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The predictive value of
pre-treatment MRI-based
radiomics and clinical
characteristics for
medulloblastoma recurrence in
pediatric patients

Huiwen Lu, Danzhu Li, Lixuan Huang* and Zisan Zeng*

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China

Objective: The prognosis of medulloblastoma (MB) is extremely poor. This study
aimed to develop a nomogram model for predicting the recurrence of MB in
children by integrating pre-treatment magnetic resonance imaging radiomics
and clinical characteristics.

Methods: A retrospective analysis was conducted on 95 children with MB
who were pathologically diagnosed with MB and underwent radical resection
surgery. On the basis of recurrence status observed within the two-year
post-treatment follow-up period, patients were categorized into recurrent
and non-recurrent groups. The entire cohort was subsequently randomized
into a training dataset and a test dataset using a 7:3 allocation ratio. Radiomic
feature extraction was carried out utilizing the Feature Explorer Pro platform,
with features derived from T1-weighted imaging (T1WI), T2-weighted imaging
(T2WI), and contrast-enhanced T1-weighted imaging (TIWI_CE) sequences.
The most significant features were selected using the Pearson correlation
coefficient, analysis of variance (ANOVA), recursive feature elimination, and
the Kruskal-Wallis test. A radiomics prediction model was developed using a
support vector machine classifier. Logistic regression analysis was employed to
identify the most valuable clinical characteristics, and they were used to develop
a clinical model. The clinical and radiomics features were combined to develop
a clinical-radiomics hybrid model, followed by establishing a nomogram. The
predictive performance of each model was assessed using receiver operating
characteristic curve analysis. The clinical utility of the model was evaluated via
decision curve analysis (DCA) and calibration curves.

Results: Two clinical characteristics and six radiomics features exhibiting the
strongest associations with MB recurrence were selected to independently
develop a hybrid model. The results showed that the hybrid model exhibited
good predictive performance for MB recurrence in children. The AUC of the
hybrid model reached 0.833 (95% confidence interval [Cl], 0.730-0.937) in
the training dataset and 0. 802 (95% Cl, 0.635-0.970) in the test dataset, both
of which exceeded the performance of the clinical model and the radiomics
model. The calibration curve and DCA indicated that the nomogram possessed
favorable clinical utility for predicting MB recurrence.

Conclusion: The hybrid model, integrating pre-treatment MRI-based radiomics
features and clinical characteristics, could effectively predict MB recurrence in
pediatric patients.
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1 Introduction

Medulloblastoma (MB) is the most frequent infratentorial
malignant tumor in children, accounting for about 15-20% of
children’s central nervous system (CNS) tumors (1). The current
management of MB involves a risk-adapted multimodal strategy,
comprising maximal surgical resection, postoperative craniospinal
irradiation, and chemotherapy (2-4). After the aforementioned
standardized treatment, approximately 70% of children achieve
remission, and the 5-year survival rate can exceed 80% (5, 6).
Nevertheless, relapse occurs in approximately 30% of cases, presenting
as either localized or disseminated recurrence. Despite aggressive
therapeutic interventions, such as secondary surgical resection, high-
dose chemotherapy, intrathecal drug administration, re-irradiation,
and anti-angiogenic therapy, the prognosis for recurrent MB remains
unfavorable, with the long-term overall survival (OS) rate typically
falling below 10% (6-9). Consequently, the early and precise detection
of recurrence is crucial for promoting personalized treatment
strategies in pediatric cases.

Risk stratification has long been recognized as a cornerstone in
assessing treatment strategies and predicting prognosis in MB (10).
Traditionally, risk classification has been based on clinical and
pathological factors. However, due to the high degree of intratumoral
heterogeneity, emerging evidence suggests that these conventional
criteria may not fully capture the true prognostic risk in pediatric
patients (11). For instance, some children classified as standard-risk
experienced early relapse, while others did not receive sufficient
treatment, leading to poor outcomes. In contrast, some high-risk
patients underwent overly aggressive or unnecessary treatments, that
may diminished quality of life, including endocrine and metabolic
growth
manifestations. This suggests that traditional risk stratification

disorders, retardation, and other adverse clinical
inadequately guides follow-up and personalized management. Recent
studies have identified molecular subtypes as more robust predictors
of prognosis. Among them, the WNT subgroup is associated with a
favorable prognosis; the SHH and Group 4 subtypes correspond to
intermediate outcomes, while Group 3 is linked to the poorest
prognosis (12, 13). Nevertheless, the application of molecular
subtyping remains limited, particularly in under-resourced settings,
due to the high cost and technical complexity of genetic testing. As a
result, there remains a need for an accessible, practical, and effective
measure to predict MB recurrence.

MB is characterized by significant intratumoral heterogeneity,
referring to variations in cellular phenotype, metabolism, and
microenvironment across different tumor regions. Tumors exhibiting
high heterogeneity tend to be more aggressive (14). MRI is a radiation-
free imaging technique, playing significant roles in diagnosing MB,
assessing residual tumor burden post-surgery, and evaluating tumor
dissemination. Studies have demonstrated that MRI captures
substantial latent information, capable of reflecting tumor
heterogeneity, including gene expression levels, proliferative activity,
and angiogenesis (15-17). Radiomics is a computational technique,
which enables the extraction of large volumes of quantitative features
from CT, MR, or PET images and converts them into mineable,
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high-dimensional data (18). Radiomics has been widely utilized in
CNS malignancies (19-21). For MB, radiomics has been mainly
applied to the differential diagnosis of MB and the prediction of
molecular subtypes (15, 22, 23). Furthermore, multimodal MRI
radiomics has also been applied in MB. For example, Wang et al.
developed a preoperative model for predicting the SHH and Group 4
subtypes based on TIWI, T2WI, T1C, FLAIR and ADC sequences
(24). However, prognostic studies of MB remain limited, and they
have mainly concentrated on long-term outcomes, such as OS, and
only a few have addressed short-term outcome prediction.

This study investigated the predictive value of MRI based
radiomics and clinical characteristics for identifying recurrence in
pediatric MB, aiming to provide objective information for early
detection of high-risk patients and the implementation of personalized
therapeutic strategies.

2 Methods
2.1 Patients

A total of 95 pediatric patients who underwent radical resection
surgery, and pathologically diagnosed MB from two center (center A,
n =59, center B, n = 36) between March 2011 and March 2023, were
retrospectively analyzed. Basic clinical data were collected through the
medical record system. The inclusion criteria were summarized as
follows:(1) histopathological confirmation of MB; (2) age ranged from
0 to 18 years; (3) pre-treatment MRI performed within 2 weeks before
surgical resection, including minimally the TIWI, T2WI, and TIWI_
CE sequences; (4) regular follow-up for more than 2 years after
surgical resection. The exclusion criteria were as follows: (1) poor-
quality MR images (e.g., Severe motion artifacts); (2) presence of other
CNS tumors; (3) patients who had received any anti-MB tumor
treatment prior to this MRI examination; (4) the follow-up data was
incomplete, or the follow-up period was less than 2 years.

According to the guidelines for response assessment in MB and
leptomeningeal seeding tumors (25), patients were classified into the
recurrent group if any of the following criteria were met within 2 years
post-treatment: (1) > 25% progression (compared to the smallest
measurement recorded); (2) appearance of new disseminated lesions
in the brain or in the spinal canal; (3) pathologically confirmed
recurrence after secondary surgery; (4) conversion of cerebrospinal
fluid cytology from negative to positive for tumor cells. Otherwise,
they were classified into the non-recurrent group.

2.2 Clinical data collection

Clinical characteristics were collected from pediatric patients with
MB, including sex, age, pathological type (classic, nodular or
desmoplastic, anaplastic/large cell variants, extensive nodularity),
tumor location (median if the vertical distance of the tumor center
from the midline of the posterior cranial fossa was <1 cm, non-median
if >1 cm), cystic degeneration/necrosis (yes/no), hemorrhage (yes/no),
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hydrocephalus (yes/no), degree of enhancement (mild/marked) and
enhancement pattern (focal/incomplete/diffuse enhancement).

2.3 MR image acquisition

All patients underwent MRI within 2 weeks prior to treatment.
The required imaging sequences included at least TIWI, T2W1], and
TIWI_CE. Scans were performed using four different MRI systems:
Siemens 3.0T, Canon 1.5T, Philips 3.0T, and GE 3.0T. These sequences
share identical parameters when acquired using the same scanning
machine. During T1-weighted enhanced imaging, gadolinium butanol
was administered intravenously at a dosage of 0.1 mmol/kg body
weight with an infusion rate of 2 mL/s. Detailed scanning parameters
are presented in Table 1.

2.4 Tumor segmentation and feature
extraction

Tumor segmentation was performed using ITK-SNAP 4.2.2
software'. Axial TIWI, T2WI, and TIWI_CE sequences were
imported into the software. A radiologist with 2 years of experience
in neuroimaging manually delineated the ROI on each slice,
carefully avoiding peritumoral edema and adjacent vasculature. The
software subsequently generated the volume of interest.
Segmentation results were reviewed and confirmed by another
radiologist with over 20 years of experience. Both radiologists were
blinded to patients” information and recurrence status throughout
the process. Radiomics feature extraction was conducted using
Feature Explorer Pro (FAE, v0.5.13) in Python (3.7.6) (26). The
process of feature extraction in this study followed the Image
Biomarker Standardization Initiative (IBSI). Firstly, we performed
N4 bias field correction on all the MRI images to correct the
influence caused by the non-uniformity of the magnetic field. To
unify the imaging differences among various MR devices, the voxel
intensity values of all MR images were normalized to a range of [0,
1] using min-max normalization prior to feature extraction. This
normalization process enhanced the comparability of the imaging
data and laid a solid foundation for subsequent quantitative
analysis. Then, the MR images were resampled to a uniform voxel
size of 1 x 1 x 1 mm?® We imported the three sequences of all
patients into the FAE software in sequence. After performing image
preprocessing, we extracted radiomics features from each sequence
in sequence. The feature types included First Order, Shape, and
gray-level co-occurrence matrix (GLCM) features. The GLCM was
configured with the following parameters: a quantization of 32 gray
levels, a pixel distance of 1, and symmetric mode. After the feature
extraction of each sequence was completed, a radiomics feature
matrix was generated. Finally, the radiomics feature matrices of the
three sequences were merged. Radiomics features with ICC > 0.75
were retained and those with ICC <0.75 were excluded.
Furthermore, we applied the ComBat algorithm to eliminate the
differences among various MR devices and different field strengths.

1 http://www.itksnap.org/
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TABLE 1 Detailed parameters of magnetic resonance imaging.

Sequence TR/TE FOV FA Slice Voxel size

(ms) (mm)  (°) thickness/ (mm)
gap (mm)

Siemens 3.0T

TIWI 149/2.5 256 x 208 70 5/1 0.8 x0.8%x5.0

T2WI 4210/93 256 x 208 150 5/1 0.8 x0.8x5.0

T1CE 467/2.5 256 x 208 70 5/1 0.9%x0.9x5.0

Canon 1.5T

T1IWI 2100/17 288 x 224 90 6/1 0.5x%0.5x6.0

T2WI 5320/119 | 288x224 90 6/1 0.5%0.5% 6.0

TICE 447.4/55 | 288x224 90 6/1 0.5%0.5% 6.0

Philips 3.0T

TIWI 2000/20 | 256x207 = 90 6/1 0.9x 1.1 6.0

T2WI 2600/80 | 256x207 = 90 6/1 0.9 1.1x 6.0

TICE 2000/20 | 256x207 = 90 6/1 0.9x 1.1 6.0

GE 3.0T

TIWI 1251/16 | 320x256 = 90 6/1 0.8x0.9% 6.0

T2WI 6239/130 320 x 256 90 6/1 0.8 x0.9x6.0

T1CE 162.4/1.6 320 x 256 90 6/1 0.8 x0.9x6.0

Finally, the Dice coeflicient was calculated to assess interobserver
variability between the two radiologists, yielding a value of
approximately 0.92, indicative of good agreement.

2.5 Feature selection

Ultimately, 168 radiomics features were extracted from the three
sequences. A total of 56 features were extracted from each sequence,
comprising 18 first-order features, 24 texture features, and 14 shape
features. Subsequently, the entire cohort was randomized into a
training dataset (n = 67, positive/negative = 27/40) and a test dataset
(n = 28, positive/negative = 11/17). Radiomics model development
was performed using pipelines developed in the FAE software. Firstly,
up-sampling was performed in the training dataset by randomly
duplicating cases until a balanced sample distribution was achieved.
The up-sampling method was strictly confined to the training set and
was not applied to the test dataset. In addition, normalization was
applied to the feature matrix using Z-score and mean normalization.
Due to the high-dimensional of the feature space, feature similarity
was evaluated by computing the Pearson correlation coefficient (PCC)
between each pair of features. Feature pairs exhibiting a PCC greater
than 0.99 were excluded to minimize multicollinearity and enhance
robustness.

model This procedure effectively reduced the

dimensionality of the feature space while maintaining
feature independence.

Prior to model establishment, three feature selectors were employed:
analysis of variance (ANOVA), recursive feature elimination (RFE), and
the Kruskal-Wallis (KW) test. All three feature selection techniques
were implemented in parallel. Support vector machine (SVM) was
adopted as the classification algorithm due to its robustness and

capability to project features into a higher-dimensional space for
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optimal label separation. Various combinations of feature selection
methods and classifiers were compared, and the optimal model was
identified based on the area under the curve (AUC). The
hyperparameters were determined through 5-fold cross-validation.
Among the 67 cases in the training dataset, four-fifths of the samples
were utilized for model training in each iteration, while one-fifth were
used for the validation. A 5-fold cross-validation procedure was
implemented, resulting in 268 cases in the cross-validation training
dataset (cv-train) and 67 cases in the validation dataset (cv-val). All
samples from the training dataset were also utilized for model
development and subsequently evaluated on an independent
test dataset.

Finally, the radiomics model that combined ANOVA-based
feature selection with a SVM classifier achieved the highest AUC. A
total of six radiomics features were selected to develop the final
radiomics model for predicting MB recurrence.

2.6 Model development

In the training dataset, the selected radiomics signatures were
employed to calculate Rad-score. The clinical model was developed
subsequently based on the selected clinical characteristics. The
hybrid model was stored in the pickle serialization format of
Python, enhancing its reproducibility and practical applicability in
clinical settings. The selected significant clinical variables were
combined with the Rad-score to develop a hybrid model using
logistic regression analysis and then visualized as a nomogram,
aiming to facilitate clinical application. Receiver operating
characteristic (ROC) curves were plotted for all three models, and
the AUC was calculated to evaluate their predictive performance.
The 95% ClIs were estimated using bootstrap resampling with 1,000

10.3389/fneur.2025.1624819

iterations. The DeLong test was applied to conduct a statistical
comparison of the areas under the ROC curves. The Hosmer-
Lemeshow test was employed to plot the calibration curve.
Decision curve analysis (DCA) was employed to evaluate the net
clinical benefit of each model in predicting recurrence. The overall
methodology of the study is illustrated in Figure 1.

2.7 Data analysis

The data analysis in this study was conducted using R-studio 4.4.2
and SPSS 26.0 software. The differences of continuous variables were
compared using t-test. Categorical variables were analyzed using
either Chi-square test or Fisher’s exact test to assess intergroup
differences. A p-value <0.05 indicated statistical significance.

3 Results

3.1 Clinical characteristics and
conventional imaging features

A total of 95 children with MB were involved, including 38 cases
in the recurrence group (28 men and 10women, with an average age
of 8.3 + 3.5 years) and 57 cases in the non-recurrence group (47 men
and 10women, with an average age of 9.1 + 4.1 years). The results of
univariate analysis revealed that there were significant differences in
three characteristics, including degree of enhancement, enhancement
pattern and tumor location (p < 0.05, Table 2). Multivariate logistic
regression analysis indicated that enhancement pattern and tumor
location emerged as independent prognostic factors (p-values = 0.033
and 0.015 respectively).
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TABLE 2 Univariate analysis of clinical characteristics and conventional imaging features.

Variable Recurrence group Non-recurrence Total Statistical results P-value
(n =38) group (n = 57) (n = 95) G2/t

Sex ¥ =1.056 0.304
Male 28 (73.7) 47 (82.5) 75 (78.9)
Female 10 (26.3) 10 (17.5) 20 (21.1)

Age (years), mean + SD 83+35 9.1+4.1 1=0.921 0.359

Pathological type x* =1.080 0.859
Classic 26 (68.4) 43 (75.4) 69 (72.6)
Nodular or desmoplastic 6 (15.8) 7(12.3) 13 (13.7)
Anaplastic/large cell variants 5(13.2) 5(8.8) 10 (10.5)
Extensive nodularity 1(2.6) 2(3.5) 3(3.2)

Ki-67 index 2 =0.176 0.675
>50% 21 (55.3) 29 (50.9) 50 (52.6)
<50% 17 (44.7) 28 (49.1) 45 (47.4)

Tumor location ' =4.791 0.007
Median 26 (68.4) 52(91.2) 72 (79.1)
Non-median 12 (31.6) 5(8.8) 19 (20.9)

Cystic degeneration/necrosis ¥ =1.056 0.304
Yes 28 (73.7) 47 (82.5) 77 (84.6)
No 10 (26.3) 10 (17.5) 14 (15.4)

Hemorrhage 1 =0.925 0.336
Yes 4(10.5) 3(5.3) 7(7.4)
No 34 (89.5) 54 (94.7) 88 (92.6)

Hydrocephalus x* =0.000 1.000
Yes 36 (94.7) 55(96.5) 91 (95.8)
No 2(5.3) 2(3.5) 4(42)

Degree of enhancement 1 =4.967 0.026
Mild 6(15.8) 21 (36.8) 27(28.4)
Marked 32(84.2) 36 (63.2) 68 (71.6)

Enhancement pattern ¥ =7.600 0.022
Focal enhancement 6 (15.8) 13 (22.8) 19 (20.0)
Incomplete enhancement 6 (15.8) 21 (36.8) 27 (28.4)
Diffuse enhancement 26 (68.4) 23 (40.4) 49 (51.6)

3.2 Radiomics Slg natures TABLE 3 The coefficients of radiomics features.

Feature name Coefficient in model

Ultimately, 168 radiomics features were extracted for each
. . . A . T1CE_original_shape_Elongation 0.282
patient. Six radiomics features were selected for developing the
radiomics model (Table 3 and Figure 2), and the Rad-score was T1CE_original_shape_Flatness —1.042
calculated as follows: T1CE_original_shape_MajorAxisLength 0.328
T1WI_original_shape_Elongation —0.438
. . T2WI_original_shape_Elongati —0.
Rad —score =T1CE _ original _shape_Elongatzonx(0.282) —origina’_shape_tlongation 0168
+T1CE _ Original_ Shape _ Flatness T2WI_original_shape_Flatness 0.620

x(—1.042) +T1CE _original _shape _ MajorAxisLength

x(0.328) +T1WI _original _shape _ Elongation

x(—0.438) +T2WI _original _shape _ Elongation 3.3 Model performances

x(—0.168) +T2WI _original _shape _ Flatness

x(0.620)+0.034 Two clinical characteristics and six radiomics features were

utilized to develop the clinical model, radiomics model, and
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FIGURE 2
The weights of radiomics features.

hybrid model. The ROC curves are exhibited in Figure 3, and their
performance metrics in predicting MB recurrence are detailed in
Table 4. The results demonstrated that the hybrid model exhibited
superior predictive performance. The AUC was 0.833 (95% CI:
0.730-0.937) in the training dataset and 0.802 (95% CI: 0.635-
0.970) in the test dataset, both outperforming the clinical model
(training dataset AUC = 0.731 [95% CI: 0.614-0.847]; test dataset
AUC = 0.628 [95% CI: 0.425-0.832]) and the radiomics model
(training dataset AUC = 0.714 [95% CI: 0.587-0.841]; test dataset
AUC = 0.711 [95% CI: 0.514-0.909]). In the training dataset, the
hybrid model achieved higher accuracy (0.821), sensitivity
(0.780), and specificity (0.925) compared with the clinical model
(0.672, 0.778, and 0.600, respectively) and the radiomics model
(0.642, 0.704, and 0.600, respectively). These findings were
similarly validated in the test dataset. Tumor location,
enhancement pattern, and Rad-score were incorporated into a
nomogram to facilitate clinical application (Figure 4). Calibration
curves (Figure 5) demonstrated notable agreement between
predicted and actual recurrence of MB. Moreover, DCA (Figure 6)
indicated that when the threshold probability ranged from 0.15 to
0.70, the hybrid model provided greater net clinical benefit in
predicting MB recurrence than the clinical or radiomics
models alone.

4 Discussion

This study investigated the predictive value of pre-treatment
MRI-based radiomics and clinical characteristics for MB recurrence.
The results indicated that the hybrid model developed by integrating
tumor location, enhancement pattern, and Rad-score demonstrated
excellent predictive performance in the recurrence of MB. This
approach enables clinicians with a noninvasive, personalized method
for the pre-treatment evaluation of the risk of MB recurrence, enabling
early adjustment of treatment strategies, thereby improving pediatric
prognosis positively.

The pathogenesis of MB remains elusive. Some studies have
demonstrated that the occurrence of MB may be associated with
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genetics or genetic mutations. For instance, hereditary cancer
susceptibility syndromes, such as Gorlin syndrome and Li-Fraumeni
syndrome, are associated with an increased risk of MB (27, 28).
Genetic mutations involved in these syndromes include suppressor of
fused (SUFU), patched homolog 1 (PTCH1), adenomatous polyposis
coli (APC), and tumor protein 53 (TP53) (27-29). However, most
genetic susceptibility and mutation screening tests remain in the
research and development phase and are not yet widely implemented
in clinical practice. As a result, no definitive preventive or causative
therapeutic strategies for MB are currently available. At present, the
treatment of MB relies on a traditional multimodal approach.
Nevertheless, due to the high degree of tumor heterogeneity, responses
to radiotherapy and chemotherapy vary markedly among patients,
leading to significant differences in clinical outcomes. Therefore,
accurate evaluation of short-term prognosis and recurrence risk is of
critical importance. Early identification of patients at high risk of
recurrence allows for timely modification of treatment strategies,
potentially reducing the negative consequences of under- or
overtreatment, prolonging survival, improving prognosis, and
enhancing overall quality of life.

Recurrent MB pediatric patients are confronted with significant
health risks and complications, such as increased risk of tumor
dissemination, significantly elevated difficulty in treatment, and severe
impairment of neurocognitive function, imposing remarkable
psychological and economic burdens on the affected children and
their families. A retrospective study indicated that the 1-year OS rate
of recurrent pediatric MB patients was 38.3% * 4%, the 2-year OS rate
was 16.9% * 3.3%, and the 5-year OS rate was 12.4% + 2.8% (30).
These findings suggest that children with recurrent MB tend to have
a poorer prognosis and lower survival rates. Recurrence has emerged
as a critical determinant of MB outcomes, indicating that using
recurrence rather than OS as the study endpoint may provide greater
clinical value for pediatric patients. Given the limited efficacy of
salvage therapies in treating recurrent MB, recent studies have
emphasized the importance of recurrence prevention and early
identification as the most promising strategies for improving outcomes
in these cases (31). Consistently, the present study adopted recurrence
as the primary endpoint. The predictive value of pre-treatment
MRI-based radiomics features hybrid with clinical characteristics was
evaluated, and a visualized nomogram model was developed to assist
clinicians in performing comprehensive assessments and optimizing
individualized treatment strategies for children with MB.

Several studies have identified various prognostic factors in
pediatric patients with MB, including Chang stage, risk stratification,
molecular subtype, tumor metastasis, postoperative radiotherapy and
chemotherapy, as well as residual tumor volume (32-34). Although
molecular subtyping is the most reliable predictor of MB prognosis,
genetic testing was not included in this study due to its high cost and
technical complexity, hindering its widespread clinical adoption. In the
present study, tumor location, degree of enhancement and enhancement
pattern demonstrated significant differences between the recurrent and
non-recurrent groups, which align with results reported by Luo et al.
(33) and Yan et al. (35). Tumor location has also shown to influence
prognosis, possibly due to differences in the histological origins and
preferential anatomical sites associated with specific molecular subtypes.
For instance, WNT subtype typically arises in the brainstem or
cerebellopontine angle, and SHH subtype predominantly occurs in the
cerebellar hemispheres, while Group 3 and Group 4 subtypes are more
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FIGURE 3
ROC curves of the hybrid model (A), radiomics model (B), and clinical model (C) for predicting the recurrence of MB.
TABLE 4 Performance parameters of the three models.
Model AUC 95% Cls Acc Sen Spe PPV NPV
Clinical model
Training set 0.731 0.614-0.847 0.672 0.778 0.600 0.568 0.800
Test set 0.628 0.425-0.832 0.571 0.727 0.471 0.471 0.727
Radiomics model
Training set 0.714 0.587-0.841 0.642 0.704 0.600 0.543 0.750
Test set 0.711 0.514-0.909 0.643 0.546 0.706 0.546 0.706
Hybrid model
Training set 0.833 0.730-0.937 0.821 0.780 0.925 0.857 0.804
Test set 0.802 0.635-0.970 0.643 0.738 0.706 0.546 0.706

frequently located in the midline posterior fossa (9, 36). In the present
study, multivariate logistic regression analysis identified tumor location
and enhancement pattern as independent risk factors for MB
recurrence. The enhancement pattern is also correlated with tumor
recurrence. This relationship may be explained by the observation that
tumors exhibiting a more extensive enhancement area tend to have a
richer blood supply, greater vascular leakage, and more pronounced
disruption of the blood-brain barrier, coupled with a higher degree of
malignancy, thereby demonstrating an increased propensity for
recurrence (37).

Regarding radiomics-based prognostication in MB, the majority
of existing studies have concentrated on long-term outcomes, such as
overall survival (OS), while investigations targeting short-term
endpoints, like recurrence remain comparatively limited. Luo et al.
(33) developed a prognostic stratification model for MB. Their
findings demonstrated that the radiomics nomogram can serve as a
non-invasive method to predict pediatric MB prognosis, achieving
AUC values of 0.926 and 0.835 in the training and validation datasets,
respectively. However, their model did not incorporate relevant
clinical risk variables, potentially limiting its predictive robustness. In
contrast, a hybrid prognostic model was developed in the present
study by integrating two key clinical parameters with six recurrence-
associated radiomics features. Similarly, Liu et al. (34) developed a
radiomics model for predicting progression-free survival in pediatric
MB using features derived from T1WI and TIWI_CE sequences.
Their results highlighted the advantage of integrating radiomics
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features with clinical factors, such as age and metastatic status over
models based solely on clinical data. Nonetheless, their analysis was
limited to two imaging modalities. In the current study, the feature
extraction framework was extended by incorporating T2WT data,
thereby enabling a more comprehensive radiomic characterization of
tumor biology and heterogeneity.

In this study, six optimal radiomics features were identified to
develop the model, including 6 shape features derived from T2WI and
TIWI_CE sequences. Shape features describe the geometric
morphology of the lesion, reflecting its three-dimensional spatial
distribution and structural complexity. Irregular tumor shapes,
including those with low sphericity and flatness, may be indicative of
a poorer prognosis in MB. This could be attributed to the fact that
aggressive tumors often exhibit high atypia, low cell differentiation,
active mitotic activity, uncontrolled cell division, uneven local growth
rate and angiogenesis, significant variations in blood supply, and
inconsistent growth velocities in certain regions, leading to irregular
morphologies. T2WT reflects the morphological features, signal
characteristics, and internal cystic changes/necrosis of the tumors,
reflecting the heterogeneity of tumors to some extent (38). In contrast,
TIWI_CE reflects the tumor’s vascularity and disruption of the
blood-brain barrier, offering a more comprehensive assessment of
tumor heterogeneity (39). Furthermore, both T2WT and TIWI_CE
are standard sequences used in the initial MRI evaluation of children
with MB, and their widespread availability facilitates easy
implementation in routine clinical practice. Notably, the application
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of multimodal MRI radiomics in MB is a direction that requires  (DWI), perfusion-weighted imaging (PWI), and magnetic resonance
further research in the future. Moving forward, research efforts should  spectroscopy (MRS) to enhance the diagnostic accuracy and
integrate imaging sequences such as diffusion-weighted imaging  robustness of radiomics predictive models.
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This study still exists several limitations. Firstly, molecular typing was
not integrated as a predictive indicator in this study. Future research
should investigate the impact of combining molecular typing with clinical
and radiomics features on MB patients’ prognosis. Secondly, the sample
size was limited, and no external data were included to validate the
generalizability of the model. Therefore, larger sample size and prospective
studies are required to advance this research field. Thirdly, this study only
concentrated on the short-term prognosis of children within 2 years.
Long-term follow-up studies and survival models (e.g., Cox, time-
dependent AUC) are necessary to comprehensively assess such patients’
long-term prognosis in the future. Finally, it should be noted that, unlike
adults, factors of pediatric growth may affect the radiomics analysis.
Future research could consider setting a unified and smaller age range for
the children participating in the study to mitigate potential confounding
effects associated with growth-related factors.

5 Conclusion

The hybrid model combining radiomics and clinical variables
could effectively predict the recurrence of pediatric MB. It may also
serve as a non-invasive approach to help clinicians in the early
identification of patients who are at high risk of recurrence and in
formulating personalized treatment strategies, thereby improving the
prognosis of children with MB.
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