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Objectives: Mitochondrial encephalomyopathy with lactic acidosis and stroke-
like episodes (MELAS) is a rare maternally inherited disease. The neuropathologic 
mechanisms and neural network alterations underlying stroke-like episodes 
(SLEs), a recurrent paroxysmal clinical event, remain unclear. The hidden Markov 
model (HMM) can detect profound alterations in neural activities across the 
whole-brain network.
Materials and methods: We initially collected data from a prospective cohort 
from 2019 to 2024. The confirmed diagnosis of MELAS was conducted through 
genetic testing or a muscle biopsy. Healthy control volunteers were recruited 
from the local community. By utilizing the HMM, we  evaluated the temporal 
characteristics and transitions of HMM states and the specific community 
pattern of transitions and activation maps of the whole brain for subjects.
Results: Thirty-six MELAS patients at the acute stage (MELAS-acute group) and 
30 healthy controls (HC group) were included in this study. Based on HMM, 
fractional occupancies in states 5 and 6 for MELAS were significantly decreased 
(p < 0.001), but fractional occupancies in states 2, 3, 4, 7, 8, 9, 10, and 11 were 
significantly increased (p < 0.05), compared to HCs. The lifetimes of HMM states 
showed a similar decrease as fractional occupancies. The switching frequency 
of HMM states was significantly increased in MELAS (p < 0.001). Combined with 
the special community patterns of transitions, MELAS displayed differential 
activity patterns in crucial areas of the default mode network (DMN) and visual 
network (VN).
Conclusion: This study suggests dynamic reconfiguration of HMM states, special 
transition modules, and multiple transition pathways in MELAS, providing novel 
insights into the neural network mechanisms underlying MELAS.
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Introduction

Mitochondrial encephalomyopathy with lactic acidosis and 
stroke-like episodes (MELAS) is a rare maternally inherited disease 
caused by mutations in mitochondrial or nuclear genes (1). Up to 80% 
of MELAS patients carry the m.3243A > G mutation in the MT-TL1 
gene encoding tRNALeu(UUR) (2). Especially, a stroke-like episode (SLE) 
is a recurrent paroxysmal clinical event that usually presents seizures, 
headaches, cortical blindness, motor weakness, and cognitive 
impairment (1, 3). SLEs associated with some signal abnormalities 
resolve completely; however, most lesions develop into cortical 
laminar necrosis, gliosis, and atrophy, resulting in the gradual 
accumulation of neurological dysfunction, which is heterogeneous 
(3). Previous studies have shown that SLEs were primarily seizure-
induced but not driven by angiopathic changes in the mechanism (4). 
Despite significant research efforts, the precise neuropathological 
mechanisms and neural network alterations underlying the 
progression of SLEs in MELAS remain unclear, highlighting the 
complexities of this disease.

Resting-state functional magnetic resonance imaging (rs-fMRI) 
can quantify intrinsic functional brain organization and measure 
synchronizations between spontaneous events in non-adjacent brain 
regions (5). Wang et  al. (6) investigated dynamic functional 
connectivity (dFC) in MELAS using a sliding window approach 
(SWA) to characterize global connectivity patterns, and the results 
showed that MELAS patients exhibited an inability to switch out of a 
state with weak connectivity into more highly and specifically 
connected network configurations, which was more significant at the 
acute stage of SLEs. This finding strongly suggested that MELAS 
patients, particularly in the acute phase, may experience disruptions 
in their brain network dynamics, leading to atypical patterns of 
connectivity transitions. Given that alterations in brain energy 
metabolism and neuronal integrity are central to MELAS 
pathophysiology, it might be plausible that the underlying damage 
affects the timely and efficient re-establishment of brain functional 
networks. However, this approach still has some limitations. 
Covariance matrices based on different windows are classified into 
different states by clustering analysis, which is highly dependent on 
the predetermination of time scales and neglects temporal variances 
of network fluctuations (7). Given the paroxysmal and recurrent 
nature of SLEs in MELAS, the underlying mitochondrial dysfunction 
could lead to fluctuating neuronal excitability and impaired energy 
metabolism, potentially causing transient disruptions in brain network 
connectivity. While the SWA offers a time-varying perspective, its 
reliance on pre-determined window lengths may not optimally 
capture the complex, rapidly changing, and quasi-stationary network 
states that could arise from such pathological processes.

On the other hand, the hidden Markov model (HMM), as a 
generative probabilistic model, is capable of characterizing the 
dynamics of brain activity by capturing distinct spatial patterns 
across the whole brain, which are inferred directly from the dataset 
without the need for sliding window predetermination (8, 9). The 
HMM assumes that time-series data can be  described using a 
hidden sequence of a finite number of states, such that, at each time 
point, only one state is active (10). All states have the same 
probabilistic distributions, but each has different distribution 
parameters. Hence, HMM states correspond to unique patterns of 
brain activity that recur in different parts of the time series (8). 

Then, we can capture the temporal characteristics of each state from 
time courses. Previous studies have demonstrated that the HMM 
can identify dynamic reorganization of whole-brain networks on 
minimal time scales, especially, the HMM can capture quasi-
stationary states of activity that are consistently recurring over the 
population (9, 11, 12). Therefore, the HMM’s ability to capture 
quasi-stationary states offers a more dynamic and flexible 
framework to characterize the altered whole-brain networks in 
MELAS, potentially reflecting the brain’s struggle to maintain stable 
network configurations due to metabolic deficits and neuronal 
damage. To quantify these dynamic network alterations, we would 
analyze key temporal characteristics derived from the HMM, 
fractional occupancy (FO), representing the proportion of time 
spent in each state; lifetime (LT), indicating the average duration 
spent in a given state; and transition probability (TP), describing the 
rate of switching between states (8). In the context of SLEs, 
abnormalities in these metrics were hypothesized to reflect the 
impact of mitochondrial dysfunction on brain network stability 
and efficiency.

Based on these considerations, we hypothesized that MELAS-
acute patients would exhibit abnormal neural network dynamics, 
characterized by atypical patterns of transitions across distinct brain 
network states. Furthermore, we  proposed that these altered 
spatiotemporal characteristics, as quantified by FO, LT, and TP, could 
be associated with the physical and cognitive performance of MELAS 
patients. To test this hypothesis, this study inferred the HMM states 
and dynamic reconfiguration of whole-brain networks based on the 
rs-fMRI data of MELAS patients and healthy controls. Specifically, 
we evaluated the differences in the spatiotemporal characteristics of 
HMM states and special community patterns of transitions between 
these groups. In addition, we  explored the possible correlations 
between these temporal metrics of HMM states and clinically relevant 
features of MELAS patients.

Materials and methods

Study participants

This study was approved by the Institutional Review Board of 
Huashan Hospital and followed the tenets of the Declaration of 
Helsinki. Written informed consent was obtained from all participants 
before inclusion.

We initially collected a prospective cohort from 2019 to 2024. The 
present study undertook a cross-sectional analysis based on data 
extracted from the prospective cohort study, utilizing information 
from a single observation point. All the MELAS patients included 
were diagnosed by a specialized expert (J. L.) who had more than 
15 years’ experience in mitochondrial myopathy. The diagnosis of 
MELAS was confirmed by genetic testing or muscle biopsy (1). 
Specifically, in this study, we  only recruited the MELAS patients 
carrying the m.3243A > G mutation. Forty-four MELAS patients at 
the acute stage (MELAS-acute group, within 1 week after SLE) were 
enrolled from June 2019 to August 2024, and we  have collected 
demographic and physical data, mainly including age, gender, 
frequency of SLE, the symptoms during SLE, serum lactate, creatine 
kinase (CK), and lactate dehydrogenase (LDH). Moreover, 30 healthy 
control volunteers (HC group) who were recruited from the local 
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community participated, were gender- and age-matched. All the 
subjects were right-handed.

The exclusion criteria included the following: (1) participants with 
psychiatric or neurodegenerative diseases (such as autism, major 
depressive disorder, bipolar disorder, and Parkinson’s disease); (2) 
those presenting other organic brain lesions; (3) head trauma; (4) 
history of drug abuse or alcohol addiction; and (5) those with an 
inability to complete the MRI examination.

MRI data acquisition

MRI data were acquired using a 3.0 T GE scanner with an 8-channel 
head coil (Discovery MR750, General Electric, Boston, MA). During 
scanning, all participants were commanded to keep their eyes closed, but 
not to fall asleep or think about anything. A single-shot gradient-recalled 
echo planar imaging (EPI) sequence was used to obtain the rs-fMRI data 
with the following parameters: echo time (TE) = 30 ms, repetition time 
(TR) = 2,000 ms, flip angle = 90°, slices = 35, slice thickness = 4 mm, 
matrix size = 64 × 64, field of view (FOV) = 240 × 240 mm, number of 
volumes = 210. High-resolution 3D T1-weighted images were obtained 
by a brain volume (BRAVO) sequence: TE = 3.2 ms, TR = 8.2 ms, flip 
angle = 12°, slices = 170, slice thickness = 1.2 mm, matrix size = 256 
× 256, FOV = 240 mm × 240 mm.

Rs-fMRI data preprocessing

The rs-fMRI data were preprocessed by applying the DPABI 
toolbox1 (13) and statistical parametric mapping (SPM12)2 (14). 
Specifically, we removed the first 10 image volumes, implemented 
slice-timing, corrected head motion, and calculated the mean frame-
wise displacement (FD) (15). Subjects were excluded who had a head 
motion >3 mm or a 3° rotation or a mean FD of >0.25 mm (eight 
MELAS patients). The final sample included 66 subjects (36 in the 
MELAS-acute group and 30 in the HC group). Then, the rs-fMRI data 
were spatially normalized to the Montreal Neurological Institute 
(MNI) space by applying the DARTEL algorithm and were resampled 
to a voxel size of 3 × 3 × 3 mm3 (16). Next, the normalized data were 
spatially smoothed with a 6-mm full-width using a Gaussian kernel. 
Then, nuisance signals were regressed out of each voxel’s time course, 
including 24-parameter head-motion profiles, mean white matter 
(WM), cerebrospinal fluid (CSF) time series, and global signal within 
the respective brain masks derived from prior probability maps in 
SPM12 (17). Finally, the resulting images were further temporally 
band-pass filtered (0.01–0.1 Hz) to reduce the effects of low-frequency 
drift and high-frequency physiological noise (18).

Hidden Markov model

The HMM was implemented using variational Bayesian inference 
to probabilistically estimate the state statistics and transition 

1  http://rfmri.org/dpabi

2  https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

probabilities (10). To explore the dynamics of whole-brain networks, 
we applied the HMM to time courses extracted from cerebral regions. 
In the most common variant of the HMM, each state is featured by a 
multivariate Gaussian distribution, which includes a mean activation 
and a covariance matrix (7, 8). During HMM inference, a central and 
free parameter is the number of states K, which has to be chosen 
before further evaluation (9, 10). Although there were some 
approaches to guide the choice of the number of states (8–10), such as 
using quantitative measures such as free energy or using 
non-parametric approaches, in practice, different numbers of states 
offer only different levels of detail of brain dynamics. The free energy 
is the statistical measure that is minimized during the variational 
inference Bayesian optimization process (10). In general, it is an 
approximation to the model evidence, including how well the model 
fits the data and the complexity of the model (10). Thus, free energy is 
a reasonable criterion for choosing the suitable number of states for 
the HMM. In addition, the median fractional occupancy is used to 
help determine the optimal number of states K in the HMM model. 
A low and stable median fractional occupancy across states, with little 
improvement beyond a certain K value, indicates that adding more 
states does not significantly improve the model’s ability to capture 
distinct dynamic patterns, thus influencing the selection of the 
appropriate K value (8). Hence, by utilizing the minimum free energy 
and medial fractional occupancy, we explored the best choice on state 
K where the similarity was minimized among different mean 
activations, according to previous studies (8–10). The steps of the 
main HMM analysis are as follows: First, according to the automated 
anatomical labeling (AAL), cerebral regions of each subject were 
segmented into 90 regions of interest (ROIs) (Figure 1a) (19). Next, 
the featured time courses were extracted. A total of 90 ROI time 
courses across all participants were temporally concatenated, 
producing a single concatenated course from the inferred 90*(66*200) 
with 200 time points (Figure 1b). Furthermore, the HMM analysis was 
run on time courses, and 12 HMM states were obtained (Figure 1c). 
Finally, each recurring state was featured in a mean activation and 
covariance matrix (Figure 1d).

Decoding of HMM states

We applied Neurosynth to decode the potential functions of 
HMM states (20). We submitted mean activation maps of HMM states 
to the Neurosynth. In descending order, we ranked all correlation 
coefficients and showed approximately 10–15 terms of maximum 
correlation for each state.

Analysis of dynamic temporal 
characteristics and transitions in HMM 
states

We defined fractional occupancies (FO), lifetimes (LT), and 
switching frequency (SF) to depict the temporal characteristics of 
HMM states, which are referred to as the temporal proportions in a 
state, time spent in a state before transferring into another state, and 
the frequency of transitions between different states, respectively (8). 
Global activity dynamics of HMM states were evaluated from the time 
course of posterior probabilities (8, 12).
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After obtaining these states, we  calculated the transition 
probability (TP) matrix for each participant. Furthermore, we used a 
community detection approach to elucidate common HMM states in 
the TP matrix, which indicate more frequent transitions within states. 
Especially, using a common community detection approach, the 
Louvain-like locally greedy heuristic algorithm, we applied modularity 
maximization to choose the following modularity quality function 
(21, 22). According to the previous study, we  thresholded the 
transition matrix before running the modularity algorithm, which 
included 21% of the strongest transitions (23).

Statistical analysis

A two-tailed two-sample t-test was applied to analyze group 
differences in age between MELAS and HCs. A Mann–Whitney 
U-test was used to analyze differences in dynamic temporal 
characteristics of HMM states for each scan site, and the effect size 
was quantified using the rank biserial correlation (r). A chi-square 
test was applied to analyze gender-ratio differences between the 
groups. We conducted a permutation test to demonstrate the TP of 
HMM states between the groups. By running 5,000 permutations 
across participants, we  established a null distribution for global 
dynamic differences between each state and between groups, 

producing p-values. In addition, the non-parametric Spearman’s 
correlation coefficient was calculated to evaluate the correlations 
between the temporal characteristics of HMM states and clinical-
related features of MELAS patients.

Statistical analysis was executed using GraphPad Prism version 
10.2.3 for Windows (GraphPad Software, San Diego, California, 
United  States),3 and MATLAB software version R2023b [The 
MathWorks, Inc. (Year). MATLAB (Version R2023b)].4 The significance 
level was set to a p-value of <0.05 after false discovery rate (FDR) 
correction.

Results

Demographic and clinical features

The demographic and clinical features are presented in Table 1. 
There were no significant group differences in age (p = 0.192) or 
gender (p = 0.498). The mean age of the first stroke-like episode was 
24 years old, and the median time interval of a second stroke-like 

3  www.graphpad.com

4  https://www.mathworks.com/

FIGURE 1

Schematic workflow with an HMM. (a) Whole-brain regions were parcellated into 90 ROIs based on the AAL atlas, and the ROI time courses were 
extracted by averaging the BOLD signal within each ROI for each participant. (b) The data were concatenated across all participants, including 90 brain 
regions × 200 time points for each subject. (c) The HMM analysis was run on the time courses, and 12 HMM states were obtained. (d) Each HMM state 
was characterized as a multivariate Gaussian distribution, including a covariance matrix and a mean activation. Abbreviations: AAL, automated 
anatomical labeling; BOLD, blood oxygen level-dependent imaging; HMM, hidden Markov model; ROI, regions of interest.
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episode was 11 months. MELAS-acute patients manifested SLE 
symptoms, usually including seizure, headache, cortical blindness, 
motor weakness, cognitive impairment, vomiting, hearing loss, and 
aphasia. Serum lactate, CK, and LDH data were available for analysis 
in 28, 30, and 30 patients, respectively (n = 44; 64, 68, 68%).

States inferred by the HMM

To identify the optimal number of state K for the HMM, we ran 
the HMM for model orders spanning 4–20 and evaluated each 
solution by minimum free energy and median fractional occupancy 
across the HMM states (Supplementary Figure S2 in supplementary 
materials). Generally, as K increased, the free energy initially 
decreased, indicating improved model fit due to greater flexibility. 
However, increasing K beyond a certain point resulted in an increase 
in free energy, signifying overfitting and excessive model complexity 
(Supplementary Figure S2A). The optimal states K typically 
correspond to the “elbow” or inflection point of the free energy curve, 
where the rate of improvement sharply changes (8). In this study, 
K = 12 represented this point of diminishing returns, balancing model 
accuracy and complexity effectively. The median fractional occupancy 
across states remained relatively low and stable without substantial 
improvement beyond K = 12, implying that additional states do not 
contribute meaningfully to capturing distinct dynamic patterns 
(Supplementary Figure S2B). In summary, K = 12 was chosen as it 
minimized the free energy, mitigated overfitting risks, and provided 

states with reasonable fractional occupancy, ensuring both statistical 
robustness and interpretability, and each of which was defined as a 
mean activation (Figure 2, the first row) and a covariance matrix 
(Supplementary Figure S1). In addition, we  further probed the 
potential neuropsychological functions of HMM states by utilizing the 
Neurosynth (Figure 2, the second row). The results showed that state 
1 was related to cognitive and visual terms; state 2 was associated with 
motion and speech terms; states 3 and 12 were mainly overlapped with 
executive, sensorimotor, and visual terms; state 4 was related to 
emotional and somatosensory terms; state 5 corresponded to default 
mode network (DMN) terms; states 6 and state 9 were mainly 
associated with visual and somatosensory terms; state 7 was related to 
executive function and emotion; state 8 was associated with movement 
and executive function; and states 10 and 11 were associated with 
sensorimotor, memory, and visual terms.

Alterations in temporal characteristics and 
transition patterns for MELAS

Compared to the HC group, FO of states 5 and 6 for the MELAS-
acute group were significantly decreased (state 5: p < 0.001, r = −0.68; 
state 6: p < 0.001,r = −0.50; FDR corrected), while FO of states 2, 3, 4, 
7, 8, 9, 10, and 11 was increased (state 2: p = 0.003, r = −0.42; state 3: 
p <0.001, r = −0.44; state 4: p < 0.001, r = −0.44; state 7: p = 0.014, 
r = −0.33; state 8: p < 0.001, r = −0.54; state 9: p <0.001, r = −0.50; 
state 10: p = 0.005, r = −0.38; state 11: p < 0.001, r = −0.52; FDR 

TABLE 1  Demographic and clinical characteristics of MELAS-acute patients and HCs.

Characteristics MELAS-acute (n = 36) HC (n = 30) p-value

Age (y, SD) 25.0 ± 9.4 28.5 ± 6.3 0.192 a

Gender (M/F) 21/15 15/15 0.498 b

Mean age of first stroke-like episode (y, SD) 24.0 ± 10.0 – –

Median time interval of a second stroke-like episode (m) 11.0[3.5, 25.3] – –

Median frequency of SLE

 � In 1 year 1[1,2] – –

 � In 2 years 2[1,3] – –

 � In 5 years 3[2,4] – –

Mean content of serum lactate(mmol/L) 2.4 ± 1.43 – –

Mean content of creatine kinase(U/L) 301 ± 363 – –

Mean content of LDH(U/L) 250 ± 128 – –

SLE symptoms (n, %)

 � Seizure 26 (72.2%) – –

 � Headache 19 (52.8%) – –

 � Cortical blindness 19 (52.8%) – –

 � Motor weakness 15 (41.7%) – –

 � Cognitive impairment 15(41.7%) – –

 � Vomiting 9 (25%) – –

 � Hearing loss 9 (25%) – –

 � Aphasia 7 (19.4%) – –

For continuous variables, data are expressed as the mean ± standard deviation; numbers for gender data; for count variables, data are expressed as the median and interquartile range. aThe 
p-value for age was obtained by a two-tailed two-sample t-test. bThe p-value for gender distribution was obtained by the chi-square test. MELAS-acute, MELAS patients at the acute stage; HC, 
healthy control; M, male; F, female; LDH: lactate dehydrogenase; SLE, stroke-like episode.
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corrected) (Figure 3a). The HMM states 8 and 9 had longer LTs for 
MELAS-acute group (state 8: p = 0.007, r = −0.85; state 9: p = 0.045, 
r = −0.85; FDR corrected), and HMM state 5 and 6 had shorter LTs 

(state 5: p < 0.001, r = −0.80; state 6: p = 0.019, r = −0.80; FDR 
corrected) (Figure 3b). These findings demonstrated that MELAS 
patients showed specific reorganization of brain microstates.

FIGURE 2

States inferred by HMM. Mean activation maps for 12 inferred states (the first row) and potential psychological function decoded by Neurosynth (the 
second row).
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We further compared the TP of HMM states between the groups 
by applying permutation analysis. Compared to the HC group, the 
switching frequency of HMM states for the MELAS-acute group was 
significantly increased (p < 0.001) (Figure 3c), which could elucidate 
that there are more unstable dynamic network patterns and transition 
communication between brain networks in MELAS-acute patients. 
However, we  found no significant differences in TP between 
HMM states.

The specific community pattern of 
transitions and activation map of HMM 
states for MELAS

To investigate the transition patterns of HMM states, we extracted 
HMM states that transition more often between each other (Figure 4a). 
Specifically, we applied a threshold to the state transition matrix to 

retain only the strongest transitions (representing 21% of the total 
transitions). Our analysis revealed that states, corresponding to 
indices 4, 7, and 10 in the initial set of states, fell into this category of 
low participant-wise occurrence. Therefore, the model presented with 
nine states reflected robust states that consistently emerged across the 
participant sample after applying our stringent inclusion criteria. 
Combined with the community patterns and global transitions 
(Figure 4b), we identified three modules: the MELAS-related module 
(red), the HC-related module (blue), and an intermediate or shared 
module (green), which appeared to encompass states with patterns of 
community organization presented in both MELAS and HC 
participants (Figure  4c). Specifically, states in the MELAS-related 
module exhibited higher FOs, longer LTs, and greater global temporal 
characteristics compared to those in the HC-related module. The 
reorganization of transition patterns indicates a special whole-brain 
network module associated with MELAS-acute patients. The third 
module (green) likely represented a shared or transitional network 

FIGURE 3

Dynamic alteration in the whole-brain network between the MELAS-acute group and the HC group. (a) The alterations in fractional occupancies (FO) 
of each state. (b) The alterations in lifetimes (LT) of each state. (c) The alterations in switching frequency (SF) of each state. The error bar represents the 
standard error of the median. Thick lines and thin lines represent median and interquartile range (IQR), respectively. Colors distinguished groups. For 
FO < 10%, the right-hand y-axis provided an expanded scale, while the left-hand y-axis pertained to all values. All temporal properties were evaluated 
using a Mann–Whitney U-test and the permutation test (TP), FDR corrected. *Significant differences between the different groups of the MELAS-acute 
group and the HC group. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 4

Modules of transitions between states for the MELAS-acute group and the HC group. (a) The probability matrix of the 12 HMM states across all 
participants. Each matrix entry represented the transition probability from departure state to destination state. (b) Three modules of the 21% strongest 
transitions of the HMM states. (c) The transition map for each HMM state. Arrows showed the direction of the transitions with thickness proportional to 
the transition probability.
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configuration observed across both groups. We hypothesized that this 
meta-state might reflect common underlying neural processes or 
flexible connectivity patterns not specific to either the MELAS or the 
HC group. Unfortunately, the clinical or functional significance of this 
shared module remains unclear at present.

We further investigated activation maps of the whole-brain 
network of different modules. The MELAS-related module was 
primarily featured in states 3 and 8 (Figure 5a). Combined with 
Neurosynth decoding of the key activated brain regions for each 
HMM state, we observed that MELAS-related modules exhibited 
distinct activity alterations in the DMN- and visual network 
(VN)-related brain areas. The areas are crucial for cognitive 
processing and sensory integration. State 3, characterized by 
terms related to executive function, sensorimotor engagement, 
and visual processing, showed a complex pattern of decreased 
activity in insula, sensorimotor, visual, and DMN regions, 
alongside increased activity in sensorimotor, visual, and auditory 
areas. This suggested a chaotic and inefficient network state 

where processing is fragmented and possibly hyperactive in some 
sensory-motor loops, failing to integrate information effectively, 
which could underlie weakness and impaired visual processing. 
State 8, predominantly linked to movement and executive 
function, presented decreased activity in DMN, visual, and 
sensorimotor areas. The reduced engagement of these networks 
during this state might signify diminished cognitive reserve or 
impaired sensorimotor integration, contributing to the cognitive 
and motor deficits observed in MELAS. On the other hand, the 
HC-related module is primarily characterized by states 5 and 6 
(Figure  5b). HMM state 5 revealed decreased activities in 
sensorimotor and visual areas, alongside increased activities in 
DMN areas. HMM state 6 displayed decreased activities in 
sensorimotor areas and bilateral insula, while increased activities 
were observed in sensorimotor and DMN areas. Combined with 
the special community pattern, we found that the MELAS-acute 
group exhibited distinct activity alterations primarily in the 
crucial areas of DMN and VN compared to the HC group.

FIGURE 5

(a) Mean activation distribution of the MELAS-related HMM states. (b) Mean activation distribution of the HC-related HMM states. All maps were 
thresholded, respectively, above 50% strongest positive and below the negative changes.

https://doi.org/10.3389/fneur.2025.1625888
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yu et al.� 10.3389/fneur.2025.1625888

Frontiers in Neurology 09 frontiersin.org

Correlation between temporal 
characteristics of HMM states and 
clinical-related features in MELAS patients

As shown in Figure  6, in MELAS-acute patients, the 
concentration of LDH was positively correlated with lifetimes in 
state 8 (r = 0.693, p < 0.05; FDR-corrected). There was no 
significant correlation between the temporal properties of other 
HMM states and clinically related characteristics, such as age of 
first SLE, time interval of a second SLE, frequency of SLE, 
concentration of serum lactate, and CK.

Discussion

By using HMM inference analysis, this study demonstrated 12 
HMM states characterized by unique spatiotemporal patterns of the 
whole brain in MELAS and HCs. Importantly, MELAS patients 
exhibited altered dynamic reconfiguration of specific network 
modules, mainly in the crucial areas of the DMN and VN. Moreover, 
we discovered that the concentration of LDH was correlated with the 
lifetimes in state 8.

Resting-state brain activity has been widely used to analyze large-
scale brain networks, and dynamic alterations of whole-brain 
networks are essential to the knowledge of neural network 
mechanisms in neuropsychiatric diseases. HMM has successfully 
been used to investigate the dynamic reconfiguration of whole-brain 
networks (7). However, during HMM inference, a free and crucial 
parameter is the number of states, which must be  chosen before 
further evaluation (9, 10). Although there were some approaches to 
guide the choice of the number of states (8–11), different numbers of 
states offer varying levels of detail in brain activity dynamics, which 
is consistent with previous studies suggesting that FC in the whole 
brain is highly dynamic and flexible for functional coordination (8, 
24). Hence, we inferred 12 HMM states from the concatenated time 
courses based on minimum free energy and median fractional 
occupancy, which minimized similarity between different states. 
More specifically, the HMM analysis captured most of the 
information contained in the dataset.

Subsequently, we analyzed the dynamic alterations of temporal 
reconfiguration for all subjects. We  found the special temporal 
characteristics of whole-brain networks related to MELAS-acute 
patients. In comparison with HCs, we noted that the MELAS cohort 
manifested increased lifetimes and fractional occupancies in states 8 
and 9, along with an elevated switching rate of states. The longer 
lifetime and higher fractional occupancy of the MELAS-related states 
in patients demonstrated that these specific network configurations 
were more sustained and frequently accessed in the MELAS group. 
These alterations directly reflected the disrupted neural dynamics 
caused by mitochondrial dysfunction, which impaired the brain’s 
ability to maintain coherent and efficient communication between 
distinct network states. The elevated switching frequency further 
underscored instability, indicating a propensity for uncontrolled 
transitions between network configurations, which may contribute to 
the episodic nature of SLEs and the accumulation of 
neurological dysfunction.

When combining the community detection for transition maps 
with the global dynamic activity of whole-brain networks, we found 
that there were special modules of transitions of the HMM states 
related to MELAS patients and HCs. By using the Neurosynth, 
MELAS-related modules, primarily featured by states 3 and 8, 
exhibited significantly decreased activities in crucial areas of the 
DMN and VN, which was basically consistent with a previous study 
(6). However, the HC-related module, primarily characterized by 
states 5 and 6, revealed increased activities in DMN areas, 
sensorimotor, and visual areas. The identification of distinct 
community modules highlighted a fundamental difference in how 
brain networks organize and transition between states in MELAS 
patients. The MELAS-related module’s emphasis on disrupted 
DMN and VN dynamics, coupled with their increased presence 
time and switching frequency, potentially represented the 
pathological consequence of mitochondrial dysfunction on brain 
network organization. This altered modular organization likely 
underpinned the key neuropathological deficits of MELAS, leading 
to symptoms such as cortical blindness and cognitive impairment 
associated with VN and DMN dysfunction (25). In addition, 
we discovered that transitions between states 1, 5, and 6 occurred 
more often than other states. Notably, states 5 and 6 were part of the 
HC-associated module, suggesting stronger triangular loops of 
transitions within the HC group. The stable reconfiguration of 
transition could be  key to understanding the neural network 
mechanisms. In other words, the occurrence of acute SLE in 
MELAS patients has disrupted this stable organizational pattern, 
which could be  attributed to insufficient mitochondrial energy 
production, leading to instability in brain networks. Accordingly, 
our results provide novel insights about the temporal characteristics 
and reconfiguration of whole-brain networks in MELAS-acute 
patients, which may explain the neural network mechanism basis 
for SLE.

Finally, the positive correlation between elevated LDH levels and 
longer lifetimes in state 8 provided a direct link between metabolic 
dysfunction and specific aberrant network dynamics in MELAS. LDH, 
as an enzyme, plays a key role in the conversion of lactate to pyruvate 
and is widely distributed in various tissues, which is a marker of 
cellular stress and impaired energy metabolism. Elevated levels of 
serum LDH can serve as a significant biomarker in clinical practice, 
such as mitochondrial dysfunction (26), malignancies (27), and 

FIGURE 6

Correlations between the temporal characteristics of HMM states 
and clinical-related features in MELAS patients.
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infections (28). This finding solidified state 8 as a distinct “disease-
characteristic state,” where prolonged engagement reflected the 
ongoing metabolic insult to the brain and its resultant impact on 
network stability and function. Consequently, state 8 and its 
associated temporal metrics can be  considered as potential 
neuroimaging biomarkers that capture the severity of metabolic 
impairment and its manifestation in brain network dynamics within 
MELAS patients.

This study has some limitations. First, the sample size was 
relatively small, which might impact the statistical power, so the 
significance of the results could be relatively limited. Future 
longitudinal cohort studies with larger datasets are needed to better 
explore the correlations between the temporal characteristics of HMM 
states and the clinical features of MELAS patients and to potentially 
establish a prediction model for SLE risk. Second, the number of 
HMM states is a free parameter, which makes it difficult to ensure an 
exact number of states. In this study, we aimed to extract as much 
temporal resolution as possible, though not definitively.

Conclusion

This study evaluated dynamic alterations in whole-brain networks 
in MELAS patients using HMM. Our findings revealed a special 
dynamic reconfiguration of HMM states and transition modules 
within whole-brain networks, along with multiple transition pathways 
specific to MELAS. The MELAS-related community was characterized 
by decreased activities in key areas of the DMN and VN. Moreover, 
correlation analysis revealed that the concentration of LDH was 
positively associated with lifetimes in state 8. Therefore, our findings 
provide a new perspective for elucidating the mechanism of neural 
network damage in MELAS patients and offer potential biomarkers 
for evaluating the risk of SLE.
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Glossary

AAL - Automated anatomical labeling

BOLD - blood oxygen level-dependent imaging

BRAVO - brain volume

CK - creatine kinase

CSF - cerebrospinal fluid

DMN - default mode network

EPI - echo planar imaging

FC - functional connectivity

FD - frame-wise displacement

FO - fractional occupancy

FOV - field of view

HC - healthy control

HMM - hidden Markov model

LDH - lactate dehydrogenase

LT - lifetimes

MELAS - mitochondrial encephalomyopathy with lactic acidosis and 
stroke-like episodes

MELAS-acute - MELAS patients at acute stage

MNI - Montreal Neurological Institute

ROI - regions of interest

rs-fMRI - resting-state functional magnetic resonance imaging

SF - Switching frequency

SLE - stroke-like episode

SPM - statistical parametric mapping

SWA - sliding windows approach

TE - echo time

TR - repetition time

VN - visual network

WM - white matter.

https://doi.org/10.3389/fneur.2025.1625888
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Dynamic reconfiguration and transition of whole-brain networks in patients with MELAS revealed by a hidden Markov model
	Introduction
	Materials and methods
	Study participants
	MRI data acquisition
	Rs-fMRI data preprocessing
	Hidden Markov model
	Decoding of HMM states
	Analysis of dynamic temporal characteristics and transitions in HMM states
	Statistical analysis

	Results
	Demographic and clinical features
	States inferred by the HMM
	Alterations in temporal characteristics and transition patterns for MELAS
	The specific community pattern of transitions and activation map of HMM states for MELAS
	Correlation between temporal characteristics of HMM states and clinical-related features in MELAS patients

	Discussion
	Conclusion

	 References

