Hematoxylin and eosin; IL-6, Interleukin-6; PNI, Peripheral nerve injury; RhoA, 

Ras homolog family member A; ROCK2, Rho-associated coiled-coil containing 

protein kinase 2; SHA, Sham model cohort; SNI, Sciatic nerve injury model; SPF, 

Specific pathogen-free; TNF-α, Tumor necrosis factor-alpha.
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SNI, and TUI], with nine animals allocated to each cohort. All 
research protocols received authorization from the Animal Use and 
Management Committee of Beijing University of Chinese Medicine 
(approval number: BUCM-2023061906-2220), adhering to the 3Rs 
principles (Replacement, Reduction, Refinement) and in accordance 
with NIH protocols for laboratory animal maintenance 
and handling.

Development of sciatic nerve compression 
model

The SNI rat model was developed as previously described (24). 
After a 7-day acclimation period, the right hind limbs of rats in the 
SHA, SNI, and TUI cohorts were shaved and under isoflurane 
anesthesia (R510-22-10, Shenzhen Ruowei Life Science Technology 
Co., Ltd., China). A 1 cm incision was made along the femur axis in 
the right sciatic nerve projection area to visualize the sciatic nerve. In 
the SHA cohort, the nerve was separated from the muscle without 
clamping, while in the SNI and TUI cohorts, a custom-made 
hemostatic clamp was applied to the sciatic nerve for 5 s with a 
pressure of 4 N. After modeling, the animals were arbitrarily assigned 
to the SNI or TUI cohort (Figure 1).

Tuina therapy

The intervention commenced on the 7th day following model 
establishment. To ensure intervention quality control, all 
manipulations were performed exclusively by the same trained 
practitioner using the Intelligent Tuina device (Chinese Patent No. 
ZL202320511277.5). This device precisely regulated force, duration, 

and frequency parameters during “Three-Manipulation and Three-
Acupoint” interventions, guaranteeing methodological consistency 
(25). The rats in the TUI cohort received Tuina therapy simulated 
using the Intelligent Tuina device (Chinese Patent No. 
ZL202320511277.5), employing the “Three-Manipulation and Three-
Acupoint” technique (1, 26), which included pressing, plucking, and 
kneading on the acupoints Yinmen (BL37), Chengshan (BL57), and 
Yanglingquan (GB34). The pressure was set to 4 N, with a frequency 
of 90 cycles per minute (Figure 2). Each technique was applied for 
1 min per acupoint, for a total of 9 min per session (1 min per 
technique × 3 techniques × 3 acupoints). The intervention was 
performed once daily, with a cycle of 10 sessions, followed by 1 day of 
rest, for a total treatment duration of 21 days. The control cohort 
underwent no intervention. The sham surgery and model cohorts 
underwent restraining interventions, with one session per day, each 
lasting 9 min, for 10 days, followed by 1 day of rest, for a total of 
21 days.

BBB locomotor scores

Motor function recovery in rats following SNI was assessed using 
the Basso, Beattie, and Bresnahan (BBB) scales. BBB assessments were 
conducted in an unrestricted environment before surgery, 1 day 
before the intervention, and on the 10th and 20th days post-
intervention. Trained observers who were blinded to group allocations 
performed all evaluations. The scale ranges from 0 (complete 
paralysis) to 21 (normal movement), with scores between 1 and 20, 
providing a detailed classification based on rat activity. The evaluation 
considered factors such as limb joint movement, forelimb and 
hindlimb coordination, trunk stability, tail and body movements, and 
weight-bearing ability.

FIGURE 1

Modeling process. (A) Anesthesia; (B) Skin preparation and disinfection; (C) Incision; (D) Expose the sciatic nerve; (E) Clamp; (F) Suture.
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Gait analysis

Gait analysis following intervention was conducted by 
investigators blinded to group assignments using the DigiGait™ 
Imaging System (MSI-DIG-AMW, Mouse Specifics, United States) to 
assess functional recovery in the affected limb after SNI. One week 
before surgery, the rats were acclimated to the equipment, with the 
treadmill gradually increasing in speed to 10 cm/s. The system 
automatically recorded the animal’s full movement and calculated the 
maximum contact area at the peak contact pressure of the right hind 
limb (paw area), the ratio of swing to stance phase duration (stance/
swing), and the ratio of maximum stride area to stride duration 
(dA/dT).

Sample collection and preparation

After completing the CatWalk gait analysis, the rats received 
anesthesia through an intraperitoneal administration of 1% 
pentobarbital sodium (57–33-0, Beijing Ouhuo Technology Co., Ltd., 
China), and the SC was subsequently dissected. Under a cold 
environment, the L4-6 segment of the SC was swiftly extracted. One 
portion of the SC was flash-frozen in liquid nitrogen and maintained 
at −80°C, while another portion was preserved in 4% 
paraformaldehyde for 24 h.

Histochemical analysis

Histochemical evaluation was performed employing Nissl staining 
to examine variations in the SC tissue cavity regions, inflammatory 
cell infiltration, and neuronal apoptosis among the distinct cohorts. 
SC specimens were stabilized in 4% paraformaldehyde, subsequently 
washed, subjected to dehydration via an ethanol gradient, rendered 
transparent with xylene, and incorporated into paraffin. Paraffin 
blocks were sectioned to 4–5 μm thickness utilizing a Leica RM2235 
microtome (Leica, Germany). Following deparaffinization, the 
sections underwent hematoxylin and eosin (H&E) and Nissl staining, 
proceeded by dehydration, transparency enhancement, and mounting 

with neutral resin. SC tissue morphology was assessed by investigators 
blinded to group assignments under an optical microscope (BX43, 
Olympus, Japan) at 200 × and 400 × magnifications, and 4–5 fields 
from each section were randomly selected for imaging. H&E was 
utilized to examine the overall structural alterations in the SC, and 
Nissl staining was used to evaluate neuronal survival.

Immunofluorescence

After deparaffinizing and cleaning, the SC tissue sections were 
air-dried and blocked with 5% goat serum. The sections were 
subsequently maintained at 4°C overnight with a mouse anti-NeuN 
antibody (1:200 dilution, 66,836-1-1 g, Proteintech Group, Inc., 
China). The following day, the sections were washed five times with 
PBS for 8 min each. Subsequently, the sections were incubated for 
60 min at room temperature with goat anti-mouse IgG H&L (1:500 
dilution, AB0142, Shanghai Bowan Biotechnology Co., Ltd., Shanghai, 
China) in the dark. Cell nuclei underwent DAPI staining treatment 
for 10 min (ZKWB-0, Beijing Zhongke Wanbang Biotechnology Co., 
Ltd., Beijing, China), and the slides were sealed with an aqueous 
mounting medium. Images were analyzed by investigators blinded to 
group assignments utilizing a fluorescence microscope (TH4-200, 
Olympus, Japan) and ImageJ software (National Institutes of Health, 
United States).

Enzyme-linked immunosorbent assay

Per the supplier’s protocols, ELISA kits for rat TNF-α (RGB-60080R, 
RegBio, China), IL-6 (RGB-60023R, RegBio, China), and aquaporin-4 
(AQP-4) (RGB-60752R, RegBio, China) were used for detection. After 
anesthesia, an appropriate amount of the SC anterior horn tissue was 
collected, weighed, and homogenized with PBS at a 1:9 volume ratio 
employing a homogenizer (LANYI-GTM, Shanghai Lanyi, China). The 
mixture underwent centrifugation at 3,000 rpm for 20 min, and the 
supernatant was extracted for analysis. The assay protocol encompassed 
standard dilution, sample addition, washing, color development, and 
reaction termination. The absorbance was determined at 450 nm 

FIGURE 2

Intervention facilities and site diagram. (A) Tuina operation simulator; (B) SD rat placed on the rat platform for intervention with the instrument; 
(C) Diagram illustrating the acupoint locations.
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utilizing a microplate reader (Thermo Multiskan MK3, Thermo Fisher 
Scientific, United States). A standard curve was developed, and TNF-α, 
IL-6, and AQP-4 protein levels in the samples were ascertained.

Real-time quantitative polymerase chain 
reaction

SC tissue RNA was procured through TRIzol extraction 
methodology, and the RNA quality and concentration were evaluated 
utilizing a nucleic acid quantification device (Unano-1000, UMI 
Instruments, China). Complementary DNA was prepared employing 
a reverse transcription system (A502, EXONGEN, Israel), before 
quantitative fluorescence analysis. In summary, RNA isolation was 
executed per the supplier’s protocols to avoid RNAse contamination. 
The RNA purity and yield were assessed employing a nucleic acid 
concentration measuring instrument. The isolated RNA underwent 
reverse transcription to generate cDNA utilizing a reverse 
transcription system. Quantitative PCR analysis was executed on a 
CFX Connect™ RT-PCR instrument (1,855,200, Bio-Rad, 
United States), with cDNA as the amplification template. The thermal 
cycling parameters encompassed initial denaturation at 95°C for 
5 min, succeeded by 40 cycles of denaturation (95°C, 10 s), annealing 
(58°C, 20 s), and extension (72°C, 20 s). A melt-curve analysis was 
subsequently executed. The transcript levels of RhoA, ROCK2, Bax, 
Bcl-2, and cPLA2 were determined through the 2-△△Ct methodology, 
utilizing glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the 
internal control for standardization. The primer sequences utilized in 
these experiments are depicted in Appendix 1.

Western blotting

For western blot analysis, 100 mg of SC tissue was subjected to 
homogenization utilizing immunoprecipitation lysis buffer (P0013; 
Shanghai Biyuntian Biotechnology Co., Ltd., Shanghai, China) to 
obtain total protein. Protein concentration was quantified using the 
BCA assay for subsequent comparisons. Briefly, 20 μg of total protein 
was separated by SDS-PAGE, and the resulting gel was transferred 
onto a PVDF membrane following methanol immersion for 1 min. 
The transfers were conducted at 100 V for 1 h. Subsequently, the 
membranes underwent blocking at room temperature for 30 min 
with a rapid blocking solution. The blocked membrane underwent 

overnight incubation at 4°C with the following primary antibodies: 
rabbit anti-GAPDH (1:3000, 10,494-1-AP, Proteintech Group, Inc., 
China), rabbit anti-RhoA (1:1000, 10,749-1-AP, Proteintech Group, 
Inc., China), rabbit anti-ROCK2 (1:1000, 21,645-1-AP, Proteintech 
Group, Inc., China), rabbit anti-Bax (1:1000, 60,267-1-Ig, Proteintech 
Group, Inc., China), rabbit anti-Bcl-2 (1:1000, 26,593-1-AP, 
Proteintech Group, Inc., China), rabbit anti-cPLA2 (1:1000, AF6329, 
Jiangsu Qinke Bio Research Center Co., Ltd., China), and rabbit anti-
p-cPLA2 (1:1000, AF3329, Jiangsu Qinke Bio Research Center Co., 
Ltd., China). The following day, the membrane underwent a triple 
wash process using 1 × TBST, with each wash lasting 10 min, followed 
by a 60-min exposure to horseradish peroxidase-linked secondary 
antibody, goat anti-rabbit IgG H&L (1:3000, MD912565, Kangtai 
Medical Testing Service, Hebei, China). Following three additional 
TBST rinses, the membrane received treatment with enhanced 
chemiluminescence substrate, combined at equal proportions, and 
applied for 1 min. Image acquisition was performed utilizing a 
ChemiDoc MP imaging system (1,708,280, Bio-Rad, United States).

Statistical analysis

Statistical analyses were performed using SPSS Statistics 26.0 
(IBM Corp., Armonk, NY, United  States). Continuous data are 
expressed as mean ± standard deviation. Normality was assessed using 
Shapiro–Wilk tests. For normally distributed data, intergroup 
differences were analyzed by one-way ANOVA followed by LSD post 
hoc tests when variance homogeneity held (verified by Levene’s test). 
Under variance heterogeneity, Tamhane’s T2 method was applied for 
pairwise comparisons. Non-normally distributed data were analyzed 
using Kruskal-Wallis tests with Dunn’s post hoc correction. Statistical 
significance was defined at p < 0.05 (Figure 3).

Results

TUI therapy enhanced the functional 
recovery of the sciatic nerve in SNI rats

No signs of redness or swelling were observed at the injury site 
following model induction, and the postoperative recovery was 
satisfactory. On the 7th day after SNI surgery, rats were unable to 
support their body weight on the injured limb, exhibited limping or 

FIGURE 3

Flowchart of animal experiment.
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FIGURE 5

Levels of IL-6, TNF-α, and AQP-4 in spinal cord of rats after Tuina intervention. Levels of IL-6 (A), TNF-α (B), and AQP-4 (C) in spinal cord tissue, 
measured by enzyme-linked immunosorbent assay (ELISA). Data are presented as mean ± standard deviation. (n = 6) *p < 0.001 vs. SHA; ▲compared 
to SNI, ▲p < 0.01, ▲▲p < 0.001.

dragging behavior, and experienced declined motor coordination and 
fine motor skills, confirming the success of model induction.

We assessed the recovery of neurological function and hind limb 
motor ability using the BBB scoring systems. No notable variations in 
BBB scores were detected between the CON and SHA cohorts after the 
10th and 20th interventions. In contrast, the SNI cohort’s BBB scores 
were markedly lower than those of the CON and SHA cohorts 
(p < 0.001). After the 10th and 20th interventions, the TUI cohort 
showed significantly improved BBB scores compared with the SNI 
cohort (p < 0.001). However, the scores remained markedly diminished 
compared with those of the SHA cohort. These results indicate that 
Tuina therapy improves motor function following SNI (Figure 4A).

Stability and coordination of rat movements were evaluated by 
measuring paw area, stance/swing ratio, and maximum acceleration/
time ratio. Compared with the CON and SHA cohorts, the SNI cohort 
exhibited markedly reduced paw area, stance/swing ratio, and 
maximum acceleration/time ratio (all p < 0.001). After the 10th and 
20th interventions, the TUI cohort showed significant improvements 
in these parameters compared with the SNI cohort (p < 0.001). These 
observations suggest that Tuina intervention promotes hind limb 
stability and coordination during movement, enhancing the overall 
motor function in rats (Figures 4A–D). DigiGait™ periodic waveforms 
of rats right hind limb are presented in Figures 4E–H.

Tuina therapy alleviated inflammatory 
response

ELISA was applied to measure inflammatory factor levels in SC 
tissue to assess the inflammatory response. ELISA results showed 
heightened tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and 
AQP-4 levels in the model cohort. Tuina treatment notably reduced 
these inflammatory cytokine levels in the SC (p < 0.01). These 
observations suggest that Tuina treatment alleviated the inflammation 
induced by sciatic nerve injury (Figures 5A–C).

H&E staining and Nissl staining

Histological analysis was executed using H&E staining to 
examine structural changes in the SC tissue at the injury site. The 
outcomes indicated that SC tissue in the CON and SHA cohorts 
appeared mostly normal, without significant pathological alterations. 
In contrast, rats in the SNI cohort exhibited severe damage to SC 
segments at the sciatic nerve injury site, including neuronal 
dissolution, vacuole formation, neuronal degeneration, and nuclear 
pyknosis, accompanied by significant inflammatory cell infiltration 
and focal hemorrhage. Furthermore, Tuina treatment reduced 

FIGURE 4

BBB scores and gait analysis. (A) BBB Locomotor Scores; (B) Stance/Swing Ratio; (C) Max dA/dT; (D) Paw Area. (E–H) Screen-captured images of 
DigiGait™ periodic waveforms representing stance and swing phases of stride of rat hind limb. (E) CON cohorts; (F) SHA cohorts; (G) SNI cohorts; 
(H) TUI cohorts. (n = 6) *p < 0.001 vs. SHA; ▲compared to SNI, ▲▲p < 0.001.
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vacuole-like changes and alleviated inflammatory cell infiltration at 
the injury site in the SNI cohort. These observations suggest that 
Tuina therapy mitigated the structural changes in the SC caused by 
sciatic nerve injury (Figure 6A).

The survival status of motor neurons within the anterior horn of 
the SC was assessed through Nissl staining. The examination revealed 
that motor neurons displayed normal morphology in both CON and 
SHA cohorts, characterized by transparent cytoplasm and regularly 
shaped nuclei. In comparison, motor neuron counts were notably 
decreased in the SNI cohort, with certain neurons demonstrating 
vacuolation and condensed nuclei. The TUI cohort exhibited more 
distinct Nissl bodies and less pronounced nuclear condensation than 
the SNI cohort. These observations indicate that Tuina administration 
enhances neuronal viability and regeneration (Figure 6B).

Tuina therapy improved cell apoptosis

Immunofluorescence staining was used to assess apoptosis in SC 
tissue. NeuN immunofluorescence staining showed that the nuclei 
were stained blue with DAPI, and NeuN was stained green to label the 
motor neurons in the anterior horn of the SC. NeuN expression was 
markedly lower in the SNI cohort than in the CON and SHA cohorts 
(p < 0.001). NeuN distribution was more pronounced in the TUI 
cohort, with markedly higher fluorescence intensity than that in the 
SNI cohort (p < 0.001). The findings demonstrate that Tuina treatment 
successfully improved motor neuron apoptosis following sciatic nerve 
injury (Figures 7A,D).

The expression levels of apoptosis-associated genes were analyzed 
through RT-PCR methodology. The SNI cohort exhibited a marked 
elevation in Bax mRNA levels compared with both CON and SHA 
cohorts (p < 0.001), while Bcl-2 expression demonstrated significant 
downregulation (p < 0.001). Conversely, the TUI cohort showed 
diminished Bax mRNA levels alongside enhanced Bcl-2 expression 
(p < 0.01, Figure). These findings indicated that Tuina suppressed 
apoptotic processes via modulation of apoptosis-related gene 
expression (Figures 7B,C).

Western blot analysis evaluated the impact of Tuina extract on 
proteins associated with apoptosis. Analysis revealed that Bax protein 
levels within SC tissues exhibited significant elevation in both SNI and 
TUI cohorts compared with those in the SHA cohort (p < 0.001). 
Nevertheless, Bax levels demonstrated a marked reduction in the TUI 
cohort compared with that in the SNI cohort (p < 0.001). Bcl-2 
expression displayed decreased levels in the SNI cohort relative to the 
SHA cohort (p < 0.001) while showing enhanced expression in the TUI 
cohort compared with that in the SNI cohort (p < 0.001). The observed 
data indicates that Tuina administration diminished the Bax/Bcl-2 
ratio, consequently mitigating apoptosis post-SNI (Figures 7E–G).

Effect of Tuina therapy on the gene and 
Protein expression related to the cPLA2 
and RhoA/ROCK2 pathways

RT-PCR examination of SC tissue indicated alterations in the 
RhoA/ROCK2 signaling cascade. Compared to the SNI cohort, the 

FIGURE 6

Spinal cord histopathology: Nissl and H&E staining. (A) Spinal cord tissue section; magnification: 200 × (scale bar = 50 μm), 400 × (scale bar = 20 μm). 
(B) Nissl staining of spinal cord tissue; magnification: 200 × (scale bar = 100 μm), 400 × (scale bar = 50 μm), 800 × (scale bar = 25 μm).
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mRNA expression level of RhoA in the TUI cohort decreased 
(p < 0.01; Figure 8A), and the ROCK2 was significantly decreased 
(p < 0.001; Figure 8B), and the cPLA2 was significantly decreased 
(p < 0.001; Figure 8C).

Western blot analysis suggested alterations in the RhoA/
ROCK2 signaling cascade (Figure  8D). Compared to the SNI 
cohort, the protein abundance of RhoA in the Tuina treatment 
cohort showed a significant decreased (p < 0.001; Figure 8E), and 
ROCK2 in the TUI showed a significant decreased (p < 0.001; 
Figure 8F), and cPLA2 in the TUI showed a significant decreased 
(p < 0.001; Figure  8G), and p-cPLA2  in the TUI showed a 
significant decreased (p < 0.001; Figure 8H).

Discussion

Tuina, a non-pharmacological therapy widely used in clinical 
settings for PNI management, offers distinct advantages including 
rapid onset, absence of drug dependence, and procedural 
simplicity (27). Evidence confirms its efficacy in promoting 
post-PNI neurological recovery and improving spinal cord (SC) 
tissue morphology (28). As a form of traditional Chinese external 
therapy, Tuina achieves neural functional restoration through 
physical intervention, representing a unique therapeutic 
approach complementary to conventional treatments (29). The 
“Three-Manipulation and Three-Acupoint” intervention method, 

FIGURE 7

Immunofluorescence, mRNA expression levels, and apoptosis-related proteins. (A) Immunofluorescence staining of NeuN protein in spinal cord tissue. 
Magnification: 400 × (scale bar = 50 μm). (B,C) Real-time RT-PCR analysis of Bax (B) and Bcl-2 (C) mRNA expression levels. (n = 6) *p < 0.001 vs. SHA; 
▲compared to SNI, ▲p < 0.01, ▲▲p < 0.001. (D) Fluorescence intensity of NeuN in spinal cord tissue (n = 3). (E) Quantification of specific signal 
intensity. (F,G) Relative protein expression of Bax (F) and Bcl-2 (G) in the spinal cord. Data are presented as mean ± standard deviation. (n = 6) 
*p < 0.001 vs. SHA; ▲compared to SNI, ▲p < 0.01, ▲▲p < 0.001.
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which combines proven techniques and acupoints, is effective 
through experimental validation (30). By applying the three 
techniques—pressing, picking, and kneading—on the Yinmen 
(BL 37), Chengshan (BL 57), and Yanglingquan (GB 34) 
acupoints, behavioral recovery was promoted effectively in SNI 
model rats. Moreover, after 20-day treatment, motor function 
improved in the TUI cohort, confirming the therapeutic efficacy 
of the “Three-Manipulation and Three-Acupoint” approach. This 
investigation evaluated the motor function recovery in 
SNI-induced rats through BBB scoring and CatWalk gait analysis. 
The findings demonstrated that the “Three-Manipulation and 
Three-Acupoint” Tuina intervention effectively alleviated motor 
dysfunction in the SNI rats, gradually restoring their function to 
normal levels.

Local inflammation-induced cell 
apoptosis is crucial in SNI

Apoptosis, induced by local inflammatory responses, is 
pivotal in SNI. Following SNI, pro-inflammatory cytokines 
released at the injury site activate neuroinflammatory pathways, 
exacerbating nerve damage and potentially leading to motor 
neuron apoptosis in the anterior horn of the SC, thereby 
impairing motor function (31, 32). Excessive immune responses 
in the anterior horn of the SC trigger cellular stress, promote 
neuronal apoptosis, and worsen motor function loss (33). 

Therefore, reducing the inflammatory response is a key strategy 
for protecting motor neurons and promoting nerve regeneration 
and repair. Inhibiting inflammation not only reduces neuronal 
apoptosis but also facilitates the recovery of motor function (34). 
In summary, excessive inflammation following SNI disrupts the 
homeostasis of motor neurons in the anterior horn of the SC, 
amplifying neuronal apoptosis and motor dysfunction. 
Modulating the spinal inflammatory microenvironment and cell 
apoptosis is promising for improving motor impairments 
resulting from SNI. Tuina therapy effectively reduced motor 
neuron apoptosis after SNI, as evidenced by increased NeuN 
expression, decreased Bax levels, and elevated Bcl-2 mRNA and 
protein levels, modulating the Bax/Bcl-2 ratio to protect motor 
neurons and improve survival.

The cPLA2 pathway links inflammation 
and cell apoptosis

cPLA2 is crucial in regulating neuroinflammatory responses 
(35). TNF-α and IL-6 are key inflammatory markers in the nerve 
injury response. These cytokines activate the cPLA2 signaling 
pathway, enhancing its enzyme activity and promoting the 
synthesis of inflammatory mediators, encompassing 
prostaglandins and leukotrienes, further exacerbating local nerve 
inflammation (36). cPLA2 phosphorylation promotes the 
synthesis of these mediators and may also influence the 

FIGURE 8

Tuina-regulated factors associated with cPLA2 and RhoA/ROCK2 pathways levels. (A–C) mRNA expression levels of RhoA (A), ROCK2 (B), and cPLA2 
(C) detected by real-time RT-PCR. (D) Quantification of specific signal intensities. (E–H) Relative protein expression of RhoA (E), ROCK2 (F), cPLA2 (G), 
and p-cPLA2 (H) in spinal cord tissue. Data are presented as mean ± standard deviation. (n = 6) *p < 0.001 vs. SHA; ▲compared to SNI, ▲p < 0.01, 
▲▲p < 0.001.
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expression of AQP4 (37). Abnormal AQP4 expression increases 
water transport, leading to SC edema. Edema worsens nerve 
tissue damage and potentially disrupts the blood–brain barrier, 
allowing more inflammatory cells to infiltrate and cause further 
neuronal injury. The investigation measured TNF-α, IL-6, and 
AQP4 expression levels in SC tissue, finding markedly elevated 
levels in the SNI cohort. In contrast, after 20 sessions of Tuina 
intervention, cPLA2 protein and mRNA expression decreased. 
Additionally, after 20 interventions, the SC tissue structure was 
relatively intact, and the infiltration of inflammatory cells was 
alleviated, suggesting that Tuina therapy reduces inflammation, 
inhibits the excessive expression of AQP4, and mitigates edema 
and nerve damage.

Role of the RhoA/ROCK2 signaling 
pathway

The RhoA/ROCK2 pathway is a critical signaling pathway in 
neuronal apoptosis in neurological disorders (38, 39). cPLA₂, 
which mediates inflammatory and apoptotic processes, functions 
as a key effector in this pathway (40). Inhibition of RhoA/ROCK2 
signaling reduces expression of downstream mediators, including 
pro-inflammatory cytokines (TNF-α, IL-6), the water channel 
protein AQP4, and the apoptosis regulator Bcl-2. RT-PCR and 
western blot analyses revealed that Tuina reduced Bax levels and 
increased Bcl-2 levels, diminishing the Bax/Bcl-2 ratio. 
Additionally, Tuina suppressed the mRNA and protein levels of 
cPLA2 and RhoA/ROCK2, suggesting that Tuina alleviates 
apoptosis and protects motor neurons by modulating the RhoA/
ROCK2 signaling pathway.

Consistent with previous studies, the “Three-Manipulation 
and Three-Acupoint” Tuina intervention potentially suppresses 
the production of inflammatory mediators TNF-α and IL-6, 
reduce cPLA2 activity, and regulate the levels of AQP4. This 
intervention appeared to alleviate excessive activation of the 
RhoA/ROCK2 signaling pathway, decrease the Bax/Bcl-2 ratio, 
reduce apoptosis of motor neurons in the SC anterior horn, and 
improve the local inflammatory microenvironment in the 
SC. Although these outcomes suggest that Tuina intervention 
accelerates functional recovery following nerve injury, its clinical 
potential in nerve repair remains unclear.

Conclusion

The “Three-Manipulation and Three-Acupoint” Tuina 
intervention could effectively promote motor function recovery 
after SNI, as demonstrated by improvements in BBB scores and 
CatWalk analysis. Tuina therapy could modulate the release of 
cPLA2 and inhibit the RhoA/ROCK2 signaling pathway, thereby 
reducing inflammation and motor neuron apoptosis in the SC to 
functional repair.

This research investigated the effects of Tuina regarding 
motor neuron apoptosis in the SC following SNI, emphasizing its 
therapeutic potential in nerve repair. Future research will explore 
whether SC tissue recovery can promote nerve repair and further 

elucidate the repair mechanisms of Tuina therapy. Although the 
present work examined Tuina’s impact on motor neuron apoptosis 
post-SNI, nerve damage constitutes the fundamental etiology. 
Thus, future investigation will determine whether recovery from 
such apoptosis facilitates neural repair or influences its efficacy, 
either beneficially or adversely. The results establish substantial 
scientific support for implementing Tuina in clinical 
treatments of PNI.
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