
TYPE Original Research 
PUBLISHED 29 August 2025 
DOI 10.3389/fneur.2025.1626922 

OPEN ACCESS 

EDITED BY 

Shang-Ming Zhou, 
University of Plymouth, United Kingdom 

REVIEWED BY 

Rakeshkumar Mahto, 
California State University, Fullerton, 
United States 
Wang Liao, 
The Second Affiliated Hospital of Guangzhou 
Medical University, China 

*CORRESPONDENCE 

Shan An 
anshan@tju.edu.cn 

Zhixiong Li 
865818683@qq.com 

Feng Yu 
osfengyu@zju.edu.cn 

† These authors have contributed equally to 
this work 

RECEIVED 12 May 2025 
ACCEPTED 07 August 2025 
PUBLISHED 29 August 2025 

CITATION 

Wang G, Li Y, Zhou Z, An S, Cao X, Jin Y, 
Sun Z, Chen G, Zhang M, Li Z and Yu F (2025) 
PlgFormer: parallel extraction of local-global 
features for AD diagnosis on sMRI using a 
unified CNN-transformer architecture. 
Front. Neurol. 16:1626922. 
doi: 10.3389/fneur.2025.1626922 

COPYRIGHT 

© 2025 Wang, Li, Zhou, An, Cao, Jin, Sun, 
Chen, Zhang, Li and Yu. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms. 

PlgFormer: parallel extraction of 
local-global features for AD 
diagnosis on sMRI using a unified 
CNN-transformer architecture 

Guoxin Wang1† , Yuxia Li2† , Zhiyi Zhou3†, Shan An4*, Xuyang Cao5 , 
Yuxin Jin5 , Zhengqin Sun2 , Guanqun Chen6 , Mingkai Zhang7 , 
Zhixiong Li8* and Feng Yu1* 
1 College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China, 
2 Tangshan Central Hospital, Tangshan, Hebei, China, 3 Electrical and Information Engineering, Tianjin 
University, Tianjin, China, 4 School of Electrical and Information Engineering, Tianjin University, Tianjin, 
China, 5 JD Health International Inc., Beijing, China, 6 Department of Neurology, Beijing Chao-Yang 
Hospital, Capital Medical University, Beijing, China, 7 Department of Neurology, XuanWu Hospital of 
Capital Medical University, Beijing, China, 8 Karamay Integrated Traditional Chinese and Western 
Medicine Hospital (People’s Hospital of Karamay), Karamay, China 

Introduction: Structural magnetic resonance imaging (sMRI) is an important tool 
for the early diagnosis of Alzheimer’s disease (AD). Previous methods based 
on voxel, region of interests (ROIs) or patch have limitations in characterizing 
discriminative features in sMRI for AD as they can only focus on specific local or 
global features. 
Methods: We propose a computer-aided AD diagnosis method based on sMRI, 
named PlgFormer, which considers the extraction of both local and global 
features. By using a combination of convolution and self-attention, we can 
extract context features at both local and global levels. In the decision-making 
layer of the model, we design a feature fusion module that adaptively selects 
context features through a gating mechanism. Additionally, to account for 
changes in image input resolution during the downsampling operation, we 
embed a dynamic embedding block at each stage of the network, which can 
adaptively adjust the weights of the inputs with different resolutions. 
Results: We evaluated the performance of our method on dichotomous AD 
vs. normal control (NC) and mild cognitive impairment (MCI) vs. NC, as well 
as trichotomous AD vs. MCI vs. NC classification tasks, using publicly available 
ADNI and XWNI datasets that we collected. On the ADNI dataset, the proposed 
method achieves classification accuracies of 0.9431 for AD vs. NC, 0.8216 for 
MCI vs. CN, and 0.6228 for the AD vs. MCI vs. CN task. On the XWNI dataset, 
the corresponding accuracies are 0.9307, 0.8600, and 0.8672, respectively. The 
experimental results demonstrate the high precision and robustness of our 
method in diagnosing people with different stages of cognitive impairment. 
Conclusion: The findings in our experimental results underscore the clinical 
potential of our proposed PlgFormer as a reliable and interpretable framework 
for supporting early and accurate diagnosis of AD using sMRI. 
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1 Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder 
that progressively impairs cognitive functions such as memory, 
thinking, and behavior. It is the most common cause of dementia 
and affects the normal lives of over 30 million people worldwide 
(1), primarily older adults. As the disease advances, individuals 
may experience difficulties with language, disorientation, mood 
changes, and eventually lose the ability to perform daily activities 
independently. These challenges not only degrade the quality of 
life but also place a heavy burden on families and healthcare 
systems. Early and accurate diagnosis of AD is therefore essential 
for effective intervention and management. 

Diagnosis AD is based primarily on clinical evaluation, 
including medical history, physical examination, and cognitive 
tests (2, 3). Unfortunately, effective treatments for AD have yet 
to be discovered. Therefore, early diagnosis is imperative not 
only for improving the quality of life for patients but also for 
supporting the development of more effective treatment methods 
and intervention measures. 

Structural magnetic resonance imaging (sMRI) is a noninvasive 
medical imaging technique that captures the physical structure of 
the brain and provides detailed images of its tissues, including gray 
and white matter. Unlike functional magnetic resonance imaging 
(fMRI), which measures changes in blood flow and neural activity, 
sMRI uses strong magnetic fields and radio waves. sMRI has 
become a valuable tool in diagnosing AD due to its ability to 
detect changes in brain structure associated with the disease (4– 
7), such as shrinkage in the hippocampus and other areas of the 
brain. However, its use is often limited by physician experience and 
time-consuming processes. 

FIGURE 1 

Various existing models were evaluated on ADNI dataset for the 
binary classification of AD and CN, and their performance was 
compared in relation to the number of model parameters. The 
graphical area corresponded to the number of model parameters. 
Our PlgFormer achieved optimal classification performance with the 
lightest number of parameters. The classification performance is 
illustrated in Table 1. 

To solve this dilemma, hopes have gradually been placed on 
computer-aided diagnosis of AD, which has a long history and 
has achieved good performance. Existing methods for computer-
aided diagnosis of AD using sMRI can be broadly classified into 
three categories: (1) Voxel-based methods; (2) Regions of interest 
(ROIs)-based methods; and (3) Patch-based methods. However, 
these methods face challenges due to the high dimensionality of 
sMRI data and the discrete distribution of AD lesions. 

Voxel-based methods for computer-aided diagnosis of AD 
utilize the entire sMRI as input and extract global features for 
AD diagnosis. Hinrichs et al. (8) used gray matter density to 
extract discriminative features and employed a linear programming 
boosting method to classify AD and normal control (NC). Kao 
et al. (9) detected white matter changes throughout the whole sMRI 
to diagnose AD. Vounou et al. (10) detected markers associated 
with longitudinal changes in brain voxels caused by AD and used 
a sparse reduced-rank regression model to classify them. However, 
these methods extract features across the whole sMRI, resulting in 
high computational complexity and overfitting of the model due to 
limited data. 

In contrast, ROI-based methods focus on extracting features 
from pre-segmented regions with lower feature dimensionality 
compared to voxel-based methods. Zhang et al. (11) adaptively 
extracted 93 ROIs using the atlas warping algorithm and identified 
AD with support vector machines (SVM). Liu et al. (12) 
proposed an ensemble classification model to construct gray 
matter density features within regions by using multiple spatially 
normalized templates. However, ROI selection is heavily dependent 
on specialist knowledge, making it difficult for developers to 
master. Additionally, ROI-based methods can only capture local 
discriminative features, making it difficult to capture global features 
such as ventricular volume and gyral sulcus morphological changes, 
which is insufficient for computer-aided AD diagnosis. 

Patch-based methods extract features with intermediate feature 
dimensions, focusing more effectively on local discriminative 
features. Qiu et al. (13) trained a FCN to adaptively and 
randomly select meaningful patches, which were fed to a multilayer 
perceptron (MLP) for individual-level AD diagnosis. Zhang 
et al. (14) selected discriminative patches by computing shapley 
values and extracted local-global context features in sMRI using 
Convolutional Neural Network (CNN). However, how to combine 
local patch features with global representations is still a problem 
that needs to be explored. 

We propose PlgFormer, a new method for AD diagnosis using 
sMRI. PlgFormer utilizes convolution modules and transformer 
modules in parallel to extract discriminative local-global context 
features in a unified manner. To adaptively adjust parameter size 
for inputs of different sizes, we embed dynamic convolutional layers 
in early stages of the model. This operation also reduces the number 
of parameters 72 compared to conventional convolution, as shown 
in Figure 1. 

In summary, the major contributions of this paper can be 
summarized as follows. 

1. We design a novel dynamic embedding block (DEB) in our 
model, which is a combination of traditional convolution and 
dynamic convolution. Compared to traditional convolution, 
introducing dynamic convolution can help the model adaptively 
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adjust the size of parameters based on the size of input, which 
reduces the model parameters while enhancing its robustness. 

2. A dual-branch structure extracts local-global context features 
in sMRI in parallel. Considering feature alignment, we design 
both dual-branch operations as a multi-head architecture. 
Additionally, we introduce a feature fusion module (F2M) that 
adaptively selects local or global features at the decision-making 
layer of the model. 

3. We collected a large-scale sMRI dataset called the XWNI dataset. 
Our extensive experiments, which included both the publicly 
available ADNI dataset and the collected XWNI dataset, show 
that our proposed PlgFormer substantially outperforms the 
existing baseline models while utilizing minimal parameters. 

2 Related works 

In this section, we provide a summary of current methods for 
computer-aided diagnosis of AD using sMRI data. 

2.1 Traditional machine learning for AD 
diagnosis 

Early methods for computer-aided diagnosis of AD using 
sMRI data mainly focused on extracting features and using 
traditional machine learning methods to analyze and classify 
them. Ashburner and Friston (15) compared differences in 
brain structure between individuals or groups to identify brain 
regions associated with specific diseases or cognitive functions. 
Klöppel et al. (16) transformed brain MRI into statistical features 
and employed SVM to identify early structural changes in the 
brain of AD patients. Similarly, Fan et al. (17) split MRI 
into specified regions and selected the most discriminative 
regions for AD diagnosis based on the statistical characteristics 
of each region and the inter-relationship between them, and 
performed the classification using SVM. Hinrichs et al. (8) 
randomly augmented the raw ADNI data and adopted a linear 
programming boosting method for classification, achieving more 
robust results. sMRI data are always over dimensional. Cao 
et al. (18) proposed a multi-kernel-based method combined with 
marginal fisher analysis to reduce the feature dimensionality of 
MRI and establish a complex mapping relationship from image 
to disease. Zhang et al. (11) used principal component analysis 
(PCA) for feature extraction and dimensionality reduction and 
conducted classification of AD and CN instances using SVM. 
Abuhmed et al. (19) proposed two novel hybrid deep learning 
models, DFBL and MRBL, which integrate multivariate BiLSTM 
architecture with traditional machine learning models to enhance 
the prediction of Alzheimer’s disease progression using multimodal 
time-series data. 

However, these methods mentioned above present two 
limitations: (1) manual feature extraction is reliant on human 
experience and may ignore discriminative features; (2) high-
dimensional features may lead to overfitting. 

2.2 CNN-based methods for AD diagnosis 

CNNs have achieved considerable amount of success in the field 
of computer vision, with their strong inductive bias performs well 
in tasks including image classification (20–22), object detection, 
semantic segmentation, and video understanding. Naturally, these 
CNN-based methods were applied to AD diagnosis using MRI data, 
achieving satisfactory performances. Lian et al. (23) proposed a 
hierarchical full convolutional network (H-FCN) to automatically 
identify discriminative local patches associated with AD in the 
whole brain sMRI. Zhu et al. (24) proposed a dual attention multi-
instance deep learning network to extract discriminative features 
from local patches and aggregate these features by attention-aware 
weights. Wu et al. (25) proposed a 3D CNN model to extract 
and integrate robust multiscale spatial features to promote AD 
computer-aided diagnosis. Zhang et al. (26) proposed a residual 
self-attention deep neural network to capture local spatial features 
in sMRI, while attention mechanisms are still necessary to jointly 
construct global representations. A multi-branch convolutional 
network was proposed in (27), where each branch extracts 
its own features independently and uses a fully connected 
layer for feature aggregation to obtain global representations. 
Zhang et al. (28) proposed a multi-relation reasoning network 
(MRN) that constructs brain graphs from sMRI data to capture 
spatial and topological relationships, improving Alzheimer’s 
disease diagnosis through enhanced feature representation and 
global reasoning. 

In addition to specialized CNN-based models, general models 
such as VGGNet (21) and ResNet (22) have also been applied to 
AD diagnosis due to their successful performance in natural visual 
scene analysis. Billones et al. (29) utilized a modified VGGNet 
model for AD diagnosis using sMRI data. Li et al. (30) employed 
the ResNet model to the ADNI dataset, focusing specifically 
on local discriminative features in hippocampal regions. These 
methods all use the strong inductive bias of CNNs to extend the 
conventional 2D convolutional kernels to 3D and extract the local 
representations associated with AD in sMRI. 

The strong inductive bias of CNNs enables them to 
capture local features effectively even with a limited number 
of samples. However, when constructing global representations by 
integrating local information, attention mechanisms are typically 
still required. 

2.3 Attention mechanism-based methods 
for AD diagnosis 

Attention mechanisms excel at uniting different local features 
to construct global representations. Thanks to this, Wu et al. (25) 
aggregated the local features extracted by the convolution module 
under the supervision of the attention weights. similarly, Zhang 
et al. (26) directed the network to focus on critical information in 
the CNN feature maps and suppress non-essential features by using 
self-attention scores. Liu et al. (31) aggregated the semantic features 
between different channels by the classical Squeeze and Excitation 
(SE) module. Zhang et al. (32) embedded a connection-wise 
attention mechanism in DesNet for associating context features 
of the model. Jin et al. (33) constructed a simple convolutional 
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layer for computing attention weights to retrace global features 
for local features extracted by convolution. Transformer is a pure 
attention mechanism architecture, originally proposed for natural 
language processing tasks (34) and has since been extended to 
the field of computer vision (35, 36) demonstrating progressively 
satisfactory performance. 

However, Jang and Hwang (37) have experimentally 
demonstrated that the coarse embedding of Transformer into 
a mature CNN architecture may not always yield satisfactory 
performances due to its lack of focus on local features, implying 
that attention may not be all need for AD diagnosis with 
sMRI data. 

3 Method  

In this section, we present the details of the proposed method. 
The overview of the method is elaborated in Section 3.1. After 
that, dynamic embedding block, convolution and self-attention 
parallel extraction of local-global context features and the F2M are 
described in Section 3.2, Section 2.3, and Section 3.4, respectively. 

3.1 Overview of the proposed method 

The strong inductive bias of the convolution is beneficial for 
local features extraction, while the self-attention is significant for 
the representation of global features. Both local and global features 
are important for AD diagnosis from sMRI, which means we 
cannot simply conduct convolution or self-attention operations. To 
achieve this, we propose an architecture that extracts local-global 
context features in parallel with a uniform multi-head self-attention 
mechanism. Our designed F2M in the decision-making layer of 
the network selects discriminative local-global context features 
through a gating mechanism. Additionally, since downsampling 
changes the input resolution at each stage, we embed a dynamic 
embedding block in each stage of the network to adjust the weights 
for different input resolutions adaptively. 

Figure 2 provides an overview of our proposed PlgFormer 
algorithm. Simply described, we take a vanilla 3-D sMRI X ∈ 
R

D×H×W as an example. The training process of PlgFormer is 
depicted in Algorithm 1. The proposed PlgFormer consists of 
multi-stages, each of which conducts a downsampling operation 
to reduce the dimensionality of the data. To adapt to the change 
of input size, DEBs are introduced in each stage of the model to 
adaptively adjust the weights of convolution kernels for various 
resolutions. In the early stages of the model, Multi-Head-Self-
Attention (MHSA) was introduced in a purely convolutional 
operation paired with multi-head style, without considering the 
computationally burdensome self-attention mechanism due to 
the large input size. Local and global discriminative features are 
then extracted using the convolution and self-attentive modules. 
To facilitate feature alignment before fusion, the convolution 
operation is designed as a multi-head structure unified with the 
self-attention mechanism. Local-global context features are fused 
with F2M and passed through global average pooling and full 
connectivity to obtain the one-hot tensor at the decision-making 
layer of the network. 

The key factors of our proposed method for effective AD 
diagnosis include: (1) how to encode dynamic positions for 
inputs of different resolutions; (2) how to extract local and global 
features in a uniform manner using convolution and self-attention 
operations for subsequent feature alignment; and (3) how to 
effectively fuse local-global context features. These solutions will be 
elaborated in Sections 3.2–3.4. 

3.2 Dynamic embedding block 

Dynamic convolution can adjust the size of the convolution 
kernel according to the different sizes of the input data, effectively 
reducing the parameter count of the model. Unlike traditional 
convolutions that only use fixed kernel sizes, this type of operator 
also improves the robustness of convolution nerual nerworks, as the 
model can more quickly focus on discriminative features. Before 
executing the multi-head attention in each stage, the DEB uses 
a regular convolution operation to non-overlappingly divide the 
feature map of the original input into many patches (kernel_size, 
stride = patch_size). As shown in Figure 3, before and after this 
regular convolution operation, the DEB introduces a dynamic 
convolutional layer to guide the subsequent multi-head module to 
focus on more meaningful features: 

H = DEB(X), (1) 

Where DEB represents a single dynamic embedding block, 
consisting of two dynamic convolution layers and a vanilla 
convolution layer with a stride of 2 or 4 for downsampling. 
We introduce this block to integrate of all tokens before feeding 
them to the multi-headed self-attentive module. Such a design 
combining dynamic convolution has two benefits. First, the 
dynamic convolution operation is very friendly to varying input 
resolutions. Second, dynamic convolution is light-weight, which 

Input: input images X ∈ R D×H×W 

Output: outputs Ŷ ∈ R n (n: number of classes) 

1: repeat 

2: Let stage k = 1, loss = 0.0 

3: H0 ← DEB(X) 

4: for k = 1 → m do (m : number of stages) 

5: if k <= s then (s : number of shallow stages) 

6: Hk ← MHSAk(Hk−1) 

7: else 

8: Hk 
l ← MHSAk 

l(H
s, if  k − 1 == s else Hk−1 

l ) 

9: Hk 
g ← MHSAk 

g(Hs, if  k − 1 == s else Hk−1 
g ) 

10: k = k+ 1 

11: end for 

12: Zaug ← F2M(Hm 
l, Hm 

g) 

13: Ŷ ← AvgPool + FC(Zaug) 

14: loss = Loss_function(Y, Ŷ) 

15: θ ← −∇θ (loss) 

16: until convergence 

17: return Ŷ ∈ R n 

Algorithm 1. The training procedure of PlgFormer. 

Frontiers in Neurology 04 frontiersin.org 

https://doi.org/10.3389/fneur.2025.1626922
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2025.1626922 

can largely alleviate the over-fitting problem encountered because 
of the small amount of data. 

3.3 Parallel local-global feature extraction 

Positional encoding introduces relative position relationships 
between multiple tokens, which is essential for ViTs to capture 
sequential information in the sequence. Traditionally, absolute 
positional encoding was first introduced into ViTs (35, 36), and 
this style is not friendly for different input resolutions. And relative 
positional encoding also does not always perform well due to its 
heavy computational burden (38). To improve efficiency, several 
recent works introducing convolutional positional encoding have 
been proposed to flexibly embed position relations (39, 40), and we 
follow them. 

As previously discussed, convolution operations are effective 
at capturing local contextual relationships, while self-attentive 
mechanisms excel at capturing global dependencies. Therefore, 
we propose a two-branch structure that concurrently extracts 
local and global context features, with one branch utilizing 
convolution operations and the other branch calculating attention 
distributions. This design enables efficient and effective hierarchical 
representation learning of local-global context features through 
multi-stage stacking. Additionally, for feature alignment, we 
implement both branches as unified multi-head styles, i.e., local 
MHSA: MHSAl and global MHSA: MHSAg , 

Vn = AnHn, (2) 

Hk = W ∗ Concat[V1, V2, ..., Vn]. (3) 

Given a series of tokens Hn, the token relation aggregators An 

capture the dependencies between them. Then, these relations are 

concatenated in the channel dimension, where W represents the 
learnable parameter matrix. 

1) Local MHSA: benefiting from the fact that convolution 
neural networks are specialized in focusing on local detailed 
features within a small region, MHSAl is designed as a 
pure convolutional structure without introducing self-attention 
operations, as described in Figure 4. In particular, unlike the 
previous convolutional blocks, MHSAl follows a transformer-
like style. We extract features from various “heads” using group 
convolution, and aggregate multi-head features in the channel 
dimension. Concretely, given a series of anchor tokens {Hi}1 : n 

obtained by group convolution, the MHSAl learns the affinities 
between them by a local convolution operation in a small 
neighborhood d×h×w: 

Vn = Wi−j 
n ∗ (Hj, Hi), j ∈  d×h×w , (4) 

FIGURE 3 

Detailed structure of the proposed DEB. The kernel size of 3D 
dynamic convolution is 1, while the normal 3D convolution with 
patch size as the kernel size and stride is used to downsample at a 
specific ratio. This structure enables the block to be more adaptive 
and reduces the number of parameters as the input image size 
decreases. 

FIGURE 2 

Overview of the proposed PlgFormer. This method comprises four stages of feature extraction. Each stage employs dynamic convolutional style to 
encode location information, MHSAl or MHSAg to extract local or global features, and a feature fusion module to combine these features and 
produce classification results. For further elaboration, please refer to Section 3. The figure schematically illustrates the data dimensions as a binary 
classification of AD and CN. 
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FIGURE 4 

The detailed structure diagram of MHSAl. Multi-head feature extraction is achieved by grouped convolution to extract local features, followed by 
point convolution for feature aggregation. Similar to traditional ViTs, we add residual connections for the model to trace back to previous features. 
MHSAg, on the other hand, extracts and aggregates global features through fully connected layers. 

where Wi−j 
n ∈ R

d×h×w is the learnable convolutional kernel 
parameter matrix, and (i − j) denotes the relative position between 
raw tokens Hi and Hj. By doing so, each head corresponds to 
each channel of the feature map, enabling us to extract local 
discriminative features in sMRI within a limited receptive field 
while preserving the spatial structure of the feature map. 

2) Global MHSA: self-attention is a natural method for 
capturing long-range dependencies between features and 
constructing discriminative global representations. In Vision 
Transformers (ViTs), a multi-head structure is frequently 
employed to process sequence information. Each “head” learns 
independent feature mappings and, ultimately, obtains a global 
view via linear aggregation: 

Hn = 
eQn(Hi)T Kn(Hj) 


j ∈ D×H×W e 

Qn(Hi)T Kn(H 
j  ) 
, (5) 

where Qn(·) and Kn(·) are chosen as normal fully connected 
transformations and the above equation is a standard softmax 
operator. Note that j ∈ D×H×W belongs to the global, signaling 
the concern of the MHSAg for global dependencies. To process the 
spatial dimensions of sMRI (depth D, height H, and width W), we 
convert them into a one-dimensional tensor and input it to the fully 
connected layer. Although traditionally this operator introduces 
significant computational burden, our MHSAg is located at the 
post-stage of the network, where it processes feature maps that 
have been downsampled through multiple stages. This allows for 
a balance between computational efficiency and accuracy. 

Local-global context features in sMRI are aggregated in 
multiple stages through parallel feature extraction using MHSAl 
and MHSAg . Similarly to conventional ViTs, we introduce a feed-
forward network (FFN) after each MHSA block. Our FFN has 
a specific architecture consisting of two linear layers wrapped 
around a nonlinear activation function (GELU). The first linear 
layer expands the channel dimension by the ratio of 4, while 
the next linear layer reduces it back to its original level. This 
operation facilitates the further filtering of features and improves 
the nonlinear expression of the model. 

Considering the excessively large dimensions of the feature 
maps in the first two stages, it imposes a significant computational 
burden on the calculation of self-attention. Therefore, in the 
initial two stages of PlgFormer, the computation of MHSA 

FIGURE 5 

The detailed structure of the F2M. 

adopts a locally based convolutional feature extraction module. 
Subsequently, a parallel local-global context extraction structure 
is employed to independently extract local features and aggregate 
global representations. 

3.4 Feature fusion module 

The F2M introduces a simple gating mechanism to enable 
adaptive feature selection, as depicted in Figure 5. For local feature 
maps, a convolution with a larger kernel size of 5 × 5 × 5 is applied 
to focus on the more global features (the size of feature maps is 
5 × 6 × 5 at this stage). Conversely, for global feature maps, point-
by-point convolution is employed to preserve the global features 
of interest to self-attention. Finally, Zl is passed through a sigmoid 
activation function, resulting in a mapping to values between 0 and 
1 that controls the flow of local-global context features: 

Zl = Wl ∗ Hm 
l , (6) 

Zg = Wg ∗ Hm 
g + Hm 

g , (7) 

Zaug = Zg ∗ σ (Zl) + Zl ∗ (1 − σ (Zl)). (8) 

It’s worth noting that, in the computation of multi-head 
self-attention, we drew inspiration from Zhang et al. (14) and 
introduced residual connections for the MHSAg module, while this 
design consideration was not applied to MHSAl. This choice is 
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primarily made because residual connections assist deep networks 
in rapidly backpropagating shallow features. The convolutional 
module, having fewer network layers, does not necessitate the 
introduction of residual connections, as gradients can quickly 
propagate to the lower layers without them. However, for the 
globally self-attention operation based on fully connected layers, 
residual connections play a crucial role in facilitating better 
information propagation. They help alleviate the issue of gradient 
decay, ensuring improved preservation and dissemination of vital 
global information during global modeling. Here, Wl and Wg 

represent the learnable convolutional kernel parameter matrices, 
and σ (·) denoting the sigmoid activation function. The resulting 
feature set Zaug contains both global features aggregated by 
self-attention and local features extracted through convolution. 
We obtain Zaug as a one-hot tensor following global average 
pooling of aggregated spatial features and projection using a fully 
connected layer. 

4 Experiments 

In this section, we first present the two datasets used in this 
study in Section 4.1. Then, we present the specific experimental 
setup and evaluation metrics in Section 4.2. Subsequently, we 
introduce the comparison experiments with other existing methods 
in Section 4.3, and the ablation studies to validate the key 
components of the proposed model in Section 4.4. 

4.1 Datasets 

In this study, we employed two independent datasets to validate 
the performance of our proposed method, i.e., the publicly available 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and 
the privately available Xuanwu Neuroimaging (XWNI) dataset. 

1) ADNI dataset: the ADNI is a large-scale, multicenter 
research study that aims to identify clinical, imaging, genetic, and 
biochemical biomarkers for the early detection and tracking of 
AD (41). This dataset has been extensively used in AD research, 
including studies on disease progression, diagnosis, and treatment. 
The availability of longitudinal data from multiple modalities 
makes it an invaluable resource for developing and evaluating 
machine learning algorithms for AD detection, prediction, and 
diagnosis. In this study, we utilized T1-weighted MRI scans 
from the ADNI dataset, which consists of various types of data, 
including clinical assessments, neuropsychological tests, MRI, PET, 
and genetic data. We only select data from ADNI1 dataset, and 
all sMRI data are acquired using a 1.5T MRI scanner. The ADNI 
dataset used in our study includes 1,779 samples, comprising 546 
cases of NC (283 females, 263 males, 76.5 ± 5.1 years), 840 cases 
of mild cognitive impairment (MCI; 336 females, 504 males, 75.5 
± 7.1 years), and 393 cases of AD (198 females, 195 males, 75.3 ± 
7.6 years). The demographics of participants in ADNI dataset are 
shown in Table 1. Moreover, we use Table 2 to show our training-
testing splits number of ADNI datasets. 

2) XWNI dataset: the XWNI dataset was obtained from 
Xuanwu Hospital Capital Medical University, located in Beijing, 

TABLE 1 Demographics of participants in ADNI and XWNI datasets. 

Gender 
(F/M) 

Age 
(years) 

Datasets ADNI 
(n = 1,779) 

CN 
(n = 546) 

283/263 76.5 ± 5.1 

MCI 
(n = 840) 

336/504 75.5 ± 7.1 

AD 
(n = 393) 

198/195 75.3 ± 7.6 

XWNI 
(n = 711) 

CN 
(n = 515) 

291/222∗ 64.8 ± 24.8 

MCI 
(n = 47) 

28/18∗ 62.2 ± 21.2 

AD 
(n = 149) 

97/52 70.4 ± 30.6 

F and M refer to female and male, respectively. Gender information is missing for 2 CN and 
1 MCI subjects in the XWNI dataset and is marked with an asterisk (*). 

China.1 This dataset includes sMRI data from patients diagnosed 
with AD, MCI, and NC. It stands out due to its large sample 
size and high-quality sMRI images. The sMRI data were acquired 
using a 3.0T MRI scanner and were preprocessed to improve image 
quality. The dataset contains both raw and preprocessed sMRI 
data, including skull-stripped and segmented images. A total of 
711 samples were collected, including 515 cases of CN, 47 cases 
of MCI, and 149 cases of AD. The XWNI database is anticipated 
to be a valuable resource for researchers involved in AD diagnosis 
and related studies. The demographics of participants in XWNI 
dataset are shown in Table 1. Moreover, we use Table 2 to show our 
training-testing splits number of XWNI datasets. 

3) Preprocessing: MNI152_T1 is a commonly used standard 
template for brain MRI image analysis and research, featuring 
a standard spatial coordinate system and brain structure 
information. Considering spatial resolution as a vital parameter 
affecting image quality and resolution, we initially paired the T1-
weighted sMRI with the MNI152_T1_1mm template to obtain a 
more precise description of brain structure. Moreover, to avoid the 
computational burden from excessive sMRI data dimensionality, 
we cropped all images to D × H × W : 148 × 192 × 156. These 
preprocessing methods can enhance the quality and effectiveness 
of sMRI data and lay the groundwork for subsequent analysis and 
research. Figure 6 illustrates the difference between sMRI images 
before and after preprocessing, indicating that the preprocessed 
images better capture the structural organization of brain tissue 
and demonstrate improved image quality. 

We utilized the medical image processing tool, MONAI, to 
transform and augment the dataset to adapt to the model input 
and enhance the robustness of model training, as described in 
Table 3. In the table, “Augmentation” refers to the functions 
encapsulated in MONAI, and “Values” refers to the specific 
parameters corresponding to the functions. 

1 This study was performed in line with the principles of the Declaration 

of Helsinki. Ethical Approval was granted by the Ethics Committee of 

Xuanwu Hospital Capital Medical University (No. 2017046). All subjects signed 

informed consent forms. 
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TABLE 2 Training and testing split numbers of ADNI and XWNI datasets. 

Datasets ADNI XWNI 

Tasks CN vs. AD CN vs. MCI CN vs. MCI vs. AD CN vs. AD CN vs. MCI CN vs. MCI vs. AD 

Train Test Train Test Train Test Train Test Train Test Train Test 

CN 363 183 474 72 474 72 331 204 66 33 126 63 

AD 330 64 - - 330 63 100 49 - - 100 49 

MCI - - 486 354 486 93 - - 30 17 30 17 

FIGURE 6 

Comparison of sMRI before and after preprocessing. (a–c) Are raw sMRI from the axial view, the coronal view, and the sagittal view, respectively; 
(d–f) are preprocessed brain images from the corresponding view that have been cropped after matching to the MNI152_T1_1mm template. 

4.2 Experimental setup and evaluation 
metrics 

The proposed method was implemented using Python 3.7.0 
and PyTorch 1.10.0. The GPU we used is one P40 with a memory 
of 24GB. We trained the network end-to-end using AdamW 
optimizer and optimize under the supervision of the cross-entropy 

loss function, without additional data for pre-training. PlgFormer 
consists of four stages, with 2, 2, 3, and 4 Multi-Head Self-Attention 
(MHSA) mechanisms allocated to each stage respectively. The 
DEB module uses 4 dynamic convolution kernels to enhance 
feature representation, an attention hidden ratio of 0.25 to balance 
performance and computational efficiency, and a temperature 
parameter initialized at 34 and decreased by 3 during training 
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TABLE 3 The dataset was transformed and augmented using MONAI. 

Dataset split Augmentation Values 

Training set Rand spatial cropd roi_size = [144, 176, 144] 

Histogram normalized -

Normalize intensityd -

Rand flipd prob = 0.2 (dim:depth, heigth 
and width) 

Rand scale intensityd factors = 0.1, prob = 1.0 

Rand shift intensityd factors = 0.1, prob = 1.0 

Test set Center spatial cropd roi_size = [144, 176, 144] 

Histogram normalized -

Normalize intensityd -

to progressively sharpen the attention distribution. The initial 
learning rate was set to 5e-4 and decayed with a cosine annealing 
strategy. To overcome early optimization difficulties, we performed 
a linear warm-up for the first 100 epochs, while the total training 
epochs were 400. Considering the extremely unbalanced number of 
samples contained in each category of the dataset, especially in the 
XWNI dataset, we used weighted random sampling to balance the 
number of samples contained in each category when loading the 
dataset to pursue better diagnostic performances. We conducted 
dichotomous (AD vs. CN and MCI vs. CN) and trichotomous 
(AD vs. MCI vs. CN) classifications to comprehensively evaluate 
the diagnostic performance of our model with varying degrees of 
cognitive impairment. 

For model evaluation, we select a comprehensive set of metrics 
including accuracy (ACC), recall (REC), precision (PRE), F1-
score (F1), and specificity (SPE). The calculation of each metric is 
as follows: 

ACC = 
TP + TN 

TP + TN + FP + FN 
(9) 

REC = 
TP 

TP + FN 
(10) 

PRE = 
TP 

TP + FP 
(11) 

F1 = 
2 × REC × PRE 

REC + PRE 
(12) 

SPE = 
TN 

TN + FP 
(13) 

where TP, FP, TN, and FN denote true positive, false positive, true 
negative, and false negative, respectively. In practice, REC denotes 
the probability that a positive sample in the data set is correctly 
discriminated, and PRE denotes the proportion of all examples 
diagnosed as positive by the model that are in fact positive. 
Obviously, REC and PRE are numerically a pair of mutually 
exclusive indicators, so we calculate the F1-score to evaluate the 
performance of the model in a comprehensive way. And SPE 
indicates the ability of the model to determine negative samples. In 
addition, we also report the Area Under the Curve (AUC), which is 
the area under the Receiver Operating Characteristic Curve (ROC) 
curve, to measure the performance of the dichotomous model. is 
equal to 0.5, the model is equivalent to a random guess. 

4.3 Comparison experiments 

We compared our proposed method with several existing 
classification approaches fine-tuned on large-scale multimodal 
medical imaging datasets, including Med3D-ResNet-10, Med3D-
ResNet-18, and Med3D-ResNet-34 (42). Additionally, we extended 
the original ViT model (35) to support 3D medical image 
classification, referred to as ViT-ori in this study. We also 
included methods specifically designed for Alzheimer’s disease 
classification, covering both CNN-based and Transformer-based 
architectures, such as DA-MIDL (24), AMSNet (25), ResAttNet-
10 (26), ResAttNet-18 (26), ViT-for-AD (43), and MCNEL (44). 
To comprehensively evaluate the performance of our approach, we 
conducted three sets of experiments on both datasets: (1) binary 
classification between AD and CN, (2) binary classification between 
MCI and CN, and (3) multi-class classification among AD, MCI, 
and CN subjects. 

1) Binary classification on AD and CN subjects: accurately 
identifying AD plays a crucial role in clinical diagnosis as well as 
computer-aided diagnosis. AD is characterized by brain atrophy, 
gray matter atrophy, reduced brain tissue, white matter damage, 
enlarged sulcal gyrus, and ventricles, which can be easily detected 
by physicians or computers on sMRI. In this study, we employed 
PlgFormer to set the embedded dimension of each stage to 16, 
32, 64, and 128, and each head dimension to 16. The weight 
decay, learning rate, and batch size were set to 5e-4, 2e-4, and 16, 
respectively. We conducted comparison experiments on ADNI and 
XWNI datasets, and the results are presented in Table 4. 

As elaborated in Table 4, our proposed PlgFormer achieves 
superior performance on ADNI and XWNI datasets in most cases. 
PlgFormer outperforms other methods in most of the evaluation 
metrics on both datasets, with ACC = 0.9431, PRE = 0.9016, 
F1 = 0.8871, SPE = 0.9672, and AUC = 0.9201 on ADNI 
dataset and ACC = 0.9407, REC = 0.9184, PRE = 0.8036, F1 = 
0.8517, and AUC = 0.9021 on XWNI dataset. Although PlgFormer 
did not achieve the best performance in some metrics, such as 
REC on ADNI dataset and SPE on XWNI dataset, it notably 
outperformed other existing methods on several metrics. Notably, 
PlgFormer achieved the highest accuracy, suggesting its excellent 
performance in diagnosing AD patients. These results demonstrate 
the effectiveness and potential of using PlgFormer for binary 
classification in AD and CN, which can aid in early diagnosis and 
intervention for AD. 

2) Binary classification on MCI and CN subjects: identifying 
individuals with MCI is a crucial task for early intervention in AD, 
especially since there are currently no well-established treatment 
options for AD. However, using sMRI alone to perform this task 
is challenging, as the brain regions of patients with MCI usually 
do not undergo significant morphological changes. In this study, 
we set the embedding dimension of each stage of PlgFormer to 
16, 32, 64, 96, while keeping the other hyperparameters the same 
as those for the AD and CN binary classification. The results of 
a detailed comparison with other existing methods are presented 
in Table 5. 

The results presented in Table 5 demonstrate that our proposed 
PlgFormer outperforms other existing methods on both ADNI and 
XWNI datasets, with the highest metrics achieved in most cases. 
For example, on the ADNI dataset, our method achieved a PRE 
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TABLE 4 Quantitative comparison of our proposed PlgFormer and other 
existing methods for AD and CN binary classification on ADNI and XWNI 
datasets. 

Method ACC REC PRE F1 SPE AUC 

ADNI dataset 

Med3D-
ResNet-10 
(42) 

0.8780 0.9365 0.6941 0.7973 0.8579 0.8972 

Med3D-
ResNet-18 
(42) 

0.8943 0.9206 0.7342 0.8169 0.8852 0.9029 

Med3D-
ResNet-34 
(42) 

0.8984 0.9048 0.7500 0.8201 0.8962 0.9005 

DA-MIDL 
(24) 

0.9106 0.7619 0.8727 0.8136 0.9617 0.8618 

AMSNet (25) 0.8902 0.9206 0.7250 0.8112 0.8798 0.9002 

ResAttNet-10 
(26) 

0.9065 0.8730 0.7857 0.8271 0.9180 0.8955 

ResAttNet-18 
(26) 

0.8821 0.7302 0.7931 0.7603 0.9344 0.8323 

ViT-ori (35) 0.6870 0.8095 0.4397 0.5698 0.6448 0.7272 

ViT-for-AD 
(43) 

0.9000 1.0000 0.8750 0.9333 0.6667 0.8335 

MCNEL (44) 0.8998 0.8750 0.8750 0.8750 0.9167 0.8958 

PlgFormer 
(ours) 

0.9431 0.8730 0.9016 0.8871 0.9672 0.9201 

XWNI dataset 

Med3D-
ResNet-10 
(42) 

0.8933 0.8367 0.6833 0.7523 0.9069 0.8769 

Med3D-
ResNet-18 
(42) 

0.9012 0.8163 0.7143 0.7872 0.9216 0.8718 

Med3D-
ResNet-34 
(42) 

0.8814 0.8367 0.6508 0.7321 0.8922 0.8648 

DA-MIDL 
(24) 

0.9091 0.7347 0.7826 0.7579 0.9510 0.8428 

AMSNet (25) 0.9209 0.8163 0.7843 0.8000 0.9461 0.8812 

ResAttNet-10 
(26) 

0.9091 0.7959 0.7501 0.7723 0.9363 0.8781 

ResAttNet-18 
(26) 

0.9130 0.8776 0.7288 0.7963 0.9216 0.8996 

ViT-ori (35) 0.8735 0.6226 0.6889 0.6596 0.9314 0.7820 

ViT-for-AD 
(43) 

0.8824 0.9000 0.9000 0.9333 0.9167 0.8958 

MCNEL (44) 0.9105 0.9050 0.8700 0.9400 0.9300 0.9100 

PlgFormer 
(ours) 

0.9407 0.9184 0.8036 0.8517 0.9461 0.9322 

The bold values indicate the best value in the current column. 

of 0.9290 and an AUC of 0.7654, while on the XWNI dataset, our 
method achieved a PRE of 0.7778 and an AUC of 0.8512. It is 
worth noting that MCI patients exhibit less significant structural 

TABLE 5 Quantitative comparison of our proposed PlgFormer and other 
existing methods for MCI and CN binary classification on ADNI and XWNI 
datasets. 

Method ACC REC PRE F1 SPE AUC 

ADNI dataset 

Med3D-
ResNet-10 
(42) 

0.7160 0.7260 0.9146 0.8094 0.6667 0.6963 

Med3D-
ResNet-18 
(42) 

0.7958 0.8192 0.9265 0.8696 0.6806 0.7499 

Med3D-
ResNet-34 
(42) 

0.7981 0.8531 0.8978 0.8751 0.5278 0.6904 

DA-MIDL 
(24) 

0.7887 0.8192 0.9177 0.8657 0.8194 0.7077 

AMSNet (25) 0.7840 0.8362 0.8970 0.8655 0.5278 0.6820 

ResAttNet-10 
(26) 

0.7864 0.8305 0.9046 0.8660 0.5694 0.7000 

ResAttNet-18 
(26) 

0.7934 0.8390 0.9055 0.8710 0.5694 0.7042 

ViT-for-AD 
(43) 

0.7959 0.6250 0.7143 0.6667 0.8788 0.7368 

MCNEL (44) 0.8000 0.7500 0.7500 0.7500 0.8333 0.7107 

PlgFormer 
(ours) 

0.8216 0.8503 0.9290 0.8879 0.6806 0.7654 

XWNI dataset 

Med3D-
ResNet-10 
(42) 

0.7800 0.8824 0.6250 0.7317 0.7273 0.7796 

Med3D-
ResNet-18 
(42) 

0.8000 0.7647 0.6842 0.7222 0.8182 0.7832 

Med3D-
ResNet-34 
(42) 

0.8200 0.7059 0.7500 0.7273 0.8788 0.7905 

DA-MIDL 
(24) 

0.8000 0.7059 0.7059 0.7059 0.8485 0.7745 

AMSNet (25) 0.8000 0.8235 0.6667 0.7368 0.7879 0.8057 

ResAttNet-10 
(26) 

0.8000 0.8824 0.6522 0.7500 0.7576 0.8200 

ResAttNet-18 
(26) 

0.7800 0.9412 0.6154 0.7442 0.6970 0.8191 

ViT-for-AD 
(43) 

0.8235 0.9000 0.8182 0.8571 0.7143 0.8285 

MCNEL (44) 0.8367 0.6875 0.7851 0.7333 0.9090 0.8421 

PlgFormer 
(ours) 

0.8600 0.8235 0.7778 0.8000 0.8788 0.8512 

The bold values indicate the best value in the current column. 

alterations in brain regions on sMRI compared to AD patients. 
Consequently, the binary performance of the MCI and CN subjects 
was not as good as that of the AD and CN subjects on both 
data sets. As illustrated in Table 5, our PlgFormer achieves notable 
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performance in F1 scores on both datasets, thus demonstrating its 
ability to distinguish between MCI and CN subjects. 

3) Triple classification on AD, MCI, and CN subjects: performing 
a triple classification experiment using sMRI on AD, MCI, and CN 
subjects is of great significance for computer-aided AD diagnosis. 
Currently, there is no effective cure for AD, underscoring the 
importance of early definitive detection to enable early intervention 
and treatment. MCI, as a transitional stage between normal aging 
and dementia, significantly increases the risk of developing AD. 
Therefore, accurately diagnosing and differentiating individuals 
with MCI and AD from those with normal cognitive function 
(CN) is crucial to facilitate the early detection and management 
of AD. 

Table 6 presents quantitative comparisons, revealing that 
our proposed PlgFormer outperforms other existing methods, 
particularly in the recognition of AD subjects, notably in the 
ADNI dataset. We attribute this to the flexibility of PlgFormer in 
addressing both local and global requirements, making it more 
sensitive to significant structural changes in brain regions. In 
general, our method demonstrated remarkable performance on 
most metrics, providing compelling evidence of its potential use 
in clinical practice for computer-aided diagnosis. Furthermore, our 
review of existing studies utilizing sMRI for AD diagnosis reveals 
that limited attention has been given to the three-way classification 
of AD, MCI, and CN. We acknowledge the inherent difficulty of 
this task, as current models often struggle to capture the subtle 
and discriminative features present in sMRI. Nevertheless, given its 
substantial clinical relevance, we strongly encourage future research 
to further explore and address this challenging problem. 

4.4 Ablation studies 

In this subsection, we conducted ablation studies on AD 
and CN binary classification on ADNI dataset to evaluate the 
impact of various key components in PlgFormer on model 
representation capacity. Similarly, we selected ACC, REC, PRE, F1, 
SPE, and AUC as evaluation metrics. The corresponding results 
are presented in Table 7, L and G respectively represent MHSAl 
and MHSAg , denotes leaving the corresponding component in 
place, whereas × denotes replacing it with another multi-head 
self-attention module. 

According to the results presented in Table 7, it is evident 
that convolutional operations play a crucial role in the PlgFormer 
model we designed. When MHSAl was replaced with MHSAg , the  
performance of the model dropped significantly (ACC decreased 
from 0.9431 to 0.7480). We attribute this phenomenon to the 
small sample size of our dataset, as pure self-attention modules 
require a large amount of data to demonstrate their effectiveness. 
We also observed a slight drop in performance when MHSAg was 
replaced with a local MHSAl, suggesting that global features are 
still necessary for AD classification using sMRI. This conclusion 
was supported by the fact that attention modules were embedded in 
the DA-MIDL and ResAttNet-10 architectures. Furthermore, when 
we removed the designed DEB, the performance slightly decreased, 
indicating that encoding image patch sequences dynamically is a 
meaningful operation. In addition, F2M is also an important and 

effective module for feature fusion, as replacing it with a simple 
concatenation caused a decrease in all evaluation metrics. 

We evaluated the effects of dynamic convolution on overfitting 
and generalization, as shown in Table 8. The results indicate 
that when dynamic convolution is used, the model demonstrates 
similar training errors but reduces validation errors, highlighting 
its capability to mitigate overfitting. Furthermore, dynamic 
convolution leads to lower errors in the testing set of the XWNI 
dataset, suggesting improved generalization on other datasets. 
It is worth noting that we conducted experiments across 5 
independent runs with different random seeds and reported 
the mean and standard deviation of the final validation loss, 
in order to evaluate the training stability of DEB. The results 
show that the DEB-enhanced model achieves a lower average 
loss with reduced variance, demonstrating improved robustness 
and stability. 

4.5 Visualization 

To provide human physicians with reliable and accurate 
computer-aided diagnostic results, we employed Grad-CAM (45) 
to generate sMRI slice heat maps in sagittal, axial, and coronal 
planes, as illustrated in Figure 7. To produce high-resolution heat 
maps that are easy to interpret, we applied 3D Grad-CAM at a 
lower layer with a resolution of 36 × 44 × 36 (D × H × W). 
In the process of visualization, the reshaped tensor of dimensions 
36×44×36 was restored to its original resolution to facilitate a more 
detailed examination of features attended to by the neural network. 
The Grad-CAM procedure commenced with the loading of a pre-
trained model alongside the original sMRI input. Subsequently, 
an intermediate layer’s output and its gradients with respect to 
the output were selectively chosen. The visual representation of 
the feature maps derived from this output was then obtained. 
Following this, the impact of the gradients on the output of the 
target layer was quantified, yielding weight factors indicative of the 
significance of the feature maps. These weights were employed to 
project the importance of the feature maps back onto the input 
image. Finally, the application of these weights to the target layer’s 
output resulted in the generation of a heatmap. This heatmap 
provides insights into which regions of the input image hold critical 
information for the model’s predictive capacity. 

We have drawn GradCAM using six patients with AD, as 
illustrated in Figure 7, all of whom are from the test set of the 
ADNI dataset. Additionally, We have analyzed the visualization 
results for these patients using the ICBM 152 template. First, we 
aligned the sMRI data of AD patients with the template, and then 
analyzed the brain regions corresponding to the areas of interest 
(high-luminance areas) of our model. After analysis, we found that 
the brain regions that our model focuses on include: Posterior 
Cingulate, Precuneus, Isthmus Cingulate, and Lateral Ventricle. 
We have consulted with doctors who diagnose AD clinically, and 
found that the Posterior Cingulate and Precuneus regions are 
consistent with the areas that doctors focus on during clinical 
diagnosis. This further confirms that the features extracted by our 
method are not only meaningful for deep neural network models 
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TABLE 6 Quantitative comparison of our proposed PlgFormer and other existing methods for AD MCI and CN triple classification on ADNI and XWNI 
datasets. 

Method AD MCI 

ACC REC PRE F1 SPE REC PRE F1 SPE 

ADNI dataset 

Med3D-ResNet-10(42) 0.5864 0.4000 0.2424 0.3019 0.8111 0.6036 0.7913 0.6848 0.5726 

Med3D-ResNet-18 (42) 0.5908 0.3000 0.2222 0.2553 0.8413 0.6126 0.7969 0.6927 0.5806 

Med3D-ResNet-34 (42) 0.5996 0.4333 0.3377 0.3796 0.8715 0.6006 0.8197 0.6932 0.6452 

DA-MIDL (24) 0.6053 0.3968 0.2778 0.3268 0.8474 0.6582 0.7664 0.7082 0.4741 

AMSNet (25) 0.6012 0.4603 0.2929 0.3580 0.8357 0.6384 0.7740 0.6997 0.5111 

ResAttNet-10 (26) 0.5667 0.3167 0.2879 0.3016 0.8816 0.6036 0.7614 0.6734 0.4919 

ResAttNet-18 (26) 0.5886 0.2833 0.2537 0.2677 0.8741 0.6366 0.7823 0.7020 0.5242 

ViT-for-AD (43) 0.5882 0.4000 0.4444 0.4211 0.8750 0.6364 0.7000 0.6667 0.4286 

MCNEL (44) 0.6105 0.5800 0.4500 0.5100 0.8600 0.6400 0.7300 0.6850 0.5800 

PlgFormer (ours) 0.6228 0.7619 0.5161 0.6154 0.7273 0.3871 0.6545 0.4865 0.8593 

XWNI dataset 

3D-ResNet-10 (42) 0.8047 0.7347 0.8372 0.7826 0.9114 0.4706 0.6154 0.5333 0.9550 

3D-ResNet-18 (42) 0.8125 0.8367 0.8913 0.8632 0.9367 0.6471 0.4231 0.5116 0.8649 

3D-ResNet-34 (42) 0.8203 0.7143 0.8750 0.7865 0.9367 0.5882 0.7143 0.6452 0.9640 

DA-MIDL (24) 0.8438 0.7755 0.8636 0.8172 0.9241 0.5882 0.7143 0.6452 0.9640 

AMSNet (25) 0.8281 0.7551 0.8605 0.8043 0.9241 0.5294 0.6000 0.5625 0.9459 

ResAttNet-10 (26) 0.8047 0.7755 0.8261 0.8000 0.8987 0.5882 0.6250 0.6061 0.9459 

ResAttNet-18 (26) 0.8281 0.7551 0.8605 0.8043 0.9241 0.5294 0.6923 0.6000 0.9640 

ViT-for-AD (43) 0.8359 0.7857 0.8696 0.8020 0.9300 0.5588 0.6667 0.6061 0.9550 

MCNEL (44) 0.8500 0.8250 0.8800 0.7700 0.9350 0.6200 0.8000 0.6850 0.9700 

PlgFormer (ours) 0.8672 0.8571 0.9130 0.8842 0.9494 0.5833 1.0000 0.5833 1.0000 

The bold values indicate the best value in the current column. 

TABLE 7 Ablation studies on individual components of the proposed PlgFormer. 

Method F2M DEB L G ACC REC PRE F1 SPE AUC 

Med3D-ResNet-34 (42) - - - - 0.8984 0.9048 0.7500 0.8201 0.8962 0.9005 

DA-MIDL (24) - - - - 0.9106 0.7619 0.8727 0.8136 0.9617 0.8618 

ResAttNet-10 (26) - - - - 0.9065 0.8730 0.7857 0.8271 0.9180 0.8955 

PlgFormer ×    0.8821 0.8571 0.7297 0.7883 0.8907 0.8739 

PlgFormer  ×   0.9146 0.7778 0.8750 0.8235 0.9617 0.8698 

PlgFormer   ×  0.7480 1.0000 0.5040 0.6702 0.6612 0.8306 

PlgFormer    × 0.8984 0.8413 0.7794 0.8092 0.9180 0.8797 

PlgFormer     0.9431 0.8730 0.9016 0.8871 0.9672 0.9201 

Denotes leaving the corresponding component in place whereas × denotes removing it. All experiments are conducted on ADNI dataset to distinguish AD and CN subjects. The bold values 
indicate the best value in the current column. 

but also provide credible diagnoses of AD via sMRI for human 
physicians (46). 

Moreover, the visualization results obtained using Grad-
CAM empower physicians to better understand and interpret the 
classification decision of our model. By providing a visual reference, 

physicians can easily validate the reasoning behind a diagnosis and 
identify any potential shortcomings or biases in the model. This 
serves as a valuable tool for improving the interpretability and 
transparency of Computer-aided diagnosis (CAD), and ultimately 
helps build trust between physicians and machine learning models. 
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FIGURE 7 

Salient maps of sagittal, axial and coronal sMRI slices generated by Grad-CAM. The visualization results allow to observe the features of network 
interest. 
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TABLE 8 Ablation studies of DEB. 

Method DEB loss_train loss_val 

PlgFormer × 0.0573 ± 0.0137 0.7807 ± 0.0894 

PlgFormer  0.0611 ± 0.0088 0.4760 ± 0.0836 

All experiments are conducted on ADNI dataset to distinguish AD and CN subjects. loss_train 
is the loss value in the training data, loss_val represents the loss value in the validation data. 

5 Conclusions 

Using sMRI for computer-aided diagnosis is significant for 
early detection and timely intervention of AD. In this paper, 
we propose PlgFormer, a unified and parallel approach that 
combines CNNs and pure self-attention mechanisms to extract 
local-global context features in sMRI with discriminative value 
for AD diagnosis. Our designed DEB introduces dynamic 
convolutions that adaptively adjust the kernel size based 
on the input size, while our designed F2M adaptively fuses 
the extracted local and global features through a gating 
mechanism. On publicly available ADNI and privately held 
XWNI datasets, our PlgFormer achieved state-of-the-art 
performance compared to existing methods in AD vs. CN 
binary classification, MCI vs. CN binary classification, and 
AD vs. MCI vs. CN triple classification tasks. Saliency maps 
generated by Grad-CAM confirmed that our proposed method 
can help human experts identify lesions quickly in sMRI. 
Further studies could investigate the potential of PlgFormer 
on other datasets and explore its application in other areas 
of medical image analysis. Our research anticipates practical 
clinical applications. 
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