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Objectives: Mitochondrial encephalomyopathy with lactic acidosis and stroke-
like episodes (MELAS) is a rare maternally inherited disease. The neuropathologic
mechanisms and neural network alterations underlying stroke-like episodes
(SLEs), a recurrent paroxysmal clinical event, remain unclear. The hidden Markov
model (HMM) can detect profound alterations in neural activities across the
whole-brain network.

Materials and methods: We initially collected data from a prospective cohort
from 2019 to 2024. The confirmed diagnosis of MELAS was conducted through
genetic testing or a muscle biopsy. Healthy control volunteers were recruited
from the local community. By utilizing the HMM, we evaluated the temporal
characteristics and transitions of HMM states and the specific community
pattern of transitions and activation maps of the whole brain for subjects.
Results: Thirty-six MELAS patients at the acute stage (MELAS-acute group) and
30 healthy controls (HC group) were included in this study. Based on HMM,
fractional occupancies in states 5 and 6 for MELAS were significantly decreased
(p < 0.001), but fractional occupancies in states 2, 3, 4, 7, 8, 9, 10, and 11 were
significantly increased (p < 0.05), compared to HCs. The lifetimes of HMM states
showed a similar decrease as fractional occupancies. The switching frequency
of HMM states was significantly increased in MELAS (p < 0.001). Combined with
the special community patterns of transitions, MELAS displayed differential
activity patterns in crucial areas of the default mode network (DMN) and visual
network (VN).

Conclusion: This study suggests dynamic reconfiguration of HMM states, special
transition modules, and multiple transition pathways in MELAS, providing novel
insights into the neural network mechanisms underlying MELAS.
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MELAS, stroke-like episode, rs-fMRI, hidden Markov model, whole-brain network
dynamics

01 frontiersin.org


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1625888&domain=pdf&date_stamp=2025-09-22
https://www.frontiersin.org/articles/10.3389/fneur.2025.1625888/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1625888/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1625888/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1625888/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1625888/full
mailto:liyuxin@fudan.edu.cn
mailto:gengdy@163.com
mailto:linjie15@fudan.edu.cn
https://doi.org/10.3389/fneur.2025.1625888
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1625888

Yu et al.

Introduction

Mitochondrial encephalomyopathy with lactic acidosis and
stroke-like episodes (MELAS) is a rare maternally inherited disease
caused by mutations in mitochondrial or nuclear genes (1). Up to 80%
of MELAS patients carry the m.3243A > G mutation in the MT-TL1
gene encoding tRNA (V"N (2). Especially, a stroke-like episode (SLE)
is a recurrent paroxysmal clinical event that usually presents seizures,
headaches, cortical blindness, motor weakness, and cognitive
impairment (1, 3). SLEs associated with some signal abnormalities
resolve completely; however, most lesions develop into cortical
laminar necrosis, gliosis, and atrophy, resulting in the gradual
accumulation of neurological dysfunction, which is heterogeneous
(3). Previous studies have shown that SLEs were primarily seizure-
induced but not driven by angiopathic changes in the mechanism (4).
Despite significant research efforts, the precise neuropathological
mechanisms and neural network alterations underlying the
progression of SLEs in MELAS remain unclear, highlighting the
complexities of this disease.

Resting-state functional magnetic resonance imaging (rs-fMRI)
can quantify intrinsic functional brain organization and measure
synchronizations between spontaneous events in non-adjacent brain
regions (5). Wang et al. (6) investigated dynamic functional
connectivity (dFC) in MELAS using a sliding window approach
(SWA) to characterize global connectivity patterns, and the results
showed that MELAS patients exhibited an inability to switch out of a
state with weak connectivity into more highly and specifically
connected network configurations, which was more significant at the
acute stage of SLEs. This finding strongly suggested that MELAS
patients, particularly in the acute phase, may experience disruptions
in their brain network dynamics, leading to atypical patterns of
connectivity transitions. Given that alterations in brain energy
metabolism and neuronal integrity are central to MELAS
pathophysiology, it might be plausible that the underlying damage
affects the timely and efficient re-establishment of brain functional
networks. However, this approach still has some limitations.
Covariance matrices based on different windows are classified into
different states by clustering analysis, which is highly dependent on
the predetermination of time scales and neglects temporal variances
of network fluctuations (7). Given the paroxysmal and recurrent
nature of SLEs in MELAS, the underlying mitochondrial dysfunction
could lead to fluctuating neuronal excitability and impaired energy
metabolism, potentially causing transient disruptions in brain network
connectivity. While the SWA offers a time-varying perspective, its
reliance on pre-determined window lengths may not optimally
capture the complex, rapidly changing, and quasi-stationary network
states that could arise from such pathological processes.

On the other hand, the hidden Markov model (HMM), as a
generative probabilistic model, is capable of characterizing the
dynamics of brain activity by capturing distinct spatial patterns
across the whole brain, which are inferred directly from the dataset
without the need for sliding window predetermination (8, 9). The
HMM assumes that time-series data can be described using a
hidden sequence of a finite number of states, such that, at each time
point, only one state is active (10). All states have the same
probabilistic distributions, but each has different distribution
parameters. Hence, HMM states correspond to unique patterns of
brain activity that recur in different parts of the time series (8).
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Then, we can capture the temporal characteristics of each state from
time courses. Previous studies have demonstrated that the HMM
can identify dynamic reorganization of whole-brain networks on
minimal time scales, especially, the HMM can capture quasi-
stationary states of activity that are consistently recurring over the
population (9, 11, 12). Therefore, the HMM’s ability to capture
quasi-stationary states offers a more dynamic and flexible
framework to characterize the altered whole-brain networks in
MELAS, potentially reflecting the brain’s struggle to maintain stable
network configurations due to metabolic deficits and neuronal
damage. To quantify these dynamic network alterations, we would
analyze key temporal characteristics derived from the HMM,
fractional occupancy (FO), representing the proportion of time
spent in each state; lifetime (LT), indicating the average duration
spent in a given state; and transition probability (TP), describing the
rate of switching between states (8). In the context of SLEs,
abnormalities in these metrics were hypothesized to reflect the
impact of mitochondrial dysfunction on brain network stability
and efficiency.

Based on these considerations, we hypothesized that MELAS-
acute patients would exhibit abnormal neural network dynamics,
characterized by atypical patterns of transitions across distinct brain
network states. Furthermore, we proposed that these altered
spatiotemporal characteristics, as quantified by FO, LT, and TP, could
be associated with the physical and cognitive performance of MELAS
patients. To test this hypothesis, this study inferred the HMM states
and dynamic reconfiguration of whole-brain networks based on the
rs-fMRI data of MELAS patients and healthy controls. Specifically,
we evaluated the differences in the spatiotemporal characteristics of
HMM states and special community patterns of transitions between
these groups. In addition, we explored the possible correlations
between these temporal metrics of HMM states and clinically relevant
features of MELAS patients.

Materials and methods
Study participants

This study was approved by the Institutional Review Board of
Huashan Hospital and followed the tenets of the Declaration of
Helsinki. Written informed consent was obtained from all participants
before inclusion.

We initially collected a prospective cohort from 2019 to 2024. The
present study undertook a cross-sectional analysis based on data
extracted from the prospective cohort study, utilizing information
from a single observation point. All the MELAS patients included
were diagnosed by a specialized expert (J. L.) who had more than
15 years’ experience in mitochondrial myopathy. The diagnosis of
MELAS was confirmed by genetic testing or muscle biopsy (1).
Specifically, in this study, we only recruited the MELAS patients
carrying the m.3243A > G mutation. Forty-four MELAS patients at
the acute stage (MELAS-acute group, within 1 week after SLE) were
enrolled from June 2019 to August 2024, and we have collected
demographic and physical data, mainly including age, gender,
frequency of SLE, the symptoms during SLE, serum lactate, creatine
kinase (CK), and lactate dehydrogenase (LDH). Moreover, 30 healthy
control volunteers (HC group) who were recruited from the local
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community participated, were gender- and age-matched. All the
subjects were right-handed.

The exclusion criteria included the following: (1) participants with
psychiatric or neurodegenerative diseases (such as autism, major
depressive disorder, bipolar disorder, and Parkinson’s disease); (2)
those presenting other organic brain lesions; (3) head trauma; (4)
history of drug abuse or alcohol addiction; and (5) those with an
inability to complete the MRI examination.

MRI data acquisition

MRI data were acquired using a 3.0 T GE scanner with an 8-channel
head coil (Discovery MR750, General Electric, Boston, MA). During
scanning, all participants were commanded to keep their eyes closed, but
not to fall asleep or think about anything. A single-shot gradient-recalled
echo planar imaging (EPI) sequence was used to obtain the rs-fMRI data
with the following parameters: echo time (TE) = 30 ms, repetition time
(TR) = 2,000 ms, flip angle = 90°, slices = 35, slice thickness =4 mm,
matrix size = 64 x 64, field of view (FOV) = 240 x 240 mm, number of
volumes = 210. High-resolution 3D T1-weighted images were obtained
by a brain volume (BRAVO) sequence: TE = 3.2 ms, TR = 8.2 ms, flip
angle = 12°, slices = 170, slice thickness = 1.2 mm, matrix size = 256
x 256, FOV =240 mm x 240 mm.

Rs-fMRI data preprocessing

The rs-fMRI data were preprocessed by applying the DPABI
toolbox' (13) and statistical parametric mapping (SPM12)* (14).
Specifically, we removed the first 10 image volumes, implemented
slice-timing, corrected head motion, and calculated the mean frame-
wise displacement (FD) (15). Subjects were excluded who had a head
motion >3 mm or a 3° rotation or a mean FD of >0.25 mm (eight
MELAS patients). The final sample included 66 subjects (36 in the
MELAS-acute group and 30 in the HC group). Then, the rs-fMRI data
were spatially normalized to the Montreal Neurological Institute
(MNI) space by applying the DARTEL algorithm and were resampled
to a voxel size of 3 x 3 x 3 mm? (16). Next, the normalized data were
spatially smoothed with a 6-mm full-width using a Gaussian kernel.
Then, nuisance signals were regressed out of each voxel’s time course,
including 24-parameter head-motion profiles, mean white matter
(WM), cerebrospinal fluid (CSF) time series, and global signal within
the respective brain masks derived from prior probability maps in
SPM12 (17). Finally, the resulting images were further temporally
band-pass filtered (0.01-0.1 Hz) to reduce the effects of low-frequency
drift and high-frequency physiological noise (18).

Hidden Markov model

The HMM was implemented using variational Bayesian inference
to probabilistically estimate the state statistics and transition

1 http://rfmri.org/dpabi
2 https://www fil.ion.ucl.ac.uk/spm/software/spm12/
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probabilities (10). To explore the dynamics of whole-brain networks,
we applied the HMM to time courses extracted from cerebral regions.
In the most common variant of the HMM, each state is featured by a
multivariate Gaussian distribution, which includes a mean activation
and a covariance matrix (7, 8). During HMM inference, a central and
free parameter is the number of states K, which has to be chosen
before further evaluation (9, 10). Although there were some
approaches to guide the choice of the number of states (8-10), such as
using quantitative measures such as free energy or using
non-parametric approaches, in practice, different numbers of states
offer only different levels of detail of brain dynamics. The free energy
is the statistical measure that is minimized during the variational
inference Bayesian optimization process (10). In general, it is an
approximation to the model evidence, including how well the model
fits the data and the complexity of the model (10). Thus, free energy is
a reasonable criterion for choosing the suitable number of states for
the HMM. In addition, the median fractional occupancy is used to
help determine the optimal number of states K in the HMM model.
A low and stable median fractional occupancy across states, with little
improvement beyond a certain K value, indicates that adding more
states does not significantly improve the model’s ability to capture
distinct dynamic patterns, thus influencing the selection of the
appropriate K value (8). Hence, by utilizing the minimum free energy
and medial fractional occupancy, we explored the best choice on state
K where the similarity was minimized among different mean
activations, according to previous studies (8-10). The steps of the
main HMM analysis are as follows: First, according to the automated
anatomical labeling (AAL), cerebral regions of each subject were
segmented into 90 regions of interest (ROIs) (Figure 1a) (19). Next,
the featured time courses were extracted. A total of 90 ROI time
courses across all participants were temporally concatenated,
producing a single concatenated course from the inferred 90*(66*200)
with 200 time points (Figure 1b). Furthermore, the HMM analysis was
run on time courses, and 12 HMM states were obtained (Figure 1c).
Finally, each recurring state was featured in a mean activation and
covariance matrix (Figure 1d).

Decoding of HMM states

We applied Neurosynth to decode the potential functions of
HMM states (20). We submitted mean activation maps of HMM states
to the Neurosynth. In descending order, we ranked all correlation
coeflicients and showed approximately 10-15 terms of maximum
correlation for each state.

Analysis of dynamic temporal
characteristics and transitions in HMM
states

We defined fractional occupancies (FO), lifetimes (LT), and
switching frequency (SF) to depict the temporal characteristics of
HMM states, which are referred to as the temporal proportions in a
state, time spent in a state before transferring into another state, and
the frequency of transitions between different states, respectively (8).
Global activity dynamics of HMM states were evaluated from the time
course of posterior probabilities (8, 12).
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FIGURE 1
Schematic workflow with an HMM. (a) Whole-brain regions were parcellated into 90 ROIs based on the AAL atlas, and the ROl time courses were
extracted by averaging the BOLD signal within each ROI for each participant. (b) The data were concatenated across all participants, including 90 brain
regions x 200 time points for each subject. (c) The HMM analysis was run on the time courses, and 12 HMM states were obtained. (d) Each HMM state
was characterized as a multivariate Gaussian distribution, including a covariance matrix and a mean activation. Abbreviations: AAL, automated
anatomical labeling; BOLD, blood oxygen level-dependent imaging; HMM, hidden Markov model; ROI, regions of interest.

After obtaining these states, we calculated the transition
probability (TP) matrix for each participant. Furthermore, we used a
community detection approach to elucidate common HMM states in
the TP matrix, which indicate more frequent transitions within states.
Especially, using a common community detection approach, the
Louvain-like locally greedy heuristic algorithm, we applied modularity
maximization to choose the following modularity quality function
(21, 22). According to the previous study, we thresholded the
transition matrix before running the modularity algorithm, which
included 21% of the strongest transitions (23).

Statistical analysis

A two-tailed two-sample t-test was applied to analyze group
differences in age between MELAS and HCs. A Mann-Whitney
U-test was used to analyze differences in dynamic temporal
characteristics of HMM states for each scan site, and the effect size
was quantified using the rank biserial correlation (r). A chi-square
test was applied to analyze gender-ratio differences between the
groups. We conducted a permutation test to demonstrate the TP of
HMM states between the groups. By running 5,000 permutations
across participants, we established a null distribution for global
dynamic differences between each state and between groups,
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producing p-values. In addition, the non-parametric Spearman’s
correlation coeflicient was calculated to evaluate the correlations
between the temporal characteristics of HMM states and clinical-
related features of MELAS patients.

Statistical analysis was executed using GraphPad Prism version
10.2.3 for Windows (GraphPad Software, San Diego, California,
United States),” and MATLAB software version R2023b [The
MathWorks, Inc. (Year). MATLAB (Version R2023b)].* The significance
level was set to a p-value of <0.05 after false discovery rate (FDR)
correction.

Results
Demographic and clinical features

The demographic and clinical features are presented in Table 1.
There were no significant group differences in age (p =0.192) or
gender (p = 0.498). The mean age of the first stroke-like episode was
24 years old, and the median time interval of a second stroke-like

3 www.graphpad.com
4  https://www.mathworks.com/
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TABLE 1 Demographic and clinical characteristics of MELAS-acute patients and HCs.

10.3389/fneur.2025.1625888

Characteristics MELAS-acute (n = 36) HC (n = 30)

Age (y, SD) 25.0+9.4 285+6.3 0.192*¢
Gender (M/F) 21/15 15/15 0.498 °
Mean age of first stroke-like episode (y, SD) 24.0 £10.0 - -
Median time interval of a second stroke-like episode (m) 11.0[3.5, 25.3] - -
Median frequency of SLE

In 1 year 1[1,2] - -

In 2 years 2(1,3] - -

In 5 years 3[2:4] - -
Mean content of serum lactate(mmol/L) 24+143 - -
Mean content of creatine kinase(U/L) 301 + 363 - -
Mean content of LDH(U/L) 250 + 128 - -

SLE symptoms (n, %)

Seizure 26 (72.2%) - -
Headache 19 (52.8%) - -
Cortical blindness 19 (52.8%) - -
Motor weakness 15 (41.7%) - -

Cognitive impairment

15(41.7%)

Vomiting 9 (25%) - -
Hearing loss 9 (25%) - -
Aphasia 7 (19.4%) - -

For continuous variables, data are expressed as the mean + standard deviation; numbers for gender data; for count variables, data are expressed as the median and interquartile range. *The
p-value for age was obtained by a two-tailed two-sample ¢-test. "The p-value for gender distribution was obtained by the chi-square test. MELAS-acute, MELAS patients at the acute stage; HC,

healthy control; M, male; F, female; LDH: lactate dehydrogenase; SLE, stroke-like episode.

episode was 11 months. MELAS-acute patients manifested SLE
symptoms, usually including seizure, headache, cortical blindness,
motor weakness, cognitive impairment, vomiting, hearing loss, and
aphasia. Serum lactate, CK, and LDH data were available for analysis
in 28, 30, and 30 patients, respectively (n = 44; 64, 68, 68%).

States inferred by the HMM

To identify the optimal number of state K for the HMM, we ran
the HMM for model orders spanning 4-20 and evaluated each
solution by minimum free energy and median fractional occupancy
across the HMM states (Supplementary Figure S2 in supplementary
materials). Generally, as K increased, the free energy initially
decreased, indicating improved model fit due to greater flexibility.
However, increasing K beyond a certain point resulted in an increase
in free energy, signifying overfitting and excessive model complexity
(Supplementary Figure S2A). The optimal states K typically
correspond to the “elbow” or inflection point of the free energy curve,
where the rate of improvement sharply changes (8). In this study,
K = 12 represented this point of diminishing returns, balancing model
accuracy and complexity effectively. The median fractional occupancy
across states remained relatively low and stable without substantial
improvement beyond K = 12, implying that additional states do not
contribute meaningfully to capturing distinct dynamic patterns
(Supplementary Figure S2B). In summary, K = 12 was chosen as it
minimized the free energy, mitigated overfitting risks, and provided

Frontiers in Neurology

states with reasonable fractional occupancy, ensuring both statistical
robustness and interpretability, and each of which was defined as a
mean activation (Figure 2, the first row) and a covariance matrix
(Supplementary Figure S1). In addition, we further probed the
potential neuropsychological functions of HMM states by utilizing the
Neurosynth (Figure 2, the second row). The results showed that state
1 was related to cognitive and visual terms; state 2 was associated with
motion and speech terms; states 3 and 12 were mainly overlapped with
executive, sensorimotor, and visual terms; state 4 was related to
emotional and somatosensory terms; state 5 corresponded to default
mode network (DMN) terms; states 6 and state 9 were mainly
associated with visual and somatosensory terms; state 7 was related to
executive function and emotion; state 8 was associated with movement
and executive function; and states 10 and 11 were associated with
sensorimotor, memory, and visual terms.

Alterations in temporal characteristics and
transition patterns for MELAS

Compared to the HC group, FO of states 5 and 6 for the MELAS-
acute group were significantly decreased (state 5: p < 0.001, r = —0.68;
state 6: p < 0.001,r = —0.50; FDR corrected), while FO of states 2, 3, 4,
7,8,9, 10, and 11 was increased (state 2: p = 0.003, r = —0.42; state 3:
p <0.001, r = —0.44; state 4: p < 0.001, r = —0.44; state 7: p = 0.014,
r=—0.33; state 8: p < 0.001, r = —0.54; state 9: p <0.001, r = —0.50;
state 10: p = 0.005, r = —0.38; state 11: p < 0.001, r = —0.52; FDR

05 frontiersin.org
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FIGURE 2

States inferred by HMM. Mean activation maps for 12 inferred states (the first row) and potential psychological function decoded by Neurosynth (the
second row).

corrected) (Figure 3a). The HMM states 8 and 9 had longer LTs for ~ (state 5: p < 0.001, r = —0.80; state 6: p =0.019, r=—0.80; FDR

MELAS-acute group (state 8: p = 0.007, r = —0.85; state 9: p = 0.045,  corrected) (Figure 3b). These findings demonstrated that MELAS
r=—0.85; FDR corrected), and HMM state 5 and 6 had shorter LTs  patients showed specific reorganization of brain microstates.
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group and the HC group. *p < 0.05; **p < 0.01; ***p < 0.001.

Dynamic alteration in the whole-brain network between the MELAS-acute group and the HC group. (a) The alterations in fractional occupancies (FO)
of each state. (b) The alterations in lifetimes (LT) of each state. (c) The alterations in switching frequency (SF) of each state. The error bar represents the
standard error of the median. Thick lines and thin lines represent median and interquartile range (IQR), respectively. Colors distinguished groups. For
FO < 10%, the right-hand y-axis provided an expanded scale, while the left-hand y-axis pertained to all values. All temporal properties were evaluated
using a Mann-Whitney U-test and the permutation test (TP), FDR corrected. *Significant differences between the different groups of the MELAS-acute
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We further compared the TP of HMM states between the groups
by applying permutation analysis. Compared to the HC group, the
switching frequency of HMM states for the MELAS-acute group was
significantly increased (p < 0.001) (Figure 3c), which could elucidate
that there are more unstable dynamic network patterns and transition
communication between brain networks in MELAS-acute patients.
However, we found no significant differences in TP between
HMM states.

The specific community pattern of
transitions and activation map of HMM
states for MELAS

To investigate the transition patterns of HMM states, we extracted
HMM states that transition more often between each other (Figure 4a).
Specifically, we applied a threshold to the state transition matrix to
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retain only the strongest transitions (representing 21% of the total
transitions). Our analysis revealed that states, corresponding to
indices 4, 7, and 10 in the initial set of states, fell into this category of
low participant-wise occurrence. Therefore, the model presented with
nine states reflected robust states that consistently emerged across the
participant sample after applying our stringent inclusion criteria.
Combined with the community patterns and global transitions
(Figure 4b), we identified three modules: the MELAS-related module
(red), the HC-related module (blue), and an intermediate or shared
module (green), which appeared to encompass states with patterns of
community organization presented in both MELAS and HC
participants (Figure 4c). Specifically, states in the MELAS-related
module exhibited higher FOs, longer LTs, and greater global temporal
characteristics compared to those in the HC-related module. The
reorganization of transition patterns indicates a special whole-brain
network module associated with MELAS-acute patients. The third
module (green) likely represented a shared or transitional network
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(a) Mean activation distribution of the MELAS-related HMM states. (b) Mean activation distribution of the HC-related HMM states. All maps were
thresholded, respectively, above 50% strongest positive and below the negative changes.

configuration observed across both groups. We hypothesized that this
meta-state might reflect common underlying neural processes or
flexible connectivity patterns not specific to either the MELAS or the
HC group. Unfortunately, the clinical or functional significance of this
shared module remains unclear at present.

We further investigated activation maps of the whole-brain
network of different modules. The MELAS-related module was
primarily featured in states 3 and 8 (Figure 5a). Combined with
Neurosynth decoding of the key activated brain regions for each
HMM state, we observed that MELAS-related modules exhibited
distinct activity alterations in the DMN- and visual network
(VN)-related brain areas. The areas are crucial for cognitive
processing and sensory integration. State 3, characterized by
terms related to executive function, sensorimotor engagement,
and visual processing, showed a complex pattern of decreased
activity in insula, sensorimotor, visual, and DMN regions,
alongside increased activity in sensorimotor, visual, and auditory
areas. This suggested a chaotic and inefficient network state
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where processing is fragmented and possibly hyperactive in some
sensory-motor loops, failing to integrate information effectively,
which could underlie weakness and impaired visual processing.
State 8, predominantly linked to movement and executive
function, presented decreased activity in DMN, visual, and
sensorimotor areas. The reduced engagement of these networks
during this state might signify diminished cognitive reserve or
impaired sensorimotor integration, contributing to the cognitive
and motor deficits observed in MELAS. On the other hand, the
HC-related module is primarily characterized by states 5 and 6
(Figure 5b). HMM state 5 revealed decreased activities in
sensorimotor and visual areas, alongside increased activities in
DMN areas. HMM state 6 displayed decreased activities in
sensorimotor areas and bilateral insula, while increased activities
were observed in sensorimotor and DMN areas. Combined with
the special community pattern, we found that the MELAS-acute
group exhibited distinct activity alterations primarily in the
crucial areas of DMN and VN compared to the HC group.
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Correlation between temporal
characteristics of HMM states and
clinical-related features in MELAS patients

As shown in Figure 6, in MELAS-acute patients, the
concentration of LDH was positively correlated with lifetimes in
state 8 (r=0.693, p <0.05; FDR-corrected). There was no
significant correlation between the temporal properties of other
HMM states and clinically related characteristics, such as age of
first SLE, time interval of a second SLE, frequency of SLE,
concentration of serum lactate, and CK.

Discussion

By using HMM inference analysis, this study demonstrated 12
HMM states characterized by unique spatiotemporal patterns of the
whole brain in MELAS and HCs. Importantly, MELAS patients
exhibited altered dynamic reconfiguration of specific network
modules, mainly in the crucial areas of the DMN and VN. Moreover,
we discovered that the concentration of LDH was correlated with the
lifetimes in state 8.

Resting-state brain activity has been widely used to analyze large-
scale brain networks, and dynamic alterations of whole-brain
networks are essential to the knowledge of neural network
mechanisms in neuropsychiatric diseases. HMM has successfully
been used to investigate the dynamic reconfiguration of whole-brain
networks (7). However, during HMM inference, a free and crucial
parameter is the number of states, which must be chosen before
further evaluation (9, 10). Although there were some approaches to
guide the choice of the number of states (8-11), different numbers of
states offer varying levels of detail in brain activity dynamics, which
is consistent with previous studies suggesting that FC in the whole
brain is highly dynamic and flexible for functional coordination (8,
24). Hence, we inferred 12 HMM states from the concatenated time
courses based on minimum free energy and median fractional
occupancy, which minimized similarity between different states.
More specifically, the HMM analysis captured most of the
information contained in the dataset.
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Subsequently, we analyzed the dynamic alterations of temporal
reconfiguration for all subjects. We found the special temporal
characteristics of whole-brain networks related to MELAS-acute
patients. In comparison with HCs, we noted that the MELAS cohort
manifested increased lifetimes and fractional occupancies in states 8
and 9, along with an elevated switching rate of states. The longer
lifetime and higher fractional occupancy of the MELAS-related states
in patients demonstrated that these specific network configurations
were more sustained and frequently accessed in the MELAS group.
These alterations directly reflected the disrupted neural dynamics
caused by mitochondrial dysfunction, which impaired the brain’s
ability to maintain coherent and efficient communication between
distinct network states. The elevated switching frequency further
underscored instability, indicating a propensity for uncontrolled
transitions between network configurations, which may contribute to
the episodic nature of SLEs and the accumulation of
neurological dysfunction.

When combining the community detection for transition maps
with the global dynamic activity of whole-brain networks, we found
that there were special modules of transitions of the HMM states
related to MELAS patients and HCs. By using the Neurosynth,
MELAS-related modules, primarily featured by states 3 and 8,
exhibited significantly decreased activities in crucial areas of the
DMN and VN, which was basically consistent with a previous study
(6). However, the HC-related module, primarily characterized by
states 5 and 6, revealed increased activities in DMN areas,
sensorimotor, and visual areas. The identification of distinct
community modules highlighted a fundamental difference in how
brain networks organize and transition between states in MELAS
patients. The MELAS-related module’s emphasis on disrupted
DMN and VN dynamics, coupled with their increased presence
time and switching frequency, potentially represented the
pathological consequence of mitochondrial dysfunction on brain
network organization. This altered modular organization likely
underpinned the key neuropathological deficits of MELAS, leading
to symptoms such as cortical blindness and cognitive impairment
associated with VN and DMN dysfunction (25). In addition,
we discovered that transitions between states 1, 5, and 6 occurred
more often than other states. Notably, states 5 and 6 were part of the
HC-associated module, suggesting stronger triangular loops of
transitions within the HC group. The stable reconfiguration of
transition could be key to understanding the neural network
mechanisms. In other words, the occurrence of acute SLE in
MELAS patients has disrupted this stable organizational pattern,
which could be attributed to insufficient mitochondrial energy
production, leading to instability in brain networks. Accordingly,
our results provide novel insights about the temporal characteristics
and reconfiguration of whole-brain networks in MELAS-acute
patients, which may explain the neural network mechanism basis
for SLE.

Finally, the positive correlation between elevated LDH levels and
longer lifetimes in state 8 provided a direct link between metabolic
dysfunction and specific aberrant network dynamics in MELAS. LDH,
as an enzyme, plays a key role in the conversion of lactate to pyruvate
and is widely distributed in various tissues, which is a marker of
cellular stress and impaired energy metabolism. Elevated levels of
serum LDH can serve as a significant biomarker in clinical practice,
such as mitochondrial dysfunction (26), malignancies (27), and
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infections (28). This finding solidified state 8 as a distinct “disease-
characteristic state,;” where prolonged engagement reflected the
ongoing metabolic insult to the brain and its resultant impact on
network stability and function. Consequently, state 8 and its
associated temporal metrics can be considered as potential
neuroimaging biomarkers that capture the severity of metabolic
impairment and its manifestation in brain network dynamics within
MELAS patients.

This study has some limitations. First, the sample size was
relatively small, which might impact the statistical power, so the
significance of the results could be relatively limited. Future
longitudinal cohort studies with larger datasets are needed to better
explore the correlations between the temporal characteristics of HMM
states and the clinical features of MELAS patients and to potentially
establish a prediction model for SLE risk. Second, the number of
HMM states is a free parameter, which makes it difficult to ensure an
exact number of states. In this study, we aimed to extract as much
temporal resolution as possible, though not definitively.

Conclusion

This study evaluated dynamic alterations in whole-brain networks
in MELAS patients using HMM. Our findings revealed a special
dynamic reconfiguration of HMM states and transition modules
within whole-brain networks, along with multiple transition pathways
specific to MELAS. The MELAS-related community was characterized
by decreased activities in key areas of the DMN and VN. Moreover,
correlation analysis revealed that the concentration of LDH was
positively associated with lifetimes in state 8. Therefore, our findings
provide a new perspective for elucidating the mechanism of neural
network damage in MELAS patients and offer potential biomarkers
for evaluating the risk of SLE.
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Glossary LT - lifetimes

AAL - Automated anatomical labeling MELAS - mitochondrial encephalomyopathy with lactic acidosis and

stroke-like episodes
BOLD - blood oxygen level-dependent imaging

MELAS-acute - MELAS patients at acute stage
BRAVO - brain volume

MNI - Montreal Neurological Institute
CK - creatine kinase

ROI - regions of interest
CSF - cerebrospinal fluid

rs-fMRI - resting-state functional magnetic resonance imaging
DMN - default mode network

SF - Switching f;
EPI - echo planar imaging witching frequenicy

FC - functional connectivity SLE - stroke-like episode

FD - frame-wise displacement SPM - statistical parametric mapping

FO - fractional occupancy SWA - sliding windows approach

FOV - field of view TE - echo time

HC - healthy control TR - repetition time
HMM - hidden Markov model VN - visual network
LDH - lactate dehydrogenase WM - white matter.
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