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Background: The triglyceride-glucose index (TyG-i) isrecognized as a simple, 
cost-effective, and valuable surrogate for insulin resistance, and it has been 
identified to be  associated with the prognosis of cardiovascular diseases. 
However, limited research has been conducted to explore the relationship 
between TyG-i and clinical outcome of aneurysmal subarachnoid hemorrhage 
(aSAH). This study aims to elucidate the association between preoperative TyG-i 
level and the prognosis of aSAH.
Methods: A total of 467 patients with aSAH admitted to Beijing Tiantan Hospital 
from January 2015 to September 2022 for inclusion in this study. Unfavorable 
clinical outcome was defined as modified Rankin Scale (mRS) < 3 at 90 days 
after discharge. TyG-i was calculated using measurements of triglyceride and 
fasting blood glucose. Additionally, TyG-body mass index (TyG-BMI), a TyG-
derived parameter calculated by TyG-i, height, and weight, was also collected. 
Multivariate logistic regression analysis was performed to explore association 
between clinical outcome and TyG-i level, as well as its derivative index.
Results: After multivariate adjustment, the increased TyG-i level was associated 
with high risk of unfavorable clinical outcome (Odds ratio = 3.474, p = 0.002). 
Multivariable-adjusted spline regression model showed a linear relationship 
between TyG-i and aSAH prognosis (p for nonlinear = 0.202). Moreover, adding 
TyG-i to conventional risk factors significantly improved the risk prediction 
of poor prognosis (net reclassification index: 40.17%, p  < 0.001; integrated 
discrimination index: 3.24%, p = 0.005). Multivariate logistic regression analysis 
demonstrated that there was no significant association between TyG-BMI and 
clinical outcome of aSAH.
Conclusion: High preoperative TyG-i levels were associated with increased 
risks of unfavorable clinical outcome, suggesting that TyG-i may be a valuable 
prognostic marker for patients with aSAH.
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Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04785976, 
identifier NCT04785976.
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1 Background

Aneurysmal subarachnoid hemorrhage (aSAH) is recognized as 
a life-threatening neurological condition characterized by high 
mortality and morbidity rates (1). Hughes et al. reported that nearly 
500,000 persons experienced aSAH annually, with more than half of 
these patients residing in low- and middle-income country (2). Hence, 
identifying an effective and sensitive predictive indicator may 
significantly enhance the prognosis and alleviate the economic burden 
faced by aSAH patients.

Previous researches has identified that peripheral blood markers 
such as hemoglobin, white blood cell, and various inflammation 
markers, that are associated with the prognosis of aSAH patients 
(3–6). The triglyceride-glucose index (TyG-i), calculated from 
peripheral blood glucose and triglyceride, has been recognized as a 
valuable predictive tool for the prognosis of cardiovascular disease 
(7–9). Recently, Huang et al. discovered that TyG-i is significantly 
correlated with all-cause mortality in hemorrhagic stroke patients 
(10). However, few studies have examined the association between 
TyG-i and clinical outcome of aSAH patients. This investigation aims 
to explore the potential correlation between TyG-i and the prognosis 
of aSAH patients.

2 Methods

2.1 Study population

The patients’ data were collected from the LongTEAM registry 
study (Registration No. NCT04785976), a large, single-center, 
observational cohort conducted at Beijing Tiantan Hospital in 
China. This cohort included patients information collected from 
January 2015 to September 2022. Various imaging techniques, such 
as computed tomography (CT), computed tomography angiography 
(CTA), digital subtraction angiography (DSA), and lumbar puncture 
were utilized to diagnose aSAH. The inclusion criteria contained: (1) 
age ≥ 18 years; (2) patients admitted to hospital from the emergency 
department; (3) patients with a single aneurysm; (4) patients 
admitting to hospital within 72 h after aneurysm rupture and 
receiving treatment within 72 h after admission; (5) patients treated 
with surgical clipping or endovascular coiling; (6) patients 
completing 90-days follow-up. The exclusion criteria included: (1) 
patients with a history of aSAH or other neurosurgical disease; (2) 
patients with a history of craniotomy or intracranial vascular 
interventions (3) patients without the data of preoperative peripheral 
blood glucose and triglyceride; (4) patients with physical disability 
caused by previous disease; (5) patients with lacking medical 
records, laboratory, and radiological information. The informed 
consent was obtained from patients or their guardian 
before recruitment.

2.2 Data collection

The baseline characteristic included age, sex, treatment modality, 
preoperative clinical status (including World Federation of 
Neurological Societies (WFNS) grade, modified Fisher scale (mFS), 
Graeb score, Subarachnoid Hemorrhage Early Brain Edema Score 
(SEBES), Hunt-Hess score, and Glasgow coma score (GCS)), 
preoperative symptoms (including loss of consciousness and seizure), 
and the length from rupture to admission. The radiological information 
included preoperative intraventricular hemorrhage (IVH) and the max 
diameter of aneurysm. In-hospital complications, such as postoperative 
intracranial infection, abnormal liver function, and urinary system 
infection were also collected. The laboratory examinations, such as 
triglyceride (TG), fasting blood glucose (FBG) were obtained from 
patients’ fasting blood in the first 24 h after admission. The TyG-i is 
calculated as the formula: ln [TG (mg/dl) × FBG (mg/dl)/2] (11). 
Moreover, TyG-body mass index (TyG-BMI) was also collected. BMI 
is calculated as weight divided by the square of height (kg/m2). 
TyG-BMI was calculated as the formula: TyG-i × BMI (12).

2.3 Outcome evaluation

Patients received follow-up through telephone consultations or 
outpatient appointments 90 days after discharge. The modified 
Rankin Scale (mRS), which ranges from 0 (no symptoms) to 6 
(death), is a valuable and effective tool for assessing the functional 
outcome of patients (13). Favorable outcome was defined as mRS < 3 
at 90 days after discharge.

2.4 Statistical analysis

In this investigation, categorical variables were presented as 
percentages. Normally distributed numerical variables were expressed 
as mean ± standard deviation (SD), while skewed distributed variables 
were indicated as median (25th percentile, 75th percentile). Student’s 
t test, Mann–Whitney test, and chi-square test were applied to analyze 
the differences of baseline characteristics between favorable and 
unfavorable outcome group. The multivariate logistic regression was 
conducted to evaluate the relationship between TyG-i and clinical 
outcome. To reduce the impact of confounding factors, we established 
three models adjusted in multivariate logistic regression. The crude 
model included age and sex. The minimally adjusted model contained 
crude model, Grabe score, SEBES, IVH, GCS, WFNS, Hunt Hess 
score, loss of consciousness, treatment modality, BMI, hypertension, 
history of heart disease, hyperlipemia, postoperative ventriculomegaly, 
abnormal liver function, anemia, pneumonia, and deep vein 
thrombosis (DVT). The fully adjusted model included minimally 
adjusted model, max diameter of aneurysm, preoperative glucose 
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(Glu), preoperative urea, preoperative estimated glomerular filtration 
rate (eGFR), preoperative aspartate transaminase (AST), preoperative 
albumin (ALB), preoperative cholesterol (CHO), preoperative creatine 
kinase isoenzymes (CKMb), white blood cell (WBC), monocyte 
(MONO), neutrophil (NEUT) and preoperative hemoglobin (HGB). 
The restricted cubic spline (RCS) was employed to assess the dose-
effect relationship between TyG-i and clinical outcome in patients with 
aSAH. The knots were determined at the lowest akaike information 
criterion (AIC) value to enhance the quality of model fitting. The 
adjusted factors in RCS analysis included age, gender, Grabe, SEBES, 
IVH, GCS, WFNS, Hunt Hess score, loss of consciousness, treatment 
modality, hypertension, history of heart disease, hyperlipemia, BMI, 
postoperative ventriculomegaly, abnormal liver function, anemia, 
pneumonia, DVT, max diameter of aneurysm, Glu, urea, eGFR, AST, 
ALB, CHO, CKMb, WBC, MONO, NEUT, and HGB. Net 
reclassification improvement (NRI) and integrated discrimination 
improvement (IDI) were utilized to evaluate the enhancement in 
model performance accomplished by incorporating new markers into 
conventional model. In this research, ‘TAPS’ model, which contained 
age, WFNS grade, mFS grade, Grabe score, white blood cell, and 
surgical clipping, was defined as conventional model (14). NRI and 
IDI were calculated to evaluate whether adding TyG-i to conventional 
model could improve the predictive ability of unfavorable clinical 
outcome. The subgroup analysis was conducted to evaluate the 
robustness of association between TyG-i and clinical outcome of 
aSAH. Finally, multivariate logistic regression analysis with 3 adjusted 
models was applied to explore the association between TyG-BMI and 
clinical outcome of patients with aSAH.

3 Results

3.1 Baseline characteristics

All patients were drawn from the LongTEAM registry study. 106 
patients were lost to follow-up, 608 patients without the data of 

preoperative TyG-i, 2 patients were less than 18 years old, and 85 
patients with a missing laboratory test. Therefore, a total of 467 patients 
were enrolled into this study (Figure  1). The comparison between 
included and excluded patients was presented in Supplementary Table 1. 
Patients who were excluded from this investigation were more likely to 
be smokers (17.13% vs. 23.60%, p = 0.011), alcohol drinkers (10.92% 
vs. 21.22%, p < 0.001) and with history of heart disease (14.13% vs. 
18.85%, p = 0.031). The analysis of baseline characteristics was shown 
in Table 1. 364 patients achieved a favorable clinical outcome while 103 
patients experienced an unfavorable outcome. Compared to the 
favorable outcome group, patients with unfavorable outcome tended to 
be older (54.00 (47.00–61.00) vs. 61.00 (54.00–69.00), p < 0.001), and 
exhibited a higher score in Grabe (0.00 (0.00–2.00) vs. 2.00 (1.00–3.00), 
p  < 0.001), mFS (3.00 (1.00–4.00) vs. 4.00 (3.00–4.00), p  < 0.001), 
WFNS (1.00 (1.00–2.00) vs. 4.00 (2.00–5.00), p < 0.001), and Hunt-
Hess (2.00 (1.50–2.50) vs. 3.00 (4.00–5.00), p < 0.001). Furthermore, 
patients with unfavorable outcome also had a higher prevalence of 
hypertension (176 (48.35%) vs. 69 (66.99%), p < 0.001), hyperlipemia 
(12 (3.30%) vs. 8 (7.77%), p = 0.048), and heart disease (37 (10.16%) vs. 
29 (28.15%), p < 0.001). Additionally, the incidence of some in-hospital 
complications such as postoperative ventriculomegaly (31 (8.52%) vs. 
20 (19.42%), p = 0.002), abnormal liver function (51 (15.01%) vs. 37 
(35.92%), p < 0.001), anemia (123 (33.79%) vs. 62 (60.79%), p < 0.001), 
pneumonia (112 (30.76%) vs. 80 (77.67%), p < 0.001), and DVT (76 
(20.87%) vs. 59 (57.28%), p < 0.001) were significantly higher among 
unfavorable outcome group. As for the preoperative laboratory test, 
Figure 2 presented patients with unfavorable outcome had a higher 
TyG-i level (8.72 (8.35–9.15) vs. 9.08 (8.70–9.48), p < 0.001). There also 
were significant differences in Glu (7.40 (6.51–8.70) vs. 8.63 (7.30–
10.50), p < 0.001), eGFR (114.92 (106.33–123.34) vs. 109.57 (100.20–
119.45), p = 0.001), CO2 (22.20 (20.60–23.60) vs. 21.30 (19.50–23.10), 
p  = 0.011), AST (20.00 (16.40–25.00) vs. 21.70 (18.00–28.80), 
p = 0.018), CKMb (1.61 (0.97–2.72) vs. 1.98 (1.20–5.31), p = 0.004), 
WBC (12.27 (9.79–14.72) vs. 14.75 (12.10–17.94), p < 0.001), MONO 
(0.37 (0.26–0.51) vs. 0.49 (0.32–0.70), p < 0.001), NEUT (10.86 (8.44–
13.27) vs. 12.97 (10.46–16.11), p  < 0.001), and HGB (140.00 

FIGURE 1

The flow chart of patient enrollment.
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TABLE 1  The comparison of characteristics between good outcome group and unfavorable outcome group.

Characteristics Outcome p

Favorable outcome Unfavorable outcome

Gender (male:female) 148:216 42:61 0.983

Age, year 54.00 (47.00–61.00) 61.00 (54.00–69.00) <0.001

Treatment modality 0.007

 � Interventional surgery 178 35

 � Craniotomy 186 68

Preoperative evaluation

 � Graeb score 0.00 (0.00–2.00) 2.00 (1.00–3.00) <0.001

 � mFS score 3.00 (1.00–4.00) 4.00 (3.00–4.00) <0.001

 � SEBES score 2.00 (1.00–4.00) 2.00 (1.00–4.00) 0.812

 � IVH 200 (54.94) 80 (77.67) <0.001

 � GCS 15.00 (14.00–15.00) 12.00 (7.00–14.00) <0.001

 � WFNS grade 1.00 (1.00–2.00) 4.000 (2.00–5.00) <0.001

 � Hunt Hess score 2.00 (1.00–3.00) 3.00 (2.00–4.00) <0.001

 � Loss of consciousness, n (%) 84 (23.07) 61 (59.223) <0.001

 � Seizure, n (%) 14 (3.846) 7 (6.796) 0.202

 � The duration of rupture to admission, hours 24.00 (24.00–48.00) 24.00 (17.00–48.00) 0.437

Personal history

 � Current smoking, n (%) 62 (17.03) 18 (17.48) 0.916

 � Current drinking, n (%) 36 (9.89) 15 (14.56) 0.179

 � History of ischemic stroke, n (%) 18 (4.94) 4 (3.88) 0.653

 � History of hemorrhagic stroke, n (%) 4 (1.10) 1 (0.97) 0.911

 � History of diabetes, n (%) 17 (4.67) 9 (8.74) 0.112

 � History of hypertension, n (%) 176 (48.35) 69 (66.99) <0.001

 � History of chronic liver disease, n (%) 6 (1.65) 3 (2.91) 0.410

 � History of hyperhomocysteinemia, n (%) 22 (6.04) 5 (4.85) 0.648

 � History of hyperlipemia, n (%) 12 (3.30) 8 (7.77) 0.048

 � History of heart disease, n (%) 37 (10.16) 29 (28.15) <0.001

 � History of antiplatelet, n (%) 1 (0.27) 1 (0.97) 0.339

 � History of anticoagulant, n (%) 8 (2.20) 5 (4.85) 0.148

 � Body mass index (kg/m2) 24.22 (22.59–26.67) 24.97 (22.36–26.71) 0.718

In-hospital complications

 � Postoperative ventriculomegaly, n (%) 31 (8.52) 20 (19.42) 0.002

 � Postoperative intracranial infection, n (%) 47 (12.91) 19 (18.45) 0.155

 � Postoperative stress ulcer, n (%) 59 (16.21) 27 (26.21) 0.021

 � Abnormal liver function, n (%) 51 (14.01) 37 (35.92) <0.001

 � Urinary system infection, n (%) 10 (2.74) 7 (6.79) 0.053

 � Anemia, n (%) 123 (33.79) 62 (60.19) <0.001

 � Pneumonia, n (%) 112 (30.76) 80 (77.67) <0.001

 � Disorders of lipoprotein metabolism, n (%) 52 (14.28) 19 (18.44) 0.299

 � DVT, n (%) 76 (20.87) 59 (57.28) <0.001

 � Anterior circulation aneurysm, n (%) 36 (9.89) 14 (13.59) 0.283

 � Max diameter of aneurysm, mm 5.22 (4.00,7.44) 6.000 (4.50,8.40) 0.021

Laboratory test

(Continued)

https://doi.org/10.3389/fneur.2025.1622819
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tang et al.� 10.3389/fneur.2025.1622819

Frontiers in Neurology 05 frontiersin.org

(129.00–152.00) vs. 143.00 (134.00–151.00), p  = 0.044) between 
unfavorable outcome group and favorable outcome group.

3.2 TyG-i levels and clinical outcome

Table 2 illustrated the association between TyG-i levels and the 
clinical outcome of aSAH patients. In fully adjusted model, the risk of 
unfavorable outcome increased with each increment in TyG-i (Odds 
ratio (OR): 3.474 (1.536–7.855), 95% Confidence Interval (CI): 1.536–
7.855, p = 0.002). When TyG-i was evaluated in quartiles based on the 
distribution, compared with quartile 1 (TyG-i < 8.376), the fully 
adjusted OR was 6.777 and the 95% CI was 1.455–31.557 (p = 0.015). 
Moreover, multivariable-adjusted RCS was presented in Figure 3. This 
figure illustrated that the TyG-i had a linear relationship with 
unfavorable outcome (p = 0.002, p for non-linearity = 0.202).

3.3 Incremental prognostic value of the 
TyG-i

As presented in Table  3, adding the TyG-i to ‘TAPS’ model 
improved the risk reclassification for unfavorable outcome (NRI: 
40.17%, p < 0.001; IDI: 3.24%, p = 0.005).

3.4 The subgroup analysis of TyG-i

A subgroup analysis was further performed to evaluate the 
potential modified effect of predetermined factors on the relationship 
between preoperative TyG-i and clinical outcome. Based on the 
quartiles of TyG-i, patients were categorized into two groups: a high 
TyG-i group, defined as those with TyG-i values greater than 8.804, 
and a low TyG-i group, comprising patients with TyG-i values of 
8.804 or less. As shown in Table 4, the results of the subgroup analysis 
indicated that there were no significant interactions between TyG-i 
and the specified factors. In fact, all p-values for interaction were 
greater than 0.05, suggesting that the prespecified factors did not 
significantly influence the relationship between TyG-i and clinical 
outcomes in this analysis.

3.5 Association between TyG-BMI and 
clinical outcome of aSAH

Baseline characteristics analysis demonstrated that patients in 
unfavorable outcome group had higher levels of TyG-BMI (211.74 
(193.18, 237.81) vs. 225.38 (196.89, 244.74), p = 0.028). Multivariate 
analysis was shown in Supplementary Table 2. After adjusting for all 
potential covariates, logistic regression analysis demonstrated that there 

TABLE 1  (Continued)

Characteristics Outcome p

Favorable outcome Unfavorable outcome

 � TyG 8.72 (8.35–9.15) 9.08 (8.70–9.48) <0.001

 � TyG-BMI 211.74 (193.18–237.81) 225.38 (196.89–244.74) 0.028

 � Preoperative Glu, mmol/L 7.40 (6.51–8.70) 8.63 (7.30–10.50) <0.001

 � Preoperative Urea, mmol/L 4.50 (3.70–5.40) 4.80 (3.90–5.50) 0.313

 � Preoperative Cr, μmol/L 55.00 (46.60–66.20) 53.60 (44.90–65.10) 0.397

 � Preoperative eGFR, ml/min 114.92 (106.33–123.34) 109.57 (100.20–119.45) 0.001

 � Preoperative CO2, mmol/L 22.20 (20.60–23.60) 21.30 (19.50–23.10) 0.011

 � Preoperative ALT, U/L 17.40 (13.00–24.90) 18.40 (13.70–25.90) 0.339

 � Preoperative AST, U/L 20.00 (16.40–25.00) 21.70 (18.00–28.80) 0.018

 � Preoperative TP, g/L 72.50 (69.10–76.10) 73.00 (69.00–76.80) 0.507

 � Preoperative ALB, g/L 42.80 (40.40–44.90) 42.40 (40.90–45.70) 0.696

 � Preoperative GLB, g/L 29.70 (27.20–32.80) 30.00 (26.90–32.80) 0.655

 � Preoperative CHO, mmol/L 4.62 (4.08–5.32) 4.67 (4.08–5.45) 0.274

 � Preoperative CKMb, ng/ml 1.61 (0.97–2.72) 1.98 (1.20–5.31) 0.004

 � Preoperative WBC, 109/L 12.27 (9.79–14.72) 14.75 (12.10–17.94) <0.001

 � Preoperative LY, 109/L 0.92 (0.66–1.27) 0.88 (0.72–1.22) 0.924

 � Preoperative MONO, 109/L 0.37 (0.26–0.51) 0.49 (0.32–0.70) <0.001

 � Preoperative NEUT, 109/L 10.86 (8.44–13.27) 12.97 (10.46–16.11) <0.001

 � Preoperative EO, 109/L 0.01 (0.00–0.01) 0.00 (0.00–0.02) 0.656

 � Preoperative RBC, 109/L 4.51 (4.20–4.83) 4.55 (4.30–4.81) 0.467

 � Preoperative HGB, g/L 140.00 (129.00–152.00) 143.00 (134.00–151.00) 0.044

mFS, modified Fisher scale; SEBES, Subarachnoid Hemorrhage Early Brain Edema Score; IVH, intraventricular hemorrhage; GCS, Glasgow coma score; WFNS, World Federation of 
Neurological Societies; DVT, deep vein thrombosis; TyG, Triglyceride-glucose; Glu, glucose; Cr, creatinine; eGFR, estimated glomerular filtration rate; ALT, alanine transaminase; AST, 
aspartate transaminase; TP, total protein; ALB, albumin; GLB, globulin; CHO, cholesterol; CKMb, creatine kinase isoenzymes; WBC, white blood cell; LY, lymphocyte; MONO, monocyte; 
NEUT, neutrophil; EO, eosinophil; RBC, red blood cell; HGB, hemoglobin. Bold values: p < 0.05.
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was no significant association between TyG-BMI and clinical outcome 
of aSAH patients (OR (95%CI): 1.010 (0.998–1.023), p = 0.088).

4 Discussion

Aneurysmal subarachnoid hemorrhage is widely recognized as a 
life-threatening disease with poor prognosis and high mortality rates 
(15). Therefore, enhancing the prognosis of aSAH prognosis is crucial, 
as it can alleviate the economic burden on both patients and society. 
Several studies have been conducted to identify risk factors associated 
with poor aSAH outcome. The Hunt-Hess grade, surgical method, and 
in-hospital complications have been identified to be associated with 
poor clinical outcome of aSAH patients (16–18). Recently, the 

importance of biomarkers in predicting aSAH prognosis has gained 
increasing attention. In 2019, Ding et al. identified serum neuroglobin 
as a potential predictor of poor aSAH outcome (19). Several peripheral 
blood inflammation and nutritional markers, such as neutrophil-to-
lymphocyte ratio, systemic immune inflammation index, systemic 
inflammation response index, HGB, and prognostic nutritional index 
have been demonstrated to be risk factors of poor prognosis in aSAH 
patients. Moreover, Pesaresi et  al. found the dynamic changes of 
cerebral spinal fluid (CSF) biomarkers might provide a more valuable 
insights into the risk identification of aSAH poor prognosis (20). 
However, few investigations have researched the relationship between 
metabolic markers and aSAH prognosis.

TyG-i, a newly emerging biochemical index calculated from FBG 
and fasting TG, has been identified as a potential indicator of insulin 

FIGURE 2

The comparison of TyG-i between good outcome group and unfavorable outcome group. Compared with good outcome group, unfavorable 
outcome group had a significant higher level of TyG-i (8.72 (8.35–9.15) vs. 9.08 (8.70, 9.48), p < 0.001).

TABLE 2  The association between baseline Tyg level and the risk of unfavorable outcome.

The number of 
events 

(unfavorable 
outcome), n (%)

Crude model Minimally adjusted model Fully adjusted model

OR (95% CI) p OR (95% CI) p OR (95% CI) p

All patients 103 2.690 (1.832–3.950) <0.001 3.445 (1.861–6.376) <0.001 3.474 (1.536–7.855) 0.002

Tyg tertiles

 � Q1 (<8.376) 13 1.0 (Ref) 1.0 (Ref) 1.0 (Ref)

 � Q2 (8.376–8.804) 22 1.984 (1.037–3.797) 0.039 2.589 (0.675–9.924) 0.165 2.125 (0.916–4.930) 0.265

 � Q3 (>8.804–9.268) 28 4.045 (2.169–7.543) <0.001 4.714 (1.396–15.924) 0.013 4.529 (1.076–19.069) 0.039

 � Q4 (>9.268) 40 6.860 (2.022–23.281) 0.002 6.777 (1.455–31.557) 0.015

Crude model: age, gender.
Minimally adjusted model: age, gender, Grabe, SEBES, IVH, GCS, WFNS, Hunt Hess score, loss of consciousness, treatment modality, hypertension, history of heart disease, hyperlipemia, 
body mass index, postoperative ventriculomegaly, abnormal liver function, anemia, pneumonia, and DVT.
Fully adjusted model: age, gender, Grabe, SEBES, IVH, GCS, WFNS, Hunt Hess score, loss of consciousness, treatment modality, hypertension, history of heart disease, hyperlipemia, body 
mass index, postoperative ventriculomegaly, abnormal liver function, anemia, pneumonia, DVT, max diameter of aneurysm, preoperative Glu, preoperative urea, preoperative eGFR, 
preoperative AST, preoperative ALB, preoperative CHO, preoperative CKMb, preoperative WBC, preoperative MONO, preoperative NEUT, and preoperative HGB.
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resistance (IR) (21). Compared to traditional assessment tools such as 
homoeostasis model assessment of IR (HOMA-IR) or the 
hyperinsulinemia-euglycemic clamp test, TyG-i is a more reliable, 
easily available, and straightforward surrogate for IR. Previous studies 
have identified that IR plays an important role in the development of 
heart disease and deterioration of renal function (22). Consequently, 
TyG-i was initially recognized as predictive factor for prognosis of 
cardiovascular disease or renal disease. Ji et al. found high TyG-I levels 
was associated with the occurrence of acute kidney injury and poor 
renal function in heart failure (HR) patients (7). In 2019, Park et al. 
demonstrated that TyG-i might promote the development of coronary 
artery calcification (23). Several researches also showed that TyG-i 
may be  a critical prognosis predictive factor in arterial stiffness, 
in-stent restenosis and acute coronary syndrome (24). In recent years, 
more and more studies began to explore the correction between TyG-i 
and cerebrovascular disease. In 2023, a meta-analysis revealed TyG-i 
might influence the functional outcome and recurrence rate in 
ischemic stroke patients (25). However, limited studies were 
performed to explore the association between TyG-i and prognosis 
of aSAH.

The aim of this research is to explore the correlation between 
TyG-i and aSAH prognosis. Based on LongTEAM registry study 
(Registration No. NCT04785976), we found patients with unfavorable 
outcome tended to have higher levels of preoperative TyG-i. After 
adjusting for all potential confounding factors, multivariate logistic 
analysis illustrated preoperative TyG-i was significantly associated 
with aSAH prognosis. Yin et  al. revealed TyG-i correlated with 
all-cause mortality of critical ill hemorrhagic stroke (including 
intracranial hemorrhage and SAH) (10). Xie et  al. conducted a 
retrospective study recruiting 134 patients with SAH and identified 
higher TyG-i might be associated with poor clinical outcome (26). 
Hou et  al. found elevated TyG-i may increase the risk of poor 
functional outcome of aSAH (27). These findings are in accordance 
with the results of our research. Moreover, compared with previous 
studies, the present study systematically collected data on in-hospital 
complications and incorporated these complications into the adjusted 
model. This approach might effectively diminishes the influence of 
confounding factors when investigating the association between the 
TyG-i and clinical outcome in patients with aSAH. Additionally, 
another TyG related index, TyG-BMI was analyzed in this investigation 
as well.

There are some potential theories for the underlying mechanism 
behind the association of IR and aSAH prognosis. EBI is an important 
pathophysiologic process following aSAH, which is able to influence 
the prognosis significantly (28). According to Zipfel et al., EBI can 
be classified into two stages: primary injury and secondary injury (1). 
After aneurysm rupture, the primary injury begins immediately. The 
hemorrhagic blood extravasates into subarachnoid areas, ventricles, 
and parenchyma, causing a rapid rise of intracranial pressure (ICP) 
(29). Meanwhile, blood and hemoglobin breakdown products 
extravasates into brain and induces secondary injury (30). The 
secondary injury includes brain edema, microcirculatory 
dysfunction, blood–brain-barrier disruption, neuroinflammation, 
and oxidative cascades (31–35). Based on the findings of previous 
studies, we considered IR might promote the development of several 
pathological processes among primary and secondary injury. On one 
hand, IR was considered to be correlated with platelet dysfunction 
and endothelial cell-dependent vasodilation, like vascular cell 
adhesion molecule-1 and E-selectin. These proteins were able to 
elevate permeability of the vascular endothelia, which might increase 
hemorrhage volume and aggravate the primary injury (36). On the 
other hand, researchers discovered that IR prevented glucose from 
entering into neurons for oxidative phosphorylation and inhibited 
polarization of macrophages, potentially inducing the development 
of inflammation during acute phase of aSAH, which might increase 
the risk of unfavorable clinical outcome (37, 38). Alongside the 
inflammation, IR is also reported to be associated with oxidative 
stress in brain tissue. Chabowski et al. summarized that IR increased 
free fatty acids and promoted glucotoxicity, resulting in the 
overproduction of reactive oxygen species (ROS) (39). In aSAH, 
excessive ROS production breaks the balance of oxidant and 
antioxidant composition, causing oxidative stress and exacerbating 
brain injury (1). Subsequently, a higher TyG-i reflects a more severe 
IR status, which aggravates the development of EBI and leads to a 
poor clinical outcome.

Notably, we also analyzed the association between prognosis and 
TyG-BMI. After adjusting for all confounding factors, no significant 
correlation was observed between TyG-BMI and the prognosis of 

FIGURE 3

The association of TyG-i index and unfavorable outcome. Age, 
gender, Grabe, SEBES, IVH, GCS, WFNS, Hunt Hess score, loss of 
consciousness, treatment modality, hypertension, history of heart 
disease, hyperlipemia, body mass index, postoperative 
ventriculomegaly, abnormal liver function, anemia, pneumonia, DVT, 
max diameter of aneurysm, preoperative Glu, preoperative urea, 
preoperative eGFR, preoperative AST, preoperative ALB, preoperative 
CHO, preoperative CKMb, preoperative WBC, preoperative MONO, 
preoperative NEUT, and preoperative HGB.

TABLE 3  Reclassification and discrimination statistics for unfavorable 
outcome of aSAH by Tyg at baseline.

Continuous NRI, % IDI, %

Estimate 
(95% CI)

p value Estimate 
(95% CI)

p value

SAH

Conventional 

model

Conventional 

model + Tyg 

(continuous)

40.17 (18.75–

60.59)

<0.001 3.24 (0.95–

5.52)

0.005

Bold values: p < 0.05.
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TABLE 4  The subgroup analysis for clinical outcome of aSAH patients.

Variables n (%) TyG-i > 8.804 TyG-i ≤ 8.804 OR (95%CI) p p for interaction

All patients 467 (100.00) 165/233 199/234 2.34 (1.48–3.70) <0.001

Gender 0.113

 � Female 277 (59.31) 96/140 120/137 3.24 (1.74–6.02) <0.001

 � Male 190 (40.69) 69/93 79/97 1.53 (0.76–3.05) 0.230

Age older than 65 years 0.618

 � No 360 (77.09) 139/181 158/179 2.27 (1.28–4.03) 0.005

 � Yes 107 (22.91) 26/52 41/55 2.93 (1.30–6.61) 0.010

Graeb score 0.406

 � 0–4 433 (92.72) 156/210 191/223 2.07 (1.27–3.36) 0.003

 � 5–12 34 (7.28) 9/23 8/11 4.15 (0.86–19.92) 0.076

SEBES score 0.896

 � 0–2 249 (53.32) 88/127 103/122 2.40 (1.30–4.46) 0.005

 � 3–4 218 (46.68) 77/106 96/112 2.26 (1.14–4.46) 0.019

mFS Score 0.421

 � 0–2 169 (36.19) 62/76 82/93 1.68 (0.72–3.96) 0.233

 � 3–4 298 (63.81) 103/157 117/141 2.56 (1.48–4.43) <0.001

WFNS score 0.225

 � 1–3 361 (77.30) 141/174 174/187 3.13 (1.59–6.18) <0.001

 � 4–5 106 (22.70) 24/59 25/47 1.66 (0.76–3.59) 0.200

Hunt Hess score 0.156

 � 1–3 420 (89.94) 158/207 193/213 2.99 (1.71–5.24) <0.001

 � 4–5 47 (10.06) 7/26 6/21 1.09 (0.30–3.92) 0.900

IVH 0.860

 � No 187 (40.04) 70/84 94/103 2.09 (0.86–5.10) 0.106

 � Yes 280 (59.96) 95/149 105/131 2.30 (1.33–3.95) 0.003

Loss of consciousness 0.187

 � No 322 (68.95) 123/153 157/169 3.19 (1.57–6.49) 0.001

 � Yes 145 (31.05) 42/80 42/65 1.65 (0.84–3.23) 0.143

Treatment modality 0.714

 � Endovascular 

intervention

213 (45.61) 85/110 93/103 2.74 (1.24–6.03) 0.013

 � Surgical clipping 254 (54.39) 80/123 106/131 2.28 (1.29–4.04) 0.005

Current smoking 0.270

 � No 387 (82.87) 133/186 169/201 2.10 (1.28–3.45) 0.003

 � Yes 80 (17.13) 32/47 30/33 4.69 (1.23–17.82) 0.023

Current drinking 0.786

 � No 416 (89.08) 147/204 181/212 2.26 (1.39–3.69) 0.001

 � Yes 51 (10.92) 18/29 18/22 2.75 (0.74–10.27) 0.132

Diabetes 0.376

 � No 441 (94.43) 154/216 193/225 2.43 (1.51–3.91) <0.001

 � Yes 26 (5.57) 11/17 6/9 1.09 (0.20–6.01) 0.920

Hypertension 0.472

 � No 222 (47.54) 74/92 114/130 1.73 (0.83–3.61) 0.142

 � Yes 245 (52.46) 91/141 85/104 2.46 (1.34–4.50) 0.004

(Continued)

https://doi.org/10.3389/fneur.2025.1622819
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tang et al.� 10.3389/fneur.2025.1622819

Frontiers in Neurology 09 frontiersin.org

aSAH. This phenomenon might be explained by the ‘obesity paradox’ 
(40). Although obesity is generally considered detrimental in most 
diseases, several studies suggest it may play a protective role in aSAH 
patients (40). BMI is an objective indicator of obesity. Rinaldo et al. 
found high BMI might decrease the risk of unfavorable function 
outcome for aSAH patients treated with surgical clipping (41). In 
another retrospective study, elevated BMI was identified to decrease 
the risk of delayed infarction (42). Hence, as a combination of TyG-i 
and BMI, the relationship between TyG-BMI and aSAH prognosis 
still requires further validation. This finding reveals that compared 
with TyG-BMI, TyG-i not only demonstrates greater accessibility but 
also exhibits a more definitive correlation with prognosis of aSAH, 
suggesting its superior suitability for clinical application.

There are some limitations in our study. First, this was single-
center research, which might induce potential bias. Second, due to 
the lack of data, such as preoperative FBG and TG, we excluded a 
large number of patients. The small sample size limited the subgroup 
analysis and future research. Third, some parameters, such as diet 
information, metabolic syndrome, diabetes management, and 
ongoing pharmacological treatments were not collected. These data 
could influence TyG-i and might be potential confounding factors. 
Fourth, TyG-i was only measured in acute phase (0–3 days after 
aneurysm ruptures). TyG-i measured in different stages are failed to 
be obtained, which limited in-depth analysis. Additionally, except 
TyG-i and TyG-BMI, other IR markers are also needed to be analyzed 
to find more suitable marker for prognostic predictive. Fifth, the 
dynamic changes of TyG-i during hospitalization are lost. In 2025, 
Pesaresi et  al. highlighted the importance of monitoring CSF 
biomarkers over time for patients with aSAH (20). Hence, future 
investigations are still required to confirm the prognostic value of 
longitudinal monitoring TyG-i in patients with aSAH. Finally, 
we only applied ‘TAPS’ model to analyze whether TyG-i can increase 
model predictive ability. According to Hao et al., there were 6 exiting 
models to predict the prognosis of aSAH (14). Due to the included 
factors, enrollment criteria, and research endpoint, we  failed to 
perform deeper analysis into the other 5 models. We confirm that a 
multi-center, prospective study with a large sample and adequate 
parameters is needed to strengthen our conclusion.

5 Conclusion

Our research identified that TyG-i could be  considered as a 
potential prognostic indicator for patients with aSAH. Monitoring 

TyG-i may be  beneficial for aSAH patients. A large randomized 
controlled trial is needed to identify whether management of TyG-i 
can improve clinical outcome.
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Glossary

TyG-i - Triglyceride-glucose index

aSAH - Aneurysmal subarachnoid hemorrhage

EBI - Early brain injury

CT - Computed tomography

CTA - Computed tomography angiography

DSA - digital subtraction angiography

WFNS - World Federation of Neurological Societies

mFS - Modified Fisher scale

SEBES - Subarachnoid Hemorrhage Early Brain Edema Score

GCS - Glasgow coma score

IVH - Intraventricular hemorrhage

TG - Triglyceride

FBG - Fasting blood glucose

mRS - Modified Rankin Scale

DVT - Deep vein thrombosis

GLU - Glucose

eGFR - Estimated glomerular filtration rate

AST - Aspartate transaminase

ALB - Albumin

CHO - cholesterol

CKMb - Creatine kinase isoenzymes

HGB - hemoglobin

RCS - Restricted cubic spline

NRI - Net reclassification improvement

IDI - Integrated discrimination improvement

NLR - Neutrophil-lymphocyte ratio

IR - Insulin resistance

HOMA-IR - Homoeostasis model assessment of IR

SAH - Subarachnoid hemorrhage

ICP - Intracranial pressure

ROS - Reactive oxygen specie
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