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Background and purpose: Previous studies have demonstrated sex differences 
in the association between body mass index (BMI) and hemorrhagic stroke. 
Cerebral microbleed (CMB) is a clinically important marker of bleeding-prone 
microangiopathy, which is associated with a risk of hemorrhagic stroke. No 
study has evaluated sex differences in the relationship between BMI and CMB. 
In this longitudinal study, we aimed to conduct sex-stratified analyses to assess 
whether sex modifies the effect of BMI on CMB progression.
Methods: The database of the CHALLENGE study (Comparison Study of 
Cilostazol and Aspirin on Changes in Volume of Cerebral Small Vessel Disease 
White Matter Changes), which enrolled patients aged 50–85 years with cerebral 
small vessel disease, was analyzed. Of the 256 subjects, 189 who underwent 
a 2-year follow-up brain MRI scan were included in the analysis. We  used a 
generalized linear mixed model with a negative binomial distribution to assess 
the association between BMI and the 2-year change in CMB count, and 
conducted sex-stratified analyses to account for potential sex-specific effects.
Results: A total of 65 men and 124 women were analyzed. In the sex-stratified 
negative binomial model, a significant association was observed in women 
but not in men. In women, each 1 kg/m2 increase in BMI was significantly 
associated with a decrease in the 2-year change in the number of total CMBs 
after adjustment for age and baseline CMB count [β = −0.120, 95% confidence 
interval (CI): −0.202 to −0.037, p = 0.005]. When CMBs were categorized into 
lobar and deep/infratentorial regions, significant associations were observed 
for both lobar (β = −0.114, 95% CI: −0.213 to −0.015, p = 0.024) and deep/
infratentorial CMBs (β = −0.123, 95% CI: −0.222 to −0.023, p = 0.015). By 
contrast, no significant associations were identified between BMI and the 2-year 
change in CMB counts in men (all p > 0.05).
Conclusion: Higher BMI in later life was associated with less progression of 
CMBs in women, but not in men.
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Introduction

Obesity is known as a risk factor for ischemic stroke in both men 
and women (1). However, previous studies have shown differences in 
hemorrhagic stroke between men and women (1, 2). In the UK 
Biobank cohort study, obesity was associated with an increased risk of 
hemorrhagic stroke only in men but not women (1). Moreover, a UK 
prospective study found that higher body mass index (BMI) was 
associated with a decreased risk of hemorrhagic stroke in women (3). 
In terms of the location of intracranial hemorrhage (ICH), a previous 
study found that obesity increased the risk of deep ICH but had no 
significant effect on the risk of lobar ICH (4). However, it is not well 
known whether there are sex differences according to the ICH location 
or underlying pathophysiology.

Cerebral microbleed (CMB) is a clinically important cerebral 
small vessel disease (cSVD) marker of bleeding-prone 
microangiopathy, which is associated with a risk of hemorrhagic 
stroke (5). The location and distribution of CMBs are considered 
to reflect their underlying pathology (6). Specifically, deep CMBs 
are presumed to be caused by cerebrovascular risk factors (e.g., 
hypertensive angiopathy), whereas lobar CMBs reflect cerebral 
amyloid angiopathy (CAA), especially in cases of strictly lobar 
CMB distribution (6, 7). Previous studies examining the 
relationship between CMB and BMI have reported inconsistent 
results (8–15). For example, a previous Korean study reported 
that a higher BMI was associated with an increased risk of deep 
or infratentorial CMBs, but not with lobar CMBs (8). In contrast, 
a more recent UK study found that a higher BMI was linked to a 
decreased risk of lobar CMBs, with no association observed for 
deep or infratentorial CMBs (9).

Most previous studies on the relationship between BMI and 
CMB have been cross-sectional (8, 9, 13–15), with only a limited 
number of longitudinal studies conducted (10–12). However, 
because cross-sectional comparisons capture only a single moment 
in time, they have limitations in establishing causal relationships. 
Moreover, among the few longitudinal studies, most focused solely 
on the total number of CMBs without considering their location 
and distribution, which may have contributed to the inconsistent 
results (11, 12). There is one longitudinal study that stratified 
CMBs by location and distribution, which found that baseline 
underweight was associated with an increased risk of lobar CMBs 
compared to normal weight, but not with deep (including 
infratentorial) CMBs (10).

Considering the sex differences in the effects of BMI on 
hemorrhagic stroke, we hypothesized that sex may also affect the 
relationship between BMI and CMB. Although previous studies 
have designated sex as a confounding factor (8–10), no study has 
focused on sex differences in the association between CMB and 
BMI. If sex is an important modifier, unrecognized sex differences 
may have contributed to the inconsistent findings of previous 
studies (8–10). Therefore, we  aimed to conduct sex-stratified 
analyses to determine whether sex modifies the effect of BMI on 
CMB progression. In this study, we analyzed longitudinal data 
from the CHALLENGE study (Comparison Study of Cilostazol 
and Aspirin on Changes in Volume of Cerebral Small Vessel 
Disease White Matter Changes) (16) to investigate the association 
between BMI and CMB progression separately in men 
and women.

Methods

Study participants

This study was a sub-analysis of the CHALLENGE (Unique 
identifier: NCT01932203)1 trial, a multicenter, double-blind, 
randomized controlled trial that enrolled participants aged 50–85 years 
with cSVD (16). The diagnosis of cSVD was established based on the 
presence of at least one lacune and moderate to severe white matter 
hyperintensities (WMHs) according to the modified Fazekas criteria 
for periventricular WMHs with a cap or rim of ≥5 mm and deep 
WMHs with a maximum diameter of ≥10 mm (17). The main 
objective of the trial was to compare the effects of cilostazol and aspirin 
on the changes in WMHs volume over 2 years. Between July 2013 and 
August 2016, 282 participants were screened for eligibility, of whom 
256 participants were randomly assigned to the cilostazol or aspirin 
group. Of the 256 CHALLENGE subjects, 189 participants with a 
follow-up magnetic resonance imaging (MRI) scan were included in 
our analysis. A comparison between subjects with and without a 
follow-up MRI scan is presented in Supplementary Table 1. There were 
no significant differences between the two groups, including age, sex, 
vascular risk factors, and baseline CMBs. This study was conducted in 
accordance with the guidelines of the Declaration of Helsinki and 
approved by the Institutional Review Board of Inha University Hospital 
(approval number: IUH-IRB 2013–03-006). Written informed consent 
was obtained from all potential participants prior to enrollment.

Imaging markers

Brain MRI data including axial T2∗-weighted gradient-echo 
sequence (4 mm slice thickness with no interslice gap) were acquired 
using a 3.0 Tesla MR scanner. The same scanner and the same sequence 
were used for the baseline and follow-up MRI. CMBs were defined as 
lesions with a diameter of ≤10 mm (18) and rated using the Microbleed 
Anatomical Rating Scale (MARS) (19). Two experienced neurologists, 
blinded to the clinical information, counted CMBs in the lobar regions 
(frontal, parietal, temporal, occipital, and insular cortices) and in the 
deep/infratentorial regions (basal ganglia, thalamus, internal/external 
capsules, corpus callosum, deep/periventricular white matter, 
brainstem, and cerebellum) on gradient-echo MRI images for each 
patient. The Pearson’s correlation coefficient for the agreement on the 
number of CMBs between the two neurologists was 0.958 (95% 
confidence interval 0.809–0.989; p < 0.001). The two neurologists 
reached a consensus after discussion in cases of initial disagreement.

Statistical analysis

Baseline characteristics were compared between men and women 
using the chi-square test for categorical variables (prevalence of 
hypertension, diabetes, dyslipidemia, and current smoking, BMI 
classification, proportion of apolipoprotein E4 (APOE4) carriers, 
types of antiplatelet medications, and proportion of individuals with 

1  Clinicaltrials.gov

https://doi.org/10.3389/fneur.2025.1624905
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://Clinicaltrials.gov


Yoon et al.� 10.3389/fneur.2025.1624905

Frontiers in Neurology 03 frontiersin.org

CMBs). Student’s t-test was used for normally distributed continuous 
variables (age and BMI), while the Mann–Whitney U-test was applied 
for non-normally distributed continuous variables (follow-up 
duration, WMH volume, and counts of lacunes and CMBs) to 
compare men and women.

We used a generalized linear mixed model (GLMM) with a 
negative binomial distribution to evaluate the association between 
BMI and the longitudinal change in CMB count. The outcome 
variable, the 2-year change in CMB count, was count data exhibiting 
overdispersion (variance > mean). Therefore, a negative binomial 
GLMM was used instead of a Poisson model. Model 1 was adjusted 
for age and baseline CMB count, and Model 2 was further adjusted for 
hypertension, diabetes, dyslipidemia, current smoking, APOE4 status, 
and antiplatelet medication (aspirin vs. cilostazol). Sex-stratified 
analyses were performed to assess whether sex modifies the 
association between BMI and CMB progression.

All statistical analyses were performed using SPSS version 23.0 
(IBM SPSS Inc., New York, NY, United States). Two-tailed p values 
were obtained, and p < 0.05 was considered statistically significant.

Results

A total of 65 men and 124 women were included in the analysis. 
The baseline characteristics of men and women are presented in 
Table 1. Compared with men, women were older (74.5 vs. 71.5 years; 
p = 0.014). Men were more likely than women to be current smokers 
(15.4% vs. 1.6%; p < 0.001). No other baseline clinical differences, 
including BMI, were observed between the groups. A comparison of 
baseline cSVD markers revealed that the median [interquartile range 
(IQR)] number of lacunes was higher in men than in women [8 (4–13) 
vs. 5 (2–9); p = 0.014]. There were no significant differences in total 
WMHs volume, the prevalence of CMB at baseline (70.8% vs. 71.8%; 
p = 1.000), or the median median [IQR] number of total CMBs [1 
(0–7) vs. 2 (0–7); p = 0.810].

In the sex-stratified negative binomial mixed-effects model, a 
significant association between BMI and 2-year changes in CMB counts 
was observed only in women, but not in men (Table 2). Among women, 
each 1 kg/m2 increase in BMI was significantly associated with a decrease 
in the 2-year change in the total number of CMBs [Model 1: β = −0.120, 
95% confidence interval (CI): −0.202 to −0.037, p = 0.005; Model 2: 
β = −0.117, 95% CI: −0.203 to −0.032, p = 0.007]. When CMBs were 
categorized as lobar or deep/infratentorial, significant associations were 
observed for both lobar CMBs (Model 1: β = −0.114, 95% CI: −0.213 to 
−0.015, p = 0.024; Model 2: β = −0.112, 95% CI: −0.216 to −0.009, 
p = 0.034) and deep/infratentorial CMBs (Model 1: β = −0.123, 95% CI: 
−0.222 to −0.023, p = 0.015; Model 2: β = −0.123, 95% CI: −0.227 to 
−0.019, p = 0.020). In men, however, no significant association was 
observed between BMI and the 2-year change in CMB counts (all 
p > 0.05). Figure  1 shows the estimated effects of BMI on 2-year 
longitudinal changes in the total number of CMBs in women and men.

To minimize potential ceiling effects, we conducted a sensitivity 
analysis excluding participants with >10 baseline CMBs. The results 
were consistent with the main analysis, showing similar trends without 
meaningful differences (Supplementary Table  2). Additionally, a 
sensitivity analysis excluding the small number of midlife participants 
(<65 years; 9 men and 6 women) did not change the observed trends 
or affect statistical significance (Supplementary Table 3).

Discussion

In this study, we examined the impact of BMI on CMB progression 
in men and women separately, using longitudinal data from the 
CHALLENGE study, which included patients aged 50–85 years with 
cSVD. Two key considerations should be noted when interpreting our 
findings. First, the CHALLENGE trial, which served as the basis for 
our analysis, was not designed to examine sex-specific differences, and 
the smaller number of men may have limited the statistical power for 
male-specific analyses. Second, only baseline BMI was available 
because repeated measurements during the 2-year follow-up were not 
collected. Therefore, our findings should be interpreted as reflecting 
the association between baseline BMI and subsequent CMB 

TABLE 1  Comparison of baseline characteristics between men and 
women.

Characteristics Men 
(n = 65)

Women 
(n = 124)

P-value

Age, years 71.5 (7.8) 74.5 (5.9) 0.014

Hypertension 52 (80.0%) 104 (83.9%) 0.548

Diabetes 27 (41.5%) 46 (37.1%) 0.637

Dyslipidemia 33 (50.8%) 60 (48.4%) 0.759

Current smoking 10 (15.4%) 2 (1.6%) <0.001

Body mass index, kg/m2 24.2 (2.7) 25.0 (3.2) 0.085

BMI classification 0.194

 � Underweight 

(<18.5 kg/m2) 2 (3.1%) 0 (0.0%)

 � Normal weight 

(18.5–22.9 kg/m2) 17 (26.2%) 30 (24.2%)

 � Overwieght 

(23–24.9 kg/m2) 20 (30.8%) 34 (27.4%)

 � Obese (≥25 kg/m2) 26 (40.0%) 60 (48.4%)

Apolipoprotein E4 carrier 19 (29.2%) 30 (24.2%) 0.602

Antiplatelet medication 0.542

 � Aspirin 33 (50.8%) 69 (55.6%)

 � Cilostazol 32 (49.2%) 55 (44.4%)

Follow-up, years 1.99 (1.98–2.02) 2.00 (1.98–2.02) 0.998

Baseline cSVD markers

 � WMHs volume, mL 34.5 (20.0–47.7) 34.8 (26.5–50.0) 0.262

 � Number of lacunes 8 (4–13) 5 (2–9) 0.014

 � Presence of CMBs 46 (70.8%) 89 (71.8%) 1.000

 �   Strictly lobar 11 (16.9%) 16 (12.9%) 0.150

 �   Strictly deep 10 (15.4%) 24 (19.4%) 0.257

 �   Mixed 25 (38.5%) 49 (39.5%) 1.000

 � Number of CMBs

 �   Deep/infratentorial 1 (0–4) 1 (0–5) 0.291

 �   Lobar 1 (0–3) 0 (0–2) 0.407

 �   Total 1 (0–7) 2 (0–7) 0.810

Values are presented as the percentage (%), mean (SD), or median (IQR). CMB, cerebral 
microbleed; cSVD, cerebral small vessel disease; IQR, interquartile range; SD, standard 
deviation; WMH, white matter hyperintensity. *p < 0.05.
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progression, without accounting for potential changes in BMI 
over time.

Our analysis showed that BMI was associated with CMB 
progression only in women. Among women, higher BMI was associated 
with a lower rate of CMB progression. In previous studies evaluating the 
association between BMI and CMB (8–10), sex was treated as a 
confounder, but stratified analyses by sex were not performed. Our 
study was designed under the assumption that sex differences might 
exist; therefore, sex-stratified analyses were planned. Notably, in our 
study population, when adjusting for sex without stratification, there 
seemed to be  a significant association between BMI and CMB 
progression in both men and women. If our primary goal had not been 
to investigate sex differences, these differences within our population 
might have remained undetected. Our findings suggest that sex could 
be a potential modifier in the association between BMI and CMB.

Our study found that higher BMI was associated with less CMB 
progression in women, which may be in line with findings from a 
previous UK study reporting an association between higher BMI and 
a lower risk of hemorrhagic stroke (3). The mechanism underlying 
this inverse relationship between BMI and CMB progression remains 

unclear; however, one possible explanation could involve estrogen. 
Most women in our study, who were 56–85 years of age (mean 
74.5 years), were likely postmenopausal, and postmenopausal estrogen 
levels have been reported to be higher in obese women than in those 
with normal weight (20, 21). Estrogen is known to exert a protective 
effect on vascular endothelial cells by reducing oxidative stress (22, 
23). Estrogen-mediated vascular protection may partly contribute to 
the reduced risk of CMB progression in women with higher BMI in 
later life. Nevertheless, the lack of precise data on menopausal status, 
information on the use of hormonal therapy, and actual estrogen levels 
poses a limitation in supporting this proposed mechanism. 
Additionally, findings in younger age groups may differ from ours. In 
late-life, higher BMI in women may be  linked to relatively higher 
estrogen levels, which could contribute to vascular protection. In 
contrast, midlife obesity is associated with adverse metabolic and 
vascular effects, such as hypertension, dyslipidemia, and insulin 
resistance, potentially increasing the risk of cerebrovascular disease 
(24). Therefore, further age-specific studies are warranted.

Unlike in women, the lack of a significant association between 
BMI and CMB progression in men remains unclear. As noted above, 

TABLE 2  Sex-specific association between body mass index (BMI) and 2-year change in cerebral microbleed (CMB) count.

2-year change in CMB count per 1-kg/m2 BMI increase

Total CMBs Lobar CMBs Deep/infratentorial CMBs

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Model 1†

Women −0.120 (−0.202, −0.037) 0.005* −0.114 (−0.213, −0.015) 0.024* −0.123 (−0.222, −0.023) 0.015*

Men −0.072 (−0.202, 0.058) 0.280 −0.111 (−0.264, 0.042) 0.156 −0.003 (−0.188, 0.181) 0.973

Model 2‡

Women −0.117 (−0.203, −0.032) 0.007* −0.112 (−0.216, −0.009) 0.034* −0.123 (−0.227, −0.019) 0.020*

Men −0.000021 (−0.164, 0.164) 1.000 −0.032 (−0.228, 0.165) 0.752 0.036 (−0.185, 0.256) 0.750

CMBs, cerebral microbleeds; CI, confidence interval; BMI, body mass index. *p < 0.05. †Results of a generalized linear model (negative binomial) adjusted for the baseline number of CMBs 
and age. ‡Results of a generalized linear model (negative binomial) adjusted for the baseline number of CMBs, age, hypertension, diabetes, dyslipidemia, current smoking, apolipoprotein E4, 
and antiplatelet medication (cilostazol vs. aspirin).

FIGURE 1

Predicted 2-year change in cerebral microbleed (CMB) count by body mass index (BMI) in women and men. Results were obtained using a generalized 
linear mixed model with a negative binomial distribution, adjusted for age and baseline CMB count. *p < 0.05.
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the limited statistical power of the male subgroup in our study should 
be  taken into consideration. Beyond this, sex-specific biological 
factors may also contribute. Because our study enrolled relatively older 
adults, the observed sex-specific associations may reflect later life 
vascular aging patterns, with accelerated vascular changes in women 
after menopause and earlier aging in men (25, 26). In this context, 
higher BMI in late life may confer vascular protection in women, 
possibly through mechanisms such as preserved estrogen levels, 
whereas such effects appear to be less evident in men. Sex differences 
in adipokine profiles could also partly contribute to the sex-specific 
findings in our study. Even at the same BMI, men tend to exhibit a less 
favorable adipokine profile than women, characterized by lower 
adiponectin levels and a more pro-inflammatory state (27). Moreover, 
previous studies have suggested that for the same BMI increase, the 
decline in adiponectin may be greater in men than in women (28). 
However, further research is warranted to clarify the association 
between BMI and CMB progression in men because of the limited 
statistical power of the male subgroup in our study.

In the analysis stratified by CMB location, significant associations 
were observed for both deep and lobar CMBs in women. Deep CMBs 
are generally attributed to cerebrovascular risk factors such as 
hypertensive angiopathy (6). In contrast, lobar CMBs have 
heterogeneous underlying pathologies: strictly lobar CMBs are most 
commonly associated with CAA (6), whereas mixed-type lobar CMBs 
are more frequently related to hypertensive angiopathy (29, 30). 
Moreover, some mixed-type lobar CMBs may reflect an overlap 
between CAA and hypertensive angiopathy (31). We did not have data 
on amyloid positivity, and this uncertainty regarding the underlying 
pathology of lobar CMBs is one of the limitations of our study. Future 
studies using amyloid PET or CSF amyloid are warranted to investigate 
the association between BMI and lobar CMBs based on their 
underlying pathology.

This was the first study to focus on sex differences in the 
relationship between BMI and CMB. A key strength of our study 
was its longitudinal design rather than a cross-sectional design. 
However, several limitations should be acknowledged. First, the 
overall sample size of this study was relatively small. As mentioned 
earlier, the smaller number of men compared to women may have 
limited the statistical power of the male-specific analyses. Indeed, 
based on the Wald chi-square statistic, the statistical power 
appeared adequate in women but limited in men. Therefore, future 
studies with larger sample sizes, balanced sex ratios, and longer 
follow-up periods are warranted to confirm and extend these 
findings. Second, only baseline BMI data were available, and 
changes in BMI during the 2-year follow-up were not assessed. 
Sex-related baseline differences in age and smoking status may also 
pose potential limitations. Finally, because all participants were 
Korean, the generalizability of our findings to non-Asian 
populations may be limited.

Conclusion

Higher BMI in later life was associated with less CMB progression 
in women, but not in men. These findings highlight sex as a potential 
modifier in the relationship between BMI and CMB progression, 
underscoring the need for larger, biomarker-based longitudinal 
studies to confirm these results and clarify the underlying mechanisms.
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