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Carotid artery dissection 
recanalization: imaging 
modalities, influencing factors, 
and therapeutic perspectives
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Carotid artery dissection (CAD) is a rare cause of ischemic stroke, and its prognosis is 
often poor. If not diagnosed and treated in time, it may lead to serious complications 
such as intracranial stroke and even death. Accurate diagnosis of CAD, formulation 
of reasonable treatment plans, and prediction of vascular recanalization are crucial 
for improving the prognosis of patients. However, there is currently a lack of large-
scale randomized controlled trials to provide guidance for clinical practice, and the 
industry has not yet reached a unified consensus on the standardized diagnosis and 
treatment of CAD. Therefore, this article reviews the imaging examination methods 
for recanalization of CAD, the analysis of related factors affecting recanalization, 
and the methods of recanalization treatment, and combines the latest research 
progress to provide a perspective on the recanalization of carotid artery dissection, 
aiming to provide a reference basis for the precise diagnosis and treatment of 
CAD recanalization.
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1 Introduction

Carotid artery dissection (CAD) is a clinically significant cerebrovascular disease 
characterized by the tearing of the intima or rupture of the carotid artery wall (including the 
internal carotid artery and vertebral artery), leading to the formation of intramural hematoma. 
This pathological process can further cause severe complications such as intraluminal 
thrombosis, vascular stenosis, occlusion, or pseudoaneurysm (1). Notably, CAD accounts for 
only about 2% of all ischemic strokes (2), but its proportion significantly increases to 15%-25% 
in young and middle-aged stroke patients under 50 years old (3–5). Epidemiological studies 
show that the overall incidence of CAD is approximately 4.69 per 100,000 person-years, with 
the incidence of internal carotid artery dissection and vertebral artery dissection being 2.43 
and 2.01 per 100,000 person-years, respectively (6). This disease is characterized by high 
mortality, high disability rate, and high recurrence rate, making it a significant public health 
issue threatening the health of the nation.

Current research indicates that the majority of CAD cases are spontaneous, but it is worth 
noting that approximately 90% of traumatic dissections are caused by minor trauma, including 
neck massage, weightlifting, yoga, childbirth, and other daily activities (7). Additionally, 
multiple studies have identified various potential risk factors, such as recent infection, 
pregnancy status, oral contraceptive use, smoking history, migraine, elongated styloid process, 
vascular anatomical variations, and genetic susceptibility (5, 8–10). Interestingly, recent studies 
have even found an association between higher education levels and CAD-related ischemic 
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stroke in young people (11). However, the relationship between these 
factors and vascular recanalization after CAD remains to be further 
confirmed. In clinical practice, due to the relative rarity of CAD, the 
existing evidence mainly comes from case reports and case series 
studies, lacking the support of large-scale randomized controlled 
trials, which has led to the absence of a unified consensus on diagnosis 
and treatment at the international level (7). With the rapid 
development of modern imaging techniques, the detection rate of 
CAD has significantly increased, which poses higher requirements for 
the diagnostic and therapeutic decision-making abilities of clinicians 
(12). Currently, the commonly used treatment strategies for CAD 
include intraluminal thrombolysis, antiplatelet/anticoagulant drug 
therapy, and endovascular interventional therapy. However, clinical 
observations have found that some patients have an unsatisfactory 
response to the existing treatment regimens (1). As a key indicator for 
evaluating treatment efficacy, the recanalization rate is influenced by 
multiple factors, but systematic research on the influencing factors of 
recanalization after CAD is still limited.

Based on the current research status, this article aims to 
comprehensively analyze the existing evidence on the imaging 
examination methods, influencing factors, and treatment decisions for 
CAD recanalization, and combine the latest research results to provide 
a perspective on CAD recanalization, in order to optimize clinical 
practice and guide future research (Figure 1).

2 Imaging examination for cervical 
artery dissection (CAD) 
revascularization

Cervical artery dissection has a relatively low incidence in the 
general population, but its actual prevalence may be higher due to 
asymptomatic or mildly symptomatic patients who do not seek 
medical attention. Between 2002 and 2020, the incidence of CAD 
increased nearly fourfold over 19 years, which may reflect 
advancements in imaging technology (6, 13), enabling more precise 
diagnosis of CAD patients through imaging modalities. This section 
describes four mainstream imaging diagnostic methods for CAD and 
their respective advantages, limitations, and clinical considerations.

2.1 CT angiography (CTA)

Cervical artery dissection has become one of the preferred 
imaging modalities for CAD diagnosis due to its rapid acquisition 
speed, high spatial resolution, and wide applicability (14). CTA 
demonstrates superiority over MRA in visualizing intimal flaps, 
dissecting aneurysms, and vascular lumen stenosis (15)(Figure 2).
Particularly, the application of photon-counting CTA enables more 
precise depiction of dissection flaps, false lumens, and 
pseudoaneurysms (16). Given the smaller diameter of vertebral 
arteries and their proximity to cervical bony structures, CTA exhibits 
enhanced diagnostic performance for vertebral artery dissection 
(VAD) (17, 18), with sensitivity and specificity comparable to Digital 
subtraction angiography (DSA) (19). Furthermore, CT perfusion 
imaging (CTP) provides hemodynamic information about distal 
intracranial circulation in acute dissection cases, aiding patient 
selection for mechanical endovascular reperfusion therapy, leading 

to increasingly combined use of CTP with CTA in auxiliary diagnosis 
(12). The primary disadvantages of CTA involve radiation exposure 
and contrast agent administration, necessitating cautious use in 
patients with contrast allergies, renal insufficiency, as well as children 
and pregnant women (20). Additionally, inaccurate contrast injection 
timing and the presence of metallic implants can compromise image 
quality and diagnostic accuracy.

2.2 Magnetic resonance angiography (MRA)

Magnetic resonance angiography represents a non-invasive multi-
parametric imaging technique with high soft tissue and spatial 
resolution, lacking radiation exposure, and serving as a crucial modality 
for CAD evaluation. MRA, in combination with axial fat-suppressed 
T1-weighted imaging, better identifies small intramural hematomas 
(21). However, MRA exhibits lower sensitivity in the early stages of CAD 
(22, 23). Diffusion-weighted imaging (DWI) application compensates 
for this limitation, with studies demonstrating DWI's capability to 
rapidly detect abnormalities during the initial phase of CAD and 
effectively assess intramural hematoma length (24, 25). Compared to 
DSA, MRA achieves a diagnostic sensitivity of 95% for cervical artery 
dissection, although its sensitivity for vertebral artery dissection remains 
relatively lower (26, 27). Additional studies have reported that 
susceptibility-weighted imaging (SWI) represents a highly sensitive 
imaging sequence with advantages in diagnosing vertebral artery 
dissection (28, 29). Nevertheless, MRI possesses certain limitations and 
contraindications, including absolute contraindications for patients with 
cardiac pacemakers, metallic implants, and claustrophobia, along with 
high costs, prolonged examination times, and susceptibility to artifacts, 
restricting its widespread clinical application.

2.3 High-resolution magnetic resonance 
imaging (HR-MRI)

High-resolution magnetic resonance imaging vessel wall imaging 
technology, based on black-blood imaging sequences, employs 
presaturation pulses to suppress intraluminal blood flow signals, 
enabling clear visualization of cervical artery wall and lumen structures, 
significantly improving the detection rate of intramural hematomas (22, 
30–33) (Figure 3). Research indicates that high-resolution MRI vessel 
wall imaging not only clearly visualizes collapsed vascular walls with 
occlusive thrombi and occlusion lengths in cases of cervical artery 
occlusion but also demonstrates better consistency with DSA in 
detecting tandem lesions and chronic occlusions of the internal carotid 
artery (ICA) (34, 35). Moreover, high-resolution vessel wall imaging 
holds significant value in early risk assessment and prognostic follow-up 
of CAD patients. Wu et  al. (36) found that irregular surfaces and 
intraluminal thrombi on high-resolution imaging correlate with stroke 
occurrence in patients with cervical-carotid artery dissection (CCAD). 
Lee et al. (37) demonstrated that HR-MRI enables tracking of hematoma 
absorption processes and predicts dissection vessel recanalization based 
on changes in intramural hematoma signals. Hashimoto et  al. (33) 
further emphasized that the temporal sequence signal characteristics of 
T1-weighted vessel wall imaging for intramural hematomas may serve 
as diagnostic imaging biomarkers for spontaneous healing within 3 
months post-VAD onset. Additional studies report that HR-MRI vessel 
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wall imaging outperforms DSA in diagnosing vertebral artery dissection 
(38). Given HR-MRI's superior visualization of vessel walls and 
demonstrated prognostic follow-up advantages, it is currently considered 
the most promising imaging modality for CAD diagnosis (39).

2.4 Ultrasound (US)

Head and neck vascular US represents a safe, economical, and 
non-invasive examination method, although its accuracy 

significantly depends on operator experience and correlates with 
lesion severity and dissection location. Carotid ultrasonography 
can observe the lumen and wall structures, which can reveal signs 
such as the "dual lumen sign," "intramural hematoma," and "intimal 
flap"(Figure 4).US frequently serves in follow-up evaluations to 
identify vascular recanalization and remodeling. During the early 
stages of CAD (particularly within the first 4 weeks), US proves 
crucial for assessing clinical status and monitoring vascular 
recanalization (40). Doppler US effectively evaluates in-stent 
restenosis post-carotid stenting, with pre-discharge US 

FIGURE 1

The process of recanalization for carotid artery dissection.
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examinations confirming stent patency (41). Research suggests that 
US monitoring significantly aids in identifying retrograde 
thrombosis formation and recanalization status in internal carotid 
artery dissections (42). Reported diagnostic sensitivities for 
vertebral artery dissection reach 92%, while for cervical artery 
dissections causing only localized symptoms, sensitivity decreases 
to 69% (43), indicating potential missed diagnoses of mild stenotic 
dissections. However, for severe stenotic dissections inducing 
hemodynamic changes, US achieves sensitivities as high as 96%. 
Therefore, for clinically concerning cases with negative US results 
but persistent clinical suspicion, further MRA or CTA examinations 
are recommended.

2.5 Digital subtraction angiography (DSA)

Long regarded as the gold standard for CAD diagnosis, DSA 
offers high spatial and temporal resolution, enabling direct 
visualization of luminal structures and dynamic observation of 
pathological vascular blood flow patterns, as well as evaluating 
collateral circulation and hemodynamic compensation (Figure 5). 
However, as an invasive procedure, DSA entails high costs, 
prolonged durations, and lacks assessment of vascular wall 
structures. In cases of subadventitial dissections without 
significant luminal narrowing, DSA may yield false negatives (44). 
Current guidelines recommend avoiding DSA as a first-line 

FIGURE 2

Cervical artery dissection showing arterial dissection-related vascular changes (right internal carotid artery). (A,B) Axial images of the right internal 
carotid artery. The structure indicated by the arrow represents the "double lumen sign," where the intimal flap divides the vascular lumen into two 
parts. (C,D) Coronal and sagittal images of the right internal carotid artery, respectively. The structure indicated by the arrow represents the "double 
lumen sign".
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diagnostic tool, reserving it for patients with discordant MRA and 
CTA findings (1).

3 Analysis of factors influencing 
cervical artery dissection 
revascularization

Vascular recanalization closely correlates with the prognosis of 
CAD patients. As a key evaluation metric in CAD treatment reflecting 
therapeutic efficacy, improving vascular recanalization rates remains 
a clinical focus. This section explores and analyzes factors associated 
with vascular recanalization imaging, providing a basis for 
personalized patient management.

3.1 Hypertension

Hypertension has long been recognized as an independent risk 
factor for CAD (45), although its impact on CAD vascular 
recanalization remains controversial. A large-scale multicenter 
cohort study on patients with Cervical Artery Dissection and 
Ischemic Stroke Patients (CADISP) conducted in 2011 found that the 
prevalence of hypertension was higher among patients with CAD 
(46). Numerous studies (47–49) indicate that hypertension correlates 
with lower vascular recanalization rates, hypothesizing that elevated 
blood pressure accelerates endothelial injury, reduces arterial wall 
elasticity and permeability, promotes atherosclerosis, increases 
thrombus burden, and hinders complete vascular recanalization. 
Wadhwa et al. (49) noted that while hypertension constitutes a CAD 

FIGURE 3

High-resolution magnetic resonance imaging showing arterial dissection-related vascular changes. (A,B) Axial images of the left internal carotid artery. 
The crescent-shaped high signal indicated by the arrow represents an "intramural hematoma." (C,D) Coronal and sagittal images of the left internal 
carotid artery, respectively. The high-signal structure indicated by the arrow represents an "intramural hematoma".
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risk factor, it is not the sole determinant influencing recanalization, 
with results potentially confounded by age-related factors as 
hypertensive patients tend to be  older. Conversely, other studies 
(50–53) yielded contradictory results, showing no significant 
correlation between hypertension and vascular recanalization rates, 
possibly due to younger patient inclusion compared to studies 
reporting such associations. Objective validation through further 
research remains necessary to clarify hypertension's role in 
CAD recanalization.

3.2 Time

Revascularization in cervical artery dissection typically occurs 
during the early stages post-symptom onset, with an average time to 
complete or near-complete recanalization approximately 4.7 months 
(54). CAD represents a highly dynamic process, exhibiting observable 
imaging changes within short timeframes, including stenosis 
regression and occlusion recanalization in most cases (22, 55). 
Research defines the acute phase as within 14 days post-arterial 
dissection onset (22, 56), with the highest risk of recurrent transient 
ischemic attacks or strokes within 14 days (54, 57). Huang et al. (51) 
identified time from onset to presentation ≤14 days as a critical factor 
for complete vascular recanalization, with most CAD patients 
achieving favorable outcomes post-treatment. Liu et al. (34) found 
that initial ischemic events within 3 months serve as independent 
predictors of carotid artery occlusion recanalization, corroborating 
the correlation between onset timing and vascular recanalization, 
although further large-scale cohort randomized trials are required 
for confirmation.

3.3 Intramural hematoma

Intramural hematomas frequently occur in CAD patients' vessels. 
Huang et  al. (51) demonstrated a positive correlation between 
intramural hematomas and complete vascular recanalization, with 
higher complete recanalization rates observed in hematoma-type 
CAD patients. Some studies suggest that stabilized intramural 
hematomas gradually transforming into fibrotic tissue during the 

acute phase result in lower vascular remodeling potential and 
reduced recanalization likelihood (58). Vicenzini et al. (42) posited 
that retrograde thrombosis in the internal carotid artery may relate 
to persistent occlusions and partial recanalization, with intracarotid 
thrombus remodeling potentially extending over 2 years. Additional 
research indicates that changes in intramural hematomas reflect early 
dynamic alterations in dissections, aiding in predicting vascular 
recanalization outcomes (33, 59).

3.4 Vascular occlusion

Vascular occlusions caused by cervical artery dissections 
significantly correlate with increased stroke risks, adverse functional 
outcomes, and irreversible vascular changes (60–62), rendering the 
relationship between vascular occlusion and recanalization rates 
highly pertinent. A 2008 prospective multicenter study investigating 
predictors of Symptomatic Intracranial Atherosclerotic Disease 
(sICAD) recanalization found that complete occlusions reduced the 
likelihood of complete recanalization (53). Huang et al. (51) reached 
similar conclusions, identifying vascular occlusion as a risk factor for 
incomplete recanalization, with lower complete recanalization rates 
observed in occluded patients. Zhou et al. (63) found that true lumen 
stenosis <90% correlated with complete recanalization. Other studies 
reported lower recanalization rates in occluded compared to stenotic 
vessels (3, 55), with partial occlusions exhibiting approximately double 
the recanalization rate of complete occlusions (64, 65). Some scholars 
observed that occluded or near-occluded vessels at presentation rarely 

FIGURE 5

Digital subtraction angiography reveals vascular changes due to 
arterial dissection in the left internal carotid artery. The DSA image 
clearly demonstrates evidence of dissection in the left internal 
carotid artery, with the arrow pointing to a structure consistent with 
the 'flame sign,' characteristic of this condition.

FIGURE 4

Arterial dissection is observed in the left vertebral artery. The 
posterior wall of the left vertebral artery shows an intramural 
hematoma, resulting in luminal narrowing, with a residual diameter 
of 1.9 mm and an original diameter of 4.5 mm.
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recanalize (54), while Arauz et  al. (50) found no differences in 
complete recanalization rates among completely occluded vessels, 
suggesting substantial challenges in recanalizing fully occluded 
vessels. Overall, vascular occlusion significantly correlates with 
reduced recanalization rates.

3.5 Treatment modalities

Antithrombotic therapy represents the primary treatment for 
CAD, although debates persist regarding the comparative 
effectiveness of anticoagulation versus antiplatelet therapy in CAD 
vascular recanalization. Some scholars argue that anticoagulation 
may expand intramural hematomas, hindering vascular 
recanalization (58). Conversely, Nedeltchev et al. (53) observed a 
trend toward higher complete recanalization rates in anticoagulated 
patients, albeit statistically insignificant. A multicenter prospective 
randomized focus trial Carotid Artery Dissection in Stroke study 
(CADISS) found no significant difference in recanalization rates at 1 
year in patients with coronary artery disease treated with 
anticoagulation and antiplatelet therapy (66), consistent with Huang 
et al.'s findings (51). These results suggest that both antithrombotic 
and anticoagulant treatments serve as viable options with low 
complication risks in CAD patients. Considering the increased 
bleeding risks associated with anticoagulation, antithrombotic drug 
selection should follow individualized treatment protocols tailored to 
patient-specific conditions.

3.6 Local symptoms and signs

Nedeltchev et al. (53) found that CAD patients presenting with 
local symptoms and signs (including head and neck pain, Horner 
syndrome, cranial nerve palsies) exhibited significant correlations 
with vascular recanalization rates. Huang et al. (51) noted a trend 
toward higher complete recanalization rates in CAD patients 
presenting solely with local symptoms, although statistically 
insignificant. Additional research (46, 52) identified obesity as a factor 
contributing to poor CAD outcomes, potentially due to concomitant 
hypertension and hyperlipidemia exacerbating vascular endothelial 
injury in obese patients.

3.7 Genetic factors

The first genome-wide association study on CAD revealed that the 
Phosphatase and Actin Regulator 1(PHACTR1) gene's rs9349379-A 
allele associated with increased risks of coronary artery dissection and 
hypertension (67). Le Grand et  al. (68) employed Mendelian 
randomization analysis to explore causal relationships between 
vascular risk factors (including blood pressure, lipids, diabetes) and 
CAD risks/recurrences, finding that genetically predicted higher 
systolic and diastolic pressures correlated with increased CAD risks, 
while genetic proxies for antihypertensive beta-blockers reduced CAD 
risks (69). These findings underscore the importance of monitoring 
blood pressure in all CAD patients and recommend beta-blocker 
therapies (69), suggesting that genetic factors may represent a 
potentially crucial determinant influencing CAD recanalization.

4 Decision-making in cervical artery 
dissection revascularization therapy

Current treatment options for cervical artery dissection 
encompass intravenous thrombolysis, antiplatelet and anticoagulant 
therapies, endovascular interventional treatments, or surgical 
interventions, although clear boundaries between these therapeutic 
approaches remain undefined.

4.1 Intravenous thrombolysis

As an effective method for treating acute ischemic strokes, 
intravenous thrombolysis historically aimed to recanalize occluded 
vessels. However, thrombolytic therapy increases the risk of 
intracerebral hemorrhage. Although some studies have confirmed the 
safety of intravenous thrombolysis in CAD-induced acute ischemic 
stroke, the evaluation of its efficacy is still controversial. Two meta-
analyses found that CAD-related stroke patients receiving intravenous 
thrombolysis exhibited safety profiles comparable to ischemic strokes 
from other causes, without increased risks of symptomatic intracranial 
hemorrhage (70, 71). Numerous observational studies reached similar 
conclusions (72–74). Regarding whether intravenous thrombolysis 
improves arterial outcomes in CAD patients, current research findings 
remain inconsistent. Engelter et  al. (72) found no significant 
advantages of intravenous thrombolysis over non-thrombolytic 
treatments in CAD-related stroke patients. However, secondary 
analyses of the STOP-CAD study data revealed significant associations 
between IVT use and functional independence at 90 days in CeAD-
induced AIS patients, suggesting improved functional outcomes with 
IVT (75). Previous studies also indicated similar efficacies of 
intravenous thrombolysis in CAD-related acute ischemic strokes 
compared to strokes from other causes. Future large-scale randomized 
controlled trials are necessary to guide clinical decision-making.

4.2 Anticoagulation and antiplatelet 
therapies

Approximately 85% of ischemic strokes in CAD result from 
arterial-arterial embolism (76), prompting routine antithrombotic or 
anticoagulant therapies to mitigate thromboembolic risks. Substantial 
data support the safety and efficacy of anticoagulant and antiplatelet 
treatments in CAD patients, although consensus on therapeutic 
selection and duration remains elusive. Two multicenter randomized 
controlled trials, including CADISS and TREAT-CAD studies, 
compared the efficacies of antiplatelet and anticoagulant therapies. 
The CADISS study revealed no significant differences in stroke risk 
prevention within 3 months between antiplatelet and anticoagulant 
treatments in CAD patients, despite higher stroke frequencies in the 
antiplatelet group and one major bleeding event in the anticoagulant 
group (77). One-year follow-ups showed no differences in recurrence 
or recanalization rates among CAD patients (66). The TREAT-CAD 
study failed to demonstrate the non-inferiority of aspirin over 
vitamin K antagonists, with all ischemic strokes occurring in the 
aspirin group and the sole major bleeding event in the VKA group, 
highlighting the importance of early antithrombotic therapy 
initiation in CAD management (78). These studies suggest that both 
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antithrombotic and anticoagulant treatments represent viable options 
in CAD patients with low complication risks. Janquli et  al. (79) 
reached similar conclusions, demonstrating favorable clinical and 
anatomical outcomes with both treatments, without significant 
differences between them. Furthermore, increasing evidence suggests 
that combinations of aspirin or clopidogrel may more effectively 
prevent early recurrent stroke risks (66). Wadhwa et al. (49) found 
potential benefits of triple therapy (dual antiplatelet therapy and 
heparin) in promoting vascular recanalization during the early stages 
of dissection.

The optimal duration of antithrombotic therapy remains 
controversial and requires further exploration through more 
randomized controlled studies. A multicenter, observational, 
retrospective international study (STOP-CAD study) found that 
anticoagulation therapy did not have a significant advantage in 
reducing the risk of ischemic stroke, but it might be beneficial in 
patients with occlusive dissection. 87% of ischemic stroke events 
occurred within 1 month of dissection diagnosis. If anticoagulation 
therapy is chosen, switching to antiplatelet therapy within 180 days is 
reasonable (80). Pezzini et  al. (81) compared the risk of ischemic 
stroke in patients who stopped and continued antithrombotic therapy. 
The results suggested that stopping antithrombotic therapy after 6 
months did not increase the risk of cerebral ischemia during the 
follow-up period. Wadhwa et al. (49) demonstrated that long-term use 
of antiplatelet drugs (>6 months) or anticoagulation therapy did not 
affect recanalization status.

Current guidelines recommend anticoagulation for CAD patients 
with high-risk factors such as severe stenosis/occlusion or intraluminal 
thrombus formation and low bleeding risks, while favoring antiplatelet 
therapy for patients with higher bleeding risks. Antithrombotic 
therapies typically extend for 3-6 months, although whether to 
prolong treatment beyond 6 months should be individually determined.

4.3 Endovascular intervention or surgery

Endovascular interventional therapy or surgical treatment also 
represents crucial approaches for cervical artery dissection (CAD) 
recanalization. Multiple studies (82–85) have compared the safety and 
efficacy of endovascular treatments versus intravenous thrombolysis 
in CAD-related acute ischemic strokes, demonstrating that 
endovascular therapies (including mechanical thrombectomy, 
angioplasty, and/or stent placements) exhibit better outcome trends, 
higher recanalization rates, and do not increase risks of symptomatic 
intracranial hemorrhage or early mortality. However, a multinational 
prospective cohort study revealed that although endovascular 
treatments achieved higher complete recanalization rates, they did not 
demonstrate superior functional outcomes compared to intravenous 
thrombolysis (IVT) in CAD patients with acute ischemic stroke (AIS) 
and large vessel occlusion (LVO) (83).

Additional scholars (86–88) independently evaluated the safety 
and efficacy of endovascular thrombectomy, reaching similar 
conclusions that mechanical thrombectomy enhances favorable 
outcomes and success rates, improving prognoses. Compared to 
medical treatments and non-CAD stroke patients, endovascular 
thrombectomy exhibited no significant differences in symptomatic 
hemorrhage or mortality rates. However, considering the relatively 
higher rates of symptomatic hemorrhage and mortality, the safety of 

thrombectomy requires further verification. Scopelliti et  al. (89) 
further emphasized that ensuring sustained internal carotid artery 
patency post-thrombectomy significantly correlates with better 
functional outcomes at 3 months.

Moreover, studies indicate that for CAD patients unresponsive to 
medical treatments, vascular stent placements and surgical 
interventions prove feasible and effective (90, 91). Nevertheless, a 
Cochrane systematic review found no randomized controlled trials 
(RCTs) or controlled clinical trials (CCTs) supporting additional 
benefits of surgical or endovascular treatments over antithrombotic 
therapies when the latter prove ineffective (92).

Endovascular treatments appear safe and effective in 
CAD-induced AIS patients. Future research should conduct relevant 
RCTs to further explore the safety and efficacy of endovascular 
therapies in CAD patients and determine optimal treatment strategies.

5 Issues and discussion

Cervical artery dissection represents a rare cause of stroke but 
constitutes a primary etiology among young and middle-aged 
stroke patients. Digital subtraction angiography (DSA) historically 
served as the imaging gold standard for CAD diagnosis due to its 
direct visualization of vascular luminal structures. However, 
considering DSA's invasiveness, it remains unsuitable for all 
patients (93). In contrast, ultrasound, computed tomography 
angiography (CTA), and magnetic resonance angiography (MRA) 
offer non-invasive alternatives. Head and neck vascular ultrasound 
examinations, characterized by low costs and simple operations, 
frequently serve in arterial remodeling follow-up studies but may 
lead to missed diagnoses (43), necessitating subsequent CTA or 
MRA examinations. Both CTA and MRA demonstrate superior 
advantages in visualizing luminal structures, achieving high 
sensitivity and specificity in CAD diagnosis (19, 27). However, the 
introduction of contrast agents and inherent equipment limitations 
somewhat restrict their clinical applications. Recent advancements 
in imaging technology have enabled high-resolution vessel wall 
magnetic resonance imaging (HR-VW-MRI) to non-invasively and 
directly display hematoma signal locations, sizes, and other 
characteristics within dissected vessel walls, significantly improving 
CAD detection rates. Particularly, artificial intelligence compressed 
sensing technology (CS-AI) enhances VW-MRI image quality and 
diagnostic efficiency, demonstrating promising applications in 
diagnosing atherosclerotic vascular diseases (94). Given that CS-AI-
integrated HR-VW-MRI offers shortened scanning times, superior 
vascular wall visualization, and vascular lesion assessments, 
we reasonably anticipate achieving high-quality CAD vessel wall 
imaging within shorter durations in the near future. All kinds of 
imaging examinations have their advantages and limitations, and 
we need to choose the most appropriate imaging method based on 
their characteristics (Table 1).

Thromboembolism represents the most common cause of stroke 
in CAD patients (76), with CAD frequently manifesting as 
thromboembolism or luminal stenosis/occlusion-induced transient 
ischemic attacks or acute ischemic strokes (7). achieving vascular 
recanalization is a pivotal determinant of CAD prognosis and serves 
as a key endpoint for evaluating therapeutic efficacy. Understanding 
the complex interplay of factors influencing CAD recanalization and 
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translating this knowledge into tailored therapeutic strategies is 
therefore paramount for optimizing patient outcomes. Previous 
studies have identified several key factors potentially influencing CAD 
vascular recanalization, including hypertension, time from symptom 
onset to presentation, the presence of an intramural hematoma 
(IMH), complete vascular occlusion, and the specific treatment 
modality employed. however, the precise pathways require further 
elucidation. Critically, synthesizing the literature reveals that these 
factors do not act in isolation but may interact, significantly shaping 
recanalization likelihood and informing treatment choices. 
Hypertension stands out as the predominant vascular risk factor 
specifically linked to CAD (95, 96). Proposed mechanisms by which 
hypertension may impact CAD recanalization include 
non-atherosclerotic arterial wall injury (97) and alterations in arterial 
wall elasticity and permeability (47).

Although it is known that hypertension treatment can 
significantly reduce the risk of first and recurrent strokes, there is no 
convincing evidence to support that one class of antihypertensive 
drugs is superior to another as a single therapy for secondary 
prevention in stroke patients. Although some antihypertensive drugs 
have neuroprotective effects, clinical data on the pre-treatment 
impact of antihypertensive drugs on the treatment outcomes of 
stroke patients remain controversial (98). Generally, untreated 
hypertension in patients with acute ischemic stroke is associated 
with poor treatment outcomes, and current guidelines recommend 
controlling hypertension during the acute phase of stroke (99). 
However, a multivariate analysis from a large multicenter study 
suggested that early antihypertensive treatment failed to reduce the 
probability of dependency or death at 90 days in ischemic stroke 
patients with a history of hypertension, but worsened the functional 
outcomes of patients without hypertension (100). These findings 
indicate that initiating antihypertensive treatment within the first 

week after an ischemic stroke does not bring significant benefits and 
may even increase the risk of functional dependency in patients 
without a history of hypertension. Hypertension is closely related to 
vascular recanalization, but the timing of treatment is crucial. The 
interaction between hypertension treatment and vascular 
recanalization deserves further study. The acute phase of aortic 
dissection lasts for 14 days. A retrospective study found that the 
recanalization rate of patients with a visit time less than 14 days was 
significantly higher than that of patients with a visit time greater 
than 14 days. Moreover, multivariate regression analysis revealed 
that a shorter time from symptom onset to visit (≤14 days) and 
coronary artery disease presenting as intramural hematoma (IMH 
type) were consistently positively correlated with recanalization (51, 
56). This synergistic effect may reflect the dynamic evolution 
characteristics of the dissection flap/hematoma during the acute 
phase, during which early intervention may take advantage of its 
greater inherent instability or plasticity, thereby facilitating healing 
and recanalization.This finding strongly supports the clinical 
imperative for rapid diagnosis and initiation of therapy in suspected 
CAD.Complete vascular occlusion is robustly identified as an 
independent negative predictor of recanalization in multiple studies 
employing multivariable regression (101–103). This factor 
significantly outweighs others in predicting recanalization failure. 
The presence of occlusion should therefore trigger consideration of 
more aggressive therapeutic strategies (e.g., potential endovascular 
intervention, especially in specific scenarios) or heightened 
monitoring for complications and collateral assessment. Current 
evidence highlights that hypertension management, early diagnosis, 
IMH-type dissection recognition, and occlusion status assessment 
are key factors in CAD recanalization strategies, but further 
prospective studies with multivariable modeling are needed to 
strengthen evidence-based guidance.

TABLE 1 A comparative analysis of imaging examination methods for carotid artery dissection.

Modaity Indications Advantages Limitations

CTA Acute evaluation, emergency screening, 

bone assessment

1. Rapid acquisition (first-line in emergencies)

2. High spatial resolution (intimal flap, intramural 

hematoma)

3. 3D reconstruction

4. Widely available

1. Requires iodinated contrast (risk in renal 

impairment)

2. Radiation exposure

3. Lower sensitivity for slow flow/complex dissections

MRA Non-acute phase, follow-up, contrast 

allergy

1. No radiation

2. No iodinated contrast needed (TOF technique)

3. Excellent soft-tissue contrast (intramural 

hematoma)

1. Longer scan time (less ideal for acute cases)

2. Flow-related artifacts

3. Insensitive to calcifications

HR-MRA Small dissections, detailed intimal flap 

assessment, research

1. Ultra-high resolution (0.1–0.3 mm)

2. Superior visualization of subtle lesions

3. No radiation

1. Limited to advanced MRI systems

2. Longer acquisition time

3. Low clinical availability

DSA Gold standard, pre-interventional 

confirmation, endovascular therapy

1. Best temporal resolution (dynamic flow assessment)

2. Enables simultaneous treatment (e.g., stenting)

3. Highest diagnostic accuracy

1. Invasive (puncture risks, 0.5–1% stroke risk)

2. High cost

3. Requires expert operators

US Initial screening in suspected CAD; 

Follow-up monitoring of recanalization; 

Low-risk or stable patients

1. Non-invasive, no radiation/contrast

2. Bedside availability (quick assessment)

3. Real-time hemodynamic evaluation (flow patterns, 

stenosis)

4. Cost-effective

1. Operator-dependent (variable accuracy)

2. Limited visualization of distal ICA/vertebral 

arteries

3. Lower sensitivity for small dissections/intramural 

hematoma

4. Cannot assess intracranial extension
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While antithrombotic therapy is the primary initial CAD 
treatment and endovascular interventions (EVT) demonstrate efficacy 
in achieving recanalization and improving prognosis, particularly in 
symptomatic or perfusion-deficient patients (104–106), a balanced 
assessment necessitates careful consideration of treatment-specific 
risks and long-term outcomes. Intravenous thrombolysis (IVT) 
carries risks like symptomatic intracranial hemorrhage and potential 
dissection complications; conservative management faces bleeding 
risks and treatment failure; EVT introduces procedural risks (e.g., 
dissection extension, perforation) and, with stenting, long-term 
concerns of in-stent stenosis/thrombosis requiring intensive 
antiplatelet therapy (85, 107). Critically, long-term functional 
recovery—measured by outcomes like independence (mRS)—can 
be influenced by both treatment efficacy and associated complications. 
Therefore, developing individualized treatment plans based on 
patient-specific conditions (presentation, dissection characteristics, 
bleeding risk) and integrating knowledge of each modality's 
complication profile and functional outcome potential is 
paramount(Table  2). Implementing refined, classification-based 
diagnostic strategies to optimize this risk-benefit analysis is key to 
enhancing both recanalization success and long-term functional 
prognosis for CAD patients.

6 Prospect

Currently, no universally recognized clinical classifications guide 
CAD treatments. Perry et al. (108) proposed the Borgess classification 
in 2013 based on imaging findings of intimal tears and blood flow 
impacts, categorizing dissections with intact intimal layers as Type 
I  and those with intimal tears as Type II, observing that Type 
I predominantly presents ischemic symptoms while Type II exhibits 
more localized symptoms, with antithrombotic treatments post-Type 
I  dissections showing higher healing probabilities than post-Type 
II. Zhou et al. (109) recently proposed a comprehensive classification 
system for cervical artery dissections (CAD), categorizing lesions into 
four distinct types based on angiographic features:

Type I: Intramural hematoma or dissection with <70% 
luminal stenosis.

Type II: Dissection with ≥70% luminal stenosis.
Type III: Dissecting aneurysm (vessel dilation exceeding 1.5× the 

normal diameter).

Type IV: Complete luminal occlusion, subdivided into:
Type IVA: Extracranial carotid occlusion.
Type IVB: Tandem occlusion (extracranial + 

intracranial involvement).
Their study further demonstrated that stable CAD patients benefit 

from antithrombotic therapy in reducing recurrent stroke risk. For 
Type II–IVA dissections, non-urgent endovascular treatment (EVT) 
may be considered as an alternative to antithrombotic therapy. Type 
IVB dissections often require urgent vascular intervention. Different 
classifications guiding surgical strategies have matured in aortic 
dissection progressions, suggesting potential benefits from more 
detailed CAD classifications and establishing distinct treatment 
methods based on classifications to achieve precise CAD management 
and enhance recanalization probabilities.

Advancements in artificial intelligence (AI) and radiomics 
technologies promise AI-driven predictions of CAD occurrence 
risks and recanalization scenarios, aiding clinical decisions. AI 
encompasses machine learning and deep learning (110), with deep 
learning as a significant branch of machine learning possessing 
robust feature extraction and generalization capabilities, 
extensively applied across various medical tasks (111–113). 
Current predictive models for carotid occlusion recanalization 
include Lin et al.'s (114) machine learning algorithm-developed 
pre-EVT and post-EVT models assessing recanalization risks, 
assisting clinicians in better evaluating patient prognoses. 
Radiomics, initially proposed by Dutch scholar Lambin (115), 
transforms digital medical images into mineable high-dimensional 
data (116). Radiomics captures tissue and lesion properties and 
their imaging changes during treatments; within sufficiently large 
datasets, it identifies unknown disease progression, progression, 
and treatment response biomarkers. The integration of radiomics 
and AI enables automated processing of larger datasets, emerging 
as a recent research focus. In carotid diseases, radiomics has been 
widely applied in plaque property assessments (117, 118). Image 
segmentations, modeling, and validations of CAD intramural 
hematomas, along with digital processing of arterial dissection 
vascular stenosis degrees, locations, and extents, could yield more 
meaningful clinical analyses, predicting post-dissection vascular 
recanalization probabilities. Furthermore, AI's enhanced ability to 
extract deep features from raw radiomics data advances 
explorations in carotid atherosclerosis, promoting early detection 
and diagnosis, risk stratification, predictive modeling, workflow 

TABLE 2 A comparative analysis of treatment decisions for carotid artery dissection.

Methods Indications Timing Risks Efficacy

Antithrombotic Therapy 

(Anticoagulation/Antiplatelet)

First-line for most patients 

unless contraindicated (e.g., 

high bleeding risk).

Initiate immediately upon 

diagnosis; continue for 3-6 

months.

Bleeding (GI, intracranial), 

lower risk with antiplatelets.

Prevents thromboembolism; 

~70-90% effectiveness in reducing 

stroke risk.

Thrombolysis (IV-tPA) Acute stroke with confirmed 

occlusion; use cautiously in 

CAD (case-by-case).

Acute ischemic stroke (<4.5 

hours).

Dissection extension, 

hemorrhagic transformation, 

allergic reactions.

Rapid clot lysis but controversial 

in CAD (may worsen dissection).

Endovascular Therapy (Stenting/

Thrombectomy)

Refractory cases, severe 

stenosis/occlusion, or recurrent 

ischemia on medication.

Acute large-vessel occlusion 

(<24 hours).

Vessel perforation, distal 

embolism, dissection 

progression, access-site 

hematoma.

High recanalization rates (>80%); 

effective for hemodynamically 

significant lesions.
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efficiency improvements, and research advancements (119). Future 
radiomics and deep learning technologies may represent novel 
directions for CAD recanalization.

7 Conclusion

Cervical artery dissection results from interactions among risk 
factors, minor traumas, anatomical and congenital abnormalities, and 
genetic susceptibilities. Diagnosing CAD presents challenges both 
clinically and radiologically. Considering CAD prognoses and 
associated clinical and imaging prognostic factors, future research 
should conduct longitudinal and population-based observational 
studies, integrating advanced technologies to mitigate prognosis 
disparities arising from differing preferred treatment strategies.
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