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The predictive value of 
pre-treatment MRI-based 
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Objective: The prognosis of medulloblastoma (MB) is extremely poor. This study 
aimed to develop a nomogram model for predicting the recurrence of MB in 
children by integrating pre-treatment magnetic resonance imaging radiomics 
and clinical characteristics.
Methods: A retrospective analysis was conducted on 95 children with MB 
who were pathologically diagnosed with MB and underwent radical resection 
surgery. On the basis of recurrence status observed within the two-year 
post-treatment follow-up period, patients were categorized into recurrent 
and non-recurrent groups. The entire cohort was subsequently randomized 
into a training dataset and a test dataset using a 7:3 allocation ratio. Radiomic 
feature extraction was carried out utilizing the Feature Explorer Pro platform, 
with features derived from T1-weighted imaging (T1WI), T2-weighted imaging 
(T2WI), and contrast-enhanced T1-weighted imaging (T1WI_CE) sequences. 
The most significant features were selected using the Pearson correlation 
coefficient, analysis of variance (ANOVA), recursive feature elimination, and 
the Kruskal-Wallis test. A radiomics prediction model was developed using a 
support vector machine classifier. Logistic regression analysis was employed to 
identify the most valuable clinical characteristics, and they were used to develop 
a clinical model. The clinical and radiomics features were combined to develop 
a clinical-radiomics hybrid model, followed by establishing a nomogram. The 
predictive performance of each model was assessed using receiver operating 
characteristic curve analysis. The clinical utility of the model was evaluated via 
decision curve analysis (DCA) and calibration curves.
Results: Two clinical characteristics and six radiomics features exhibiting the 
strongest associations with MB recurrence were selected to independently 
develop a hybrid model. The results showed that the hybrid model exhibited 
good predictive performance for MB recurrence in children. The AUC of the 
hybrid model reached 0.833 (95% confidence interval [CI], 0.730–0.937) in 
the training dataset and 0. 802 (95% CI, 0.635–0.970) in the test dataset, both 
of which exceeded the performance of the clinical model and the radiomics 
model. The calibration curve and DCA indicated that the nomogram possessed 
favorable clinical utility for predicting MB recurrence.
Conclusion: The hybrid model, integrating pre-treatment MRI-based radiomics 
features and clinical characteristics, could effectively predict MB recurrence in 
pediatric patients.
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1 Introduction

Medulloblastoma (MB) is the most frequent infratentorial 
malignant tumor in children, accounting for about 15–20% of 
children’s central nervous system (CNS) tumors (1). The current 
management of MB involves a risk-adapted multimodal strategy, 
comprising maximal surgical resection, postoperative craniospinal 
irradiation, and chemotherapy (2–4). After the aforementioned 
standardized treatment, approximately 70% of children achieve 
remission, and the 5-year survival rate can exceed 80% (5, 6). 
Nevertheless, relapse occurs in approximately 30% of cases, presenting 
as either localized or disseminated recurrence. Despite aggressive 
therapeutic interventions, such as secondary surgical resection, high-
dose chemotherapy, intrathecal drug administration, re-irradiation, 
and anti-angiogenic therapy, the prognosis for recurrent MB remains 
unfavorable, with the long-term overall survival (OS) rate typically 
falling below 10% (6–9). Consequently, the early and precise detection 
of recurrence is crucial for promoting personalized treatment 
strategies in pediatric cases.

Risk stratification has long been recognized as a cornerstone in 
assessing treatment strategies and predicting prognosis in MB (10). 
Traditionally, risk classification has been based on clinical and 
pathological factors. However, due to the high degree of intratumoral 
heterogeneity, emerging evidence suggests that these conventional 
criteria may not fully capture the true prognostic risk in pediatric 
patients (11). For instance, some children classified as standard-risk 
experienced early relapse, while others did not receive sufficient 
treatment, leading to poor outcomes. In contrast, some high-risk 
patients underwent overly aggressive or unnecessary treatments, that 
may diminished quality of life, including endocrine and metabolic 
disorders, growth retardation, and other adverse clinical 
manifestations. This suggests that traditional risk stratification 
inadequately guides follow-up and personalized management. Recent 
studies have identified molecular subtypes as more robust predictors 
of prognosis. Among them, the WNT subgroup is associated with a 
favorable prognosis; the SHH and Group 4 subtypes correspond to 
intermediate outcomes, while Group  3 is linked to the poorest 
prognosis (12, 13). Nevertheless, the application of molecular 
subtyping remains limited, particularly in under-resourced settings, 
due to the high cost and technical complexity of genetic testing. As a 
result, there remains a need for an accessible, practical, and effective 
measure to predict MB recurrence.

MB is characterized by significant intratumoral heterogeneity, 
referring to variations in cellular phenotype, metabolism, and 
microenvironment across different tumor regions. Tumors exhibiting 
high heterogeneity tend to be more aggressive (14). MRI is a radiation-
free imaging technique, playing significant roles in diagnosing MB, 
assessing residual tumor burden post-surgery, and evaluating tumor 
dissemination. Studies have demonstrated that MRI captures 
substantial latent information, capable of reflecting tumor 
heterogeneity, including gene expression levels, proliferative activity, 
and angiogenesis (15–17). Radiomics is a computational technique, 
which enables the extraction of large volumes of quantitative features 
from CT, MRI, or PET images and converts them into mineable, 

high-dimensional data (18). Radiomics has been widely utilized in 
CNS malignancies (19–21). For MB, radiomics has been mainly 
applied to the differential diagnosis of MB and the prediction of 
molecular subtypes (15, 22, 23). Furthermore, multimodal MRI 
radiomics has also been applied in MB. For example, Wang et al. 
developed a preoperative model for predicting the SHH and Group 4 
subtypes based on T1WI, T2WI, T1C, FLAIR and ADC sequences 
(24). However, prognostic studies of MB remain limited, and they 
have mainly concentrated on long-term outcomes, such as OS, and 
only a few have addressed short-term outcome prediction.

This study investigated the predictive value of MRI based 
radiomics and clinical characteristics for identifying recurrence in 
pediatric MB, aiming to provide objective information for early 
detection of high-risk patients and the implementation of personalized 
therapeutic strategies.

2 Methods

2.1 Patients

A total of 95 pediatric patients who underwent radical resection 
surgery, and pathologically diagnosed MB from two center (center A, 
n = 59, center B, n = 36) between March 2011 and March 2023, were 
retrospectively analyzed. Basic clinical data were collected through the 
medical record system. The inclusion criteria were summarized as 
follows:(1) histopathological confirmation of MB; (2) age ranged from 
0 to 18 years; (3) pre-treatment MRI performed within 2 weeks before 
surgical resection, including minimally the T1WI, T2WI, and T1WI_
CE sequences; (4) regular follow-up for more than 2  years after 
surgical resection. The exclusion criteria were as follows: (1) poor-
quality MR images (e.g., Severe motion artifacts); (2) presence of other 
CNS tumors; (3) patients who had received any anti-MB tumor 
treatment prior to this MRI examination; (4) the follow-up data was 
incomplete, or the follow-up period was less than 2 years.

According to the guidelines for response assessment in MB and 
leptomeningeal seeding tumors (25), patients were classified into the 
recurrent group if any of the following criteria were met within 2 years 
post-treatment: (1) ≥ 25% progression (compared to the smallest 
measurement recorded); (2) appearance of new disseminated lesions 
in the brain or in the spinal canal; (3) pathologically confirmed 
recurrence after secondary surgery; (4) conversion of cerebrospinal 
fluid cytology from negative to positive for tumor cells. Otherwise, 
they were classified into the non-recurrent group.

2.2 Clinical data collection

Clinical characteristics were collected from pediatric patients with 
MB, including sex, age, pathological type (classic, nodular or 
desmoplastic, anaplastic/large cell variants, extensive nodularity), 
tumor location (median if the vertical distance of the tumor center 
from the midline of the posterior cranial fossa was ≤1 cm, non-median 
if >1 cm), cystic degeneration/necrosis (yes/no), hemorrhage (yes/no), 
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hydrocephalus (yes/no), degree of enhancement (mild/marked) and 
enhancement pattern (focal/incomplete/diffuse enhancement).

2.3 MR image acquisition

All patients underwent MRI within 2 weeks prior to treatment. 
The required imaging sequences included at least T1WI, T2WI, and 
T1WI_CE. Scans were performed using four different MRI systems: 
Siemens 3.0T, Canon 1.5T, Philips 3.0T, and GE 3.0T. These sequences 
share identical parameters when acquired using the same scanning 
machine. During T1-weighted enhanced imaging, gadolinium butanol 
was administered intravenously at a dosage of 0.1 mmol/kg body 
weight with an infusion rate of 2 mL/s. Detailed scanning parameters 
are presented in Table 1.

2.4 Tumor segmentation and feature 
extraction

Tumor segmentation was performed using ITK-SNAP  4.2.2 
software1. Axial T1WI, T2WI, and T1WI_CE sequences were 
imported into the software. A radiologist with 2 years of experience 
in neuroimaging manually delineated the ROI on each slice, 
carefully avoiding peritumoral edema and adjacent vasculature. The 
software subsequently generated the volume of interest. 
Segmentation results were reviewed and confirmed by another 
radiologist with over 20 years of experience. Both radiologists were 
blinded to patients’ information and recurrence status throughout 
the process. Radiomics feature extraction was conducted using 
Feature Explorer Pro (FAE, v0.5.13) in Python (3.7.6) (26). The 
process of feature extraction in this study followed the Image 
Biomarker Standardization Initiative (IBSI). Firstly, we performed 
N4 bias field correction on all the MRI images to correct the 
influence caused by the non-uniformity of the magnetic field. To 
unify the imaging differences among various MR devices, the voxel 
intensity values of all MR images were normalized to a range of [0, 
1] using min-max normalization prior to feature extraction. This 
normalization process enhanced the comparability of the imaging 
data and laid a solid foundation for subsequent quantitative 
analysis. Then, the MR images were resampled to a uniform voxel 
size of 1 × 1 × 1 mm3. We  imported the three sequences of all 
patients into the FAE software in sequence. After performing image 
preprocessing, we extracted radiomics features from each sequence 
in sequence. The feature types included First Order, Shape, and 
gray-level co-occurrence matrix (GLCM) features. The GLCM was 
configured with the following parameters: a quantization of 32 gray 
levels, a pixel distance of 1, and symmetric mode. After the feature 
extraction of each sequence was completed, a radiomics feature 
matrix was generated. Finally, the radiomics feature matrices of the 
three sequences were merged. Radiomics features with ICC ≥ 0.75 
were retained and those with ICC < 0.75 were excluded. 
Furthermore, we applied the ComBat algorithm to eliminate the 
differences among various MR devices and different field strengths. 

1  http://www.itksnap.org/

Finally, the Dice coefficient was calculated to assess interobserver 
variability between the two radiologists, yielding a value of 
approximately 0.92, indicative of good agreement.

2.5 Feature selection

Ultimately, 168 radiomics features were extracted from the three 
sequences. A total of 56 features were extracted from each sequence, 
comprising 18 first-order features, 24 texture features, and 14 shape 
features. Subsequently, the entire cohort was randomized into a 
training dataset (n = 67, positive/negative = 27/40) and a test dataset 
(n = 28, positive/negative = 11/17). Radiomics model development 
was performed using pipelines developed in the FAE software. Firstly, 
up-sampling was performed in the training dataset by randomly 
duplicating cases until a balanced sample distribution was achieved. 
The up-sampling method was strictly confined to the training set and 
was not applied to the test dataset. In addition, normalization was 
applied to the feature matrix using Z-score and mean normalization. 
Due to the high-dimensional of the feature space, feature similarity 
was evaluated by computing the Pearson correlation coefficient (PCC) 
between each pair of features. Feature pairs exhibiting a PCC greater 
than 0.99 were excluded to minimize multicollinearity and enhance 
model robustness. This procedure effectively reduced the 
dimensionality of the feature space while maintaining 
feature independence.

Prior to model establishment, three feature selectors were employed: 
analysis of variance (ANOVA), recursive feature elimination (RFE), and 
the Kruskal-Wallis (KW) test. All three feature selection techniques 
were implemented in parallel. Support vector machine (SVM) was 
adopted as the classification algorithm due to its robustness and 
capability to project features into a higher-dimensional space for 

TABLE 1  Detailed parameters of magnetic resonance imaging.

Sequence TR/TE 
(ms)

FOV 
(mm)

FA 
(°)

Slice 
thickness/
gap (mm)

Voxel size 
(mm)

Siemens 3.0T

T1WI 149/2.5 256 × 208 70 5/1 0.8 × 0.8 × 5.0

T2WI 4210/93 256 × 208 150 5/1 0.8 × 0.8 × 5.0

T1CE 467/2.5 256 × 208 70 5/1 0.9 × 0.9 × 5.0

Canon 1.5T

T1WI 2100/17 288 × 224 90 6/1 0.5 × 0.5 × 6.0

T2WI 5320/119 288 × 224 90 6/1 0.5 × 0.5 × 6.0

T1CE 447.4/5.5 288 × 224 90 6/1 0.5 × 0.5 × 6.0

Philips 3.0T

T1WI 2000/20 256 × 207 90 6/1 0.9 × 1.1 × 6.0

T2WI 2600/80 256 × 207 90 6/1 0.9 × 1.1 × 6.0

T1CE 2000/20 256 × 207 90 6/1 0.9 × 1.1 × 6.0

GE 3.0T

T1WI 125.1/1.6 320 × 256 90 6/1 0.8 × 0.9 × 6.0

T2WI 6239/130 320 × 256 90 6/1 0.8 × 0.9 × 6.0

T1CE 162.4/1.6 320 × 256 90 6/1 0.8 × 0.9 × 6.0
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optimal label separation. Various combinations of feature selection 
methods and classifiers were compared, and the optimal model was 
identified based on the area under the curve (AUC). The 
hyperparameters were determined through 5-fold cross-validation. 
Among the 67 cases in the training dataset, four-fifths of the samples 
were utilized for model training in each iteration, while one-fifth were 
used for the validation. A 5-fold cross-validation procedure was 
implemented, resulting in 268 cases in the cross-validation training 
dataset (cv-train) and 67 cases in the validation dataset (cv-val). All 
samples from the training dataset were also utilized for model 
development and subsequently evaluated on an independent 
test dataset.

Finally, the radiomics model that combined ANOVA-based 
feature selection with a SVM classifier achieved the highest AUC. A 
total of six radiomics features were selected to develop the final 
radiomics model for predicting MB recurrence.

2.6 Model development

In the training dataset, the selected radiomics signatures were 
employed to calculate Rad-score. The clinical model was developed 
subsequently based on the selected clinical characteristics. The 
hybrid model was stored in the pickle serialization format of 
Python, enhancing its reproducibility and practical applicability in 
clinical settings. The selected significant clinical variables were 
combined with the Rad-score to develop a hybrid model using 
logistic regression analysis and then visualized as a nomogram, 
aiming to facilitate clinical application. Receiver operating 
characteristic (ROC) curves were plotted for all three models, and 
the AUC was calculated to evaluate their predictive performance. 
The 95% CIs were estimated using bootstrap resampling with 1,000 

iterations. The DeLong test was applied to conduct a statistical 
comparison of the areas under the ROC curves. The Hosmer-
Lemeshow test was employed to plot the calibration curve. 
Decision curve analysis (DCA) was employed to evaluate the net 
clinical benefit of each model in predicting recurrence. The overall 
methodology of the study is illustrated in Figure 1.

2.7 Data analysis

The data analysis in this study was conducted using R-studio 4.4.2 
and SPSS 26.0 software. The differences of continuous variables were 
compared using t-test. Categorical variables were analyzed using 
either Chi-square test or Fisher’s exact test to assess intergroup 
differences. A p-value <0.05 indicated statistical significance.

3 Results

3.1 Clinical characteristics and 
conventional imaging features

A total of 95 children with MB were involved, including 38 cases 
in the recurrence group (28 men and 10women, with an average age 
of 8.3 ± 3.5 years) and 57 cases in the non-recurrence group (47 men 
and 10women, with an average age of 9.1 ± 4.1 years). The results of 
univariate analysis revealed that there were significant differences in 
three characteristics, including degree of enhancement, enhancement 
pattern and tumor location (p < 0.05, Table 2). Multivariate logistic 
regression analysis indicated that enhancement pattern and tumor 
location emerged as independent prognostic factors (p-values = 0.033 
and 0.015 respectively).

FIGURE 1

The study flowchart for predicting MB recurrence.
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3.2 Radiomics signatures

Ultimately, 168 radiomics features were extracted for each 
patient. Six radiomics features were selected for developing the 
radiomics model (Table 3 and Figure 2), and the Rad-score was 
calculated as follows:

	
( )

( )
( )
( )
( )

− = ×
+
× − +
× +
× − +
× −

Rad score 1 _ _ _ 0.282
1 _ _ _
1.042 1 _ _ _

0.328 1 _ _ _
0.438 2 _ _ _
0.168

T CE original shape Elongation
T CE original shape Flatness

T CE original shape MajorAxisLength
T WI original shape Elongation

T WI original shape Elongation

( )
+

× +
2 _ _ _

0.620 0.034
T WI original shape Flatness

3.3 Model performances

Two clinical characteristics and six radiomics features were 
utilized to develop the clinical model, radiomics model, and 

TABLE 2  Univariate analysis of clinical characteristics and conventional imaging features.

Variable Recurrence group 
(n = 38)

Non-recurrence 
group (n = 57)

Total 
(n = 95)

Statistical results 
(χ2/t)

P-value

Sex χ2 = 1.056 0.304

 � Male 28 (73.7) 47 (82.5) 75 (78.9)

 � Female 10 (26.3) 10 (17.5) 20 (21.1)

Age (years), mean ± SD 8.3 ± 3.5 9.1 ± 4.1 t = 0.921 0.359

Pathological type χ2 = 1.080 0.859

 � Classic 26 (68.4) 43 (75.4) 69 (72.6)

 � Nodular or desmoplastic 6 (15.8) 7 (12.3) 13 (13.7)

 � Anaplastic/large cell variants 5 (13.2) 5 (8.8) 10 (10.5)

 � Extensive nodularity 1 (2.6) 2 (3.5) 3 (3.2)

Ki-67 index χ2 = 0.176 0.675

 � ≥50% 21 (55.3) 29 (50.9) 50 (52.6)

 � <50% 17 (44.7) 28 (49.1) 45 (47.4)

Tumor location χ2 = 4.791 0.007

 � Median 26 (68.4) 52 (91.2) 72 (79.1)

 � Non-median 12 (31.6) 5 (8.8) 19 (20.9)

Cystic degeneration/necrosis χ2 = 1.056 0.304

 � Yes 28 (73.7) 47 (82.5) 77 (84.6)

 � No 10 (26.3) 10 (17.5) 14 (15.4)

Hemorrhage χ2 = 0.925 0.336

 � Yes 4 (10.5) 3 (5.3) 7 (7.4)

 � No 34 (89.5) 54 (94.7) 88 (92.6)

Hydrocephalus χ2 = 0.000 1.000

 � Yes 36 (94.7) 55 (96.5) 91 (95.8)

 � No 2 (5.3) 2 (3.5) 4 (4.2)

Degree of enhancement χ2 = 4.967 0.026

 � Mild 6 (15.8) 21 (36.8) 27 (28.4)

 � Marked 32 (84.2) 36 (63.2) 68 (71.6)

Enhancement pattern χ2 = 7.600 0.022

 � Focal enhancement 6 (15.8) 13 (22.8) 19 (20.0)

 � Incomplete enhancement 6 (15.8) 21 (36.8) 27 (28.4)

 � Diffuse enhancement 26 (68.4) 23 (40.4) 49 (51.6)

TABLE 3  The coefficients of radiomics features.

Feature name Coefficient in model

T1CE_original_shape_Elongation 0.282

T1CE_original_shape_Flatness −1.042

T1CE_original_shape_MajorAxisLength 0.328

T1WI_original_shape_Elongation −0.438

T2WI_original_shape_Elongation −0.168

T2WI_original_shape_Flatness 0.620
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hybrid model. The ROC curves are exhibited in Figure 3, and their 
performance metrics in predicting MB recurrence are detailed in 
Table 4. The results demonstrated that the hybrid model exhibited 
superior predictive performance. The AUC was 0.833 (95% CI: 
0.730–0.937) in the training dataset and 0.802 (95% CI: 0.635–
0.970) in the test dataset, both outperforming the clinical model 
(training dataset AUC = 0.731 [95% CI: 0.614–0.847]; test dataset 
AUC = 0.628 [95% CI: 0.425–0.832]) and the radiomics model 
(training dataset AUC = 0.714 [95% CI: 0.587–0.841]; test dataset 
AUC = 0.711 [95% CI: 0.514–0.909]). In the training dataset, the 
hybrid model achieved higher accuracy (0.821), sensitivity 
(0.780), and specificity (0.925) compared with the clinical model 
(0.672, 0.778, and 0.600, respectively) and the radiomics model 
(0.642, 0.704, and 0.600, respectively). These findings were 
similarly validated in the test dataset. Tumor location, 
enhancement pattern, and Rad-score were incorporated into a 
nomogram to facilitate clinical application (Figure 4). Calibration 
curves (Figure  5) demonstrated notable agreement between 
predicted and actual recurrence of MB. Moreover, DCA (Figure 6) 
indicated that when the threshold probability ranged from 0.15 to 
0.70, the hybrid model provided greater net clinical benefit in 
predicting MB recurrence than the clinical or radiomics 
models alone.

4 Discussion

This study investigated the predictive value of pre-treatment 
MRI-based radiomics and clinical characteristics for MB recurrence. 
The results indicated that the hybrid model developed by integrating 
tumor location, enhancement pattern, and Rad-score demonstrated 
excellent predictive performance in the recurrence of MB. This 
approach enables clinicians with a noninvasive, personalized method 
for the pre-treatment evaluation of the risk of MB recurrence, enabling 
early adjustment of treatment strategies, thereby improving pediatric 
prognosis positively.

The pathogenesis of MB remains elusive. Some studies have 
demonstrated that the occurrence of MB may be  associated with 

genetics or genetic mutations. For instance, hereditary cancer 
susceptibility syndromes, such as Gorlin syndrome and Li-Fraumeni 
syndrome, are associated with an increased risk of MB (27, 28). 
Genetic mutations involved in these syndromes include suppressor of 
fused (SUFU), patched homolog 1 (PTCH1), adenomatous polyposis 
coli (APC), and tumor protein 53 (TP53) (27–29). However, most 
genetic susceptibility and mutation screening tests remain in the 
research and development phase and are not yet widely implemented 
in clinical practice. As a result, no definitive preventive or causative 
therapeutic strategies for MB are currently available. At present, the 
treatment of MB relies on a traditional multimodal approach. 
Nevertheless, due to the high degree of tumor heterogeneity, responses 
to radiotherapy and chemotherapy vary markedly among patients, 
leading to significant differences in clinical outcomes. Therefore, 
accurate evaluation of short-term prognosis and recurrence risk is of 
critical importance. Early identification of patients at high risk of 
recurrence allows for timely modification of treatment strategies, 
potentially reducing the negative consequences of under- or 
overtreatment, prolonging survival, improving prognosis, and 
enhancing overall quality of life.

Recurrent MB pediatric patients are confronted with significant 
health risks and complications, such as increased risk of tumor 
dissemination, significantly elevated difficulty in treatment, and severe 
impairment of neurocognitive function, imposing remarkable 
psychological and economic burdens on the affected children and 
their families. A retrospective study indicated that the 1-year OS rate 
of recurrent pediatric MB patients was 38.3% ± 4%, the 2-year OS rate 
was 16.9% ± 3.3%, and the 5-year OS rate was 12.4% ± 2.8% (30). 
These findings suggest that children with recurrent MB tend to have 
a poorer prognosis and lower survival rates. Recurrence has emerged 
as a critical determinant of MB outcomes, indicating that using 
recurrence rather than OS as the study endpoint may provide greater 
clinical value for pediatric patients. Given the limited efficacy of 
salvage therapies in treating recurrent MB, recent studies have 
emphasized the importance of recurrence prevention and early 
identification as the most promising strategies for improving outcomes 
in these cases (31). Consistently, the present study adopted recurrence 
as the primary endpoint. The predictive value of pre-treatment 
MRI-based radiomics features hybrid with clinical characteristics was 
evaluated, and a visualized nomogram model was developed to assist 
clinicians in performing comprehensive assessments and optimizing 
individualized treatment strategies for children with MB.

Several studies have identified various prognostic factors in 
pediatric patients with MB, including Chang stage, risk stratification, 
molecular subtype, tumor metastasis, postoperative radiotherapy and 
chemotherapy, as well as residual tumor volume (32–34). Although 
molecular subtyping is the most reliable predictor of MB prognosis, 
genetic testing was not included in this study due to its high cost and 
technical complexity, hindering its widespread clinical adoption. In the 
present study, tumor location, degree of enhancement and enhancement 
pattern demonstrated significant differences between the recurrent and 
non-recurrent groups, which align with results reported by Luo et al. 
(33) and Yan et al. (35). Tumor location has also shown to influence 
prognosis, possibly due to differences in the histological origins and 
preferential anatomical sites associated with specific molecular subtypes. 
For instance, WNT subtype typically arises in the brainstem or 
cerebellopontine angle, and SHH subtype predominantly occurs in the 
cerebellar hemispheres, while Group 3 and Group 4 subtypes are more 

FIGURE 2

The weights of radiomics features.
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frequently located in the midline posterior fossa (9, 36). In the present 
study, multivariate logistic regression analysis identified tumor location 
and enhancement pattern as independent risk factors for MB 
recurrence. The enhancement pattern is also correlated with tumor 
recurrence. This relationship may be explained by the observation that 
tumors exhibiting a more extensive enhancement area tend to have a 
richer blood supply, greater vascular leakage, and more pronounced 
disruption of the blood–brain barrier, coupled with a higher degree of 
malignancy, thereby demonstrating an increased propensity for 
recurrence (37).

Regarding radiomics-based prognostication in MB, the majority 
of existing studies have concentrated on long-term outcomes, such as 
overall survival (OS), while investigations targeting short-term 
endpoints, like recurrence remain comparatively limited. Luo et al. 
(33) developed a prognostic stratification model for MB. Their 
findings demonstrated that the radiomics nomogram can serve as a 
non-invasive method to predict pediatric MB prognosis, achieving 
AUC values of 0.926 and 0.835 in the training and validation datasets, 
respectively. However, their model did not incorporate relevant 
clinical risk variables, potentially limiting its predictive robustness. In 
contrast, a hybrid prognostic model was developed in the present 
study by integrating two key clinical parameters with six recurrence-
associated radiomics features. Similarly, Liu et al. (34) developed a 
radiomics model for predicting progression-free survival in pediatric 
MB using features derived from T1WI and T1WI_CE sequences. 
Their results highlighted the advantage of integrating radiomics 

features with clinical factors, such as age and metastatic status over 
models based solely on clinical data. Nonetheless, their analysis was 
limited to two imaging modalities. In the current study, the feature 
extraction framework was extended by incorporating T2WI data, 
thereby enabling a more comprehensive radiomic characterization of 
tumor biology and heterogeneity.

In this study, six optimal radiomics features were identified to 
develop the model, including 6 shape features derived from T2WI and 
T1WI_CE sequences. Shape features describe the geometric 
morphology of the lesion, reflecting its three-dimensional spatial 
distribution and structural complexity. Irregular tumor shapes, 
including those with low sphericity and flatness, may be indicative of 
a poorer prognosis in MB. This could be attributed to the fact that 
aggressive tumors often exhibit high atypia, low cell differentiation, 
active mitotic activity, uncontrolled cell division, uneven local growth 
rate and angiogenesis, significant variations in blood supply, and 
inconsistent growth velocities in certain regions, leading to irregular 
morphologies. T2WI reflects the morphological features, signal 
characteristics, and internal cystic changes/necrosis of the tumors, 
reflecting the heterogeneity of tumors to some extent (38). In contrast, 
T1WI_CE reflects the tumor’s vascularity and disruption of the 
blood–brain barrier, offering a more comprehensive assessment of 
tumor heterogeneity (39). Furthermore, both T2WI and T1WI_CE 
are standard sequences used in the initial MRI evaluation of children 
with MB, and their widespread availability facilitates easy 
implementation in routine clinical practice. Notably, the application 

FIGURE 3

ROC curves of the hybrid model (A), radiomics model (B), and clinical model (C) for predicting the recurrence of MB.

TABLE 4  Performance parameters of the three models.

Model AUC 95% CIs Acc Sen Spe PPV NPV

Clinical model

 � Training set 0.731 0.614–0.847 0.672 0.778 0.600 0.568 0.800

 � Test set 0.628 0.425–0.832 0.571 0.727 0.471 0.471 0.727

Radiomics model

 � Training set 0.714 0.587–0.841 0.642 0.704 0.600 0.543 0.750

 � Test set 0.711 0.514–0.909 0.643 0.546 0.706 0.546 0.706

Hybrid model

 � Training set 0.833 0.730–0.937 0.821 0.780 0.925 0.857 0.804

 � Test set 0.802 0.635–0.970 0.643 0.738 0.706 0.546 0.706
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of multimodal MRI radiomics in MB is a direction that requires 
further research in the future. Moving forward, research efforts should 
integrate imaging sequences such as diffusion-weighted imaging 

(DWI), perfusion-weighted imaging (PWI), and magnetic resonance 
spectroscopy (MRS) to enhance the diagnostic accuracy and 
robustness of radiomics predictive models.

FIGURE 4

Nomogram for predicting the recurrence of MB.

FIGURE 5

The calibration curves of the hybrid model in the training dataset (A) and the test dataset (B).

https://doi.org/10.3389/fneur.2025.1624819
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lu et al.� 10.3389/fneur.2025.1624819

Frontiers in Neurology 09 frontiersin.org

This study still exists several limitations. Firstly, molecular typing was 
not integrated as a predictive indicator in this study. Future research 
should investigate the impact of combining molecular typing with clinical 
and radiomics features on MB patients’ prognosis. Secondly, the sample 
size was limited, and no external data were included to validate the 
generalizability of the model. Therefore, larger sample size and prospective 
studies are required to advance this research field. Thirdly, this study only 
concentrated on the short-term prognosis of children within 2 years. 
Long-term follow-up studies and survival models (e.g., Cox, time-
dependent AUC) are necessary to comprehensively assess such patients’ 
long-term prognosis in the future. Finally, it should be noted that, unlike 
adults, factors of pediatric growth may affect the radiomics analysis. 
Future research could consider setting a unified and smaller age range for 
the children participating in the study to mitigate potential confounding 
effects associated with growth-related factors.

5 Conclusion

The hybrid model combining radiomics and clinical variables 
could effectively predict the recurrence of pediatric MB. It may also 
serve as a non-invasive approach to help clinicians in the early 
identification of patients who are at high risk of recurrence and in 
formulating personalized treatment strategies, thereby improving the 
prognosis of children with MB.
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