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Introduction: The left supramarginal gyrus (LSMG) contributes to attentional 
allocation for memory encoding and may also reflect memory state and 
performance. Given the roles of high-gamma and beta bursts in cognition and 
memory, this proof-of-concept study investigated whether these signals within 
the LSMG could classify memory state and performance.

Methods: Using secondary data from 103 epilepsy patients undergoing 
presurgical iEEG evaluation, we analyzed 141 delayed verbal free recall 
experiments. Intracranial EEG (iEEG) data, recorded solely from LSMG electrode 
contacts, were processed to create two-dimensional (2D) tensors of convolved 
high-gamma (HG), and beta (15–40 Hz) burst activity. Convolutional neural 
networks (CNNs) were trained and cross-validated on these 2D tensors to 
classify memory state (encoding versus recall) and performance (remembered 
versus forgotten items) within subjects.

Results: The latter CNN, used to label subsequently recalled words based on iEEG 
recorded during the encoding epoch, performed at or below chance in 79 of the 
141 experiments. In all but 3 of these 79 experiments, the iEEG was contaminated 
or low amplitude. In the other 62 experiments this CNN labeled recalled words 
with an area under the receiver operating curve (AUROC) score of greater than 
0.52. A generalized linear model explained the variance of the AUROC score 
for labelling recalled words correctly in these 62 experiments (n = 62, d.f. = 
20, F = 1.7, p = 1 × 10−4). The most significant term in the model was a positive 
interaction between (1) mean HG burst signal to noise ratio; (2) mean beta burst 
signal to noise ratio; (3) the number of electrode contacts in the LSMG; and (4) 
recall probability (t = 3.04, p = 0.006). We identified 14 experiments that labeled 
subsequently recalled words during encoding with an AUROC score greater than 
0.6. To address over-training, we also trained and then tested the CNN on distinct 
datasets in four subjects. In most of these experiments CNN performed better 
than chance. We also found that a CNN utilizing 2D tensors of HG and beta bursts 
could distinguish encoding from scrambled recall epochs.

Discussion: This work indicates LSMG is a memory hotspot and that HG and 
beta bursts may serve as temporal memory information packets or signify 
attention related to memory.

OPEN ACCESS

EDITED BY

Rossella Breveglieri,  
University of Bologna, Italy

REVIEWED BY

Anup Das,  
Columbia University, United States
Matteo Filippini,  
University of Bologna, Italy

*CORRESPONDENCE

Shennan Aibel Weiss  
 shennanweiss@gmail.com

†These authors share senior authorship

RECEIVED 12 May 2025
ACCEPTED 04 July 2025
PUBLISHED 31 July 2025

CITATION

Weiss SA, Sawczuk N, 
Rubinstein DY, Sperling MR,  
Wendel-Mitoraj K, Österman P,  
Dumay-Roscher R, Mikell CB III, Mofakham S, 
Coulehan K, Djuric PM, Slezak DF and 
Kamienkowski JE (2025) High-gamma and 
beta bursts in the left supramarginal gyrus 
can differentiate verbal memory states and 
performance.
Front. Neurol. 16:1627528.
doi: 10.3389/fneur.2025.1627528

COPYRIGHT

© 2025 Weiss, Sawczuk, Rubinstein, Sperling, 
Wendel-Mitoraj, Österman, Dumay-Roscher, 
Mikell, Mofakham, Coulehan, Djuric, Slezak 
and Kamienkowski. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 31 July 2025
DOI 10.3389/fneur.2025.1627528

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1627528&domain=pdf&date_stamp=2025-07-31
https://www.frontiersin.org/articles/10.3389/fneur.2025.1627528/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1627528/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1627528/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1627528/full
mailto:shennanweiss@gmail.com
https://doi.org/10.3389/fneur.2025.1627528
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1627528


Weiss et al. 10.3389/fneur.2025.1627528

Frontiers in Neurology 02 frontiersin.org

KEYWORDS

verbal memory, left supramaginal gyrus, posterior parietal cortex, encoding, recall

Introduction

Neurophysiological biomarkers of memory state and performance 
could prove useful for diagnosing memory disorders and evaluating 
therapeutics that may slow cognitive decline. Changes in EEG sleep 
architecture have been found to correlate with tau and β-Amyloid as 
well as memory performance (1–4). On the contrary, memory 
biomarkers that contemporaneously predict memory performance 
during task performance are less well understood (5–8). These 
memory biomarkers could be utilized in clinical trials of drugs that 
aim to slow or reverse memory disorders, or to improve an individual’s 
memory performance by triggering closed-loop biofeedback (9) or 
electrical brain stimulation (6, 10).

The Restoring Active Memory (RAM) project consortium 
pioneered investigations into neurophysiological biomarkers of verbal 
memory during task performance. This project utilized intracranial 
electroencephalography (iEEG) recordings from patients with 
medically refractory epilepsy as they performed semi-automated verbal 
memory tasks. Analyses of these recordings, led by investigators at the 
University of Pennsylvania, utilized logistic regression models (LRMs). 
The LRMs were trained and cross-validated on binned power spectra 
derived from all iEEG recording contacts distributed across diverse 
neuroanatomical structures during word encoding in the verbal free 
recall task. The area under the receiver operating characteristic curve 
(AUROC) value served as the metric for assessing the LRM’s ability to 
correctly classify the word encoding trials that were subsequently 
recalled. Across subjects, classification performance significantly 
exceeded chance with a mean AUROC of 0.63 ± 0.07 (5, 6, 11–13).

Recent investigations have identified specific cerebral regions, 
designated as “memory hotspots,” wherein distinct iEEG spectral 
patterns serve as reliable biomarkers for successful verbal memory 
encoding and recall (10, 14, 15) Leveraging data from the RAM project, 
our prior work (16) demonstrated that iEEG recorded from the left 
supramaginal gyrus (LSMG) during the encoding of subsequently 
recalled words showed a significantly higher group level average of high-
gamma (HG) power and less theta power as compared to the iEEG 
recorded during encoding of forgotten words. This neurophysiological 
distinction is termed the subsequent memory effect (SME), operationally 
defined as a statistically significant difference (positive or negative) in the 
average physiological response elicited by recalled versus forgotten items. 
In the LSMG during memory encoding, SMEs have been observed in 
functional magnetic resonance imaging (fMRI) blood-oxygen-level-
dependent (BOLD) signals and manifest as either positive or negative 
SME (17). Likewise, during memory retrieval, SMEs are observed in 
both BOLD signals (18–20) and HG power (21), however in contrast to 
memory encoding, the SMEs during retrieval are typically positive. The 
selection of the LSMG as a possible memory hot spot is further supported 
by its hypothesized involvement in stimulus-driven, bottom-up 
attention, a cognitive process considered critical for both memory 
encoding and cued recall (17–20, 22). Furthermore, the LSMG is 
integrated within the dorsal language network (22), and exhibits 
functional parallels to the right hemisphere’s ventral attention network 
(23). This underscores its significance as a key node for mnemonic 
processing and as a putative mnemonic accumulator. Within this 

accumulator, neural activity, reflected in high-gamma (80–200 Hz) and 
beta (16–30 Hz) oscillatory bursts, may correlate with both memory state 
and behavioral performance, although not necessarily with the formation 
of individual memory engrams (17–20, 22).

Building upon our previous investigation of SMEs within the LSMG 
(16), the present study again focused exclusively on iEEG recordings 
exclusively from the LSMG during the verbal free recall task obtained by 
the RAM project consortium. Our primary objective was to determine 
whether verbal memory states (encoding versus retrieval) and memory 
performance outcomes (recalled versus forgotten) could be differentiated 
by machine learning analysis of iEEG recorded solely from the 
LSMG. Our study used convolutional neural networks (CNNs) that 
function as sophisticated feature detectors, trained on time series data 
derived from intracranial electroencephalogram (iEEG) recordings from 
the LSMG. Before being fed into the CNNs, high-gamma and beta 
oscillatory bursts were first detected. These detected bursts were then 
represented as a convolved time series, where the power of the bursts was 
explicitly encoded within the convolution. This approach allowed the 
CNNs to learn and identify intricate patterns within these pre-processed 
time series, effectively using the convolved representation as a rich input 
for their feature detection capabilities. A similar study, that also utilized 
the RAM dataset, compared the performance of support vector machines 
(SVMs) trained and tested on iEEG recorded from the LSMG and the 
left middle temporal gyrus (LMTG) to label recalled words during 
encoding. This study found that SVM classification results using iEEG 
recorded from the LSMG were better than chance but significantly 
inferior to the SVM using iEEG recording from the LMTG (10).

High-gamma bursts are known to track task related multi-unit 
activity from neuronal populations (24–27), whereas beta oscillations 
generated by synchronous activity of inhibitory interneurons are linked 
to information gating and decrease during changes in cognitive control 
(28, 29). Previous research has shown that relatively more, or less, high-
gamma or beta power correlates with successful encoding or recall in 
the context of deriving SMEs (16, 21). Our hypothesis was that high 
gamma and beta bursts are features that serve as temporal information 
packets that can be decoded by CNNs to define both memory state and 
performance in single word encoding or free recall trials. This 
hypothesis is supported by studies in primates (29–32) and in humans 
(8) concluding that the interplay of high-gamma and beta bursts: (1) 
gate or prevent sensory interference with working memory; (2) 
represent brief attractor states representing different memory items; 
and (3) and occur at an increased rate with an increased working 
memory load. However, these studies mostly focused on local field 
potential (LFP) or iEEG recordings from the prefrontal cortex (30, 31, 
33, 34). Other studies investigating working memory have examined 
inter-regional communication of high-gamma and beta (35). Several 
such studies utilized the DARPA RAM dataset and examined the 
importance of inter-regional communication using high-gamma, beta, 
theta, and slower bursts quantified in the iEEG (36–40). During word 
encoding, hippocampus to prefrontal cortex inter-regional information 
flow was strongest in the delta-theta band, however prefrontal cortex 
to hippocampus information flow was strongest in the beta band (36). 
During both word encoding and recall epochs of the verbal free recall 
task, a comparison of iEEG signals based on fMRI derived intrinsic 

https://doi.org/10.3389/fneur.2025.1627528
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Weiss et al. 10.3389/fneur.2025.1627528

Frontiers in Neurology 03 frontiersin.org

networks found a bidirectional increase in beta frequencies between 
the default node network and other intrinsic networks (37). More 
relevant to our study investigating high-gamma and beta bursts in the 
LSMG for defining memory state and performance, inter-regional 
communication the mesial-temporal lobe and ventral posterior parietal 
cortex in the beta bands was higher during more successful free recall 
recordings (38). Lastly, higher directed connectivity in the delta-theta 
frequencies from the left hippocampus to the LSMG was correlated 
with verbal free recall task performance (40).

Based upon the hypothesis that features related to beta and high 
gamma bursts quantified in the LSMG iEEG could decode memory 
state and performance, we trained several CNNs that utilized iEEG 
time locked data to specific task epochs (Figure  1, 
Supplementary Figure 1). The study derived a two-dimensional (2-D) 

tensor consisting of pairs (one pair for every electrode) of 
one-dimensional (1-D) tensors: one made of convolved HG bursts; and 
the other of convolved beta bursts. Thus, the dimensions of the 2-D 
tensors are two times the number of electrodes and the samples 
considered for the analysis (see CNN training section in Methods for 
more detail). These 2-D tensors served as input for training and cross-
validating convolutional neural networks (CNNs) designed to classify 
dichotomized aspects of verbal episodic memory. Specifically, CNNs 
were developed to distinguish: (1) memory state during encoding 
versus recall (CNN1, Figure  1B1); (2) encoding performance 
(successfully encoded versus forgotten words, CNN2, Figure 1B2); and 
(3) recall performance (trials with higher recall rates compared to other 
trials, CNN3, Figure 1B3). To further validate CNN2 accuracy, training 
and testing were also conducted using distinct datasets.

FIGURE 1

Experimental design for classifying performance in the delayed verbal free recall task using iEEG tensors and convolved high-gamma and beta tensor 
pairs to train and cross-validate convolutional neural networks (CNNs). (A) The patients participated in a verbal delayed free recall task (encoding, 
distractor, and recall). First, the patient was instructed to remember a list of 12 words that were sequentially presented on a computer screen separated 
by an inter-word interval (A1). The illustration of LSMG iEEG two-dimensional (2-D) tensors adjacent to the words represent either: (1) 2-D tensor of 
the broadband iEEG recorded from LSMG contact(s) time locked to word presentation [CNN2a]; or (2) 2-D tensors of convolved high-gamma (HG) 
and beta time series derived from the LSMG contact(s) that are also time locked with word presentation [CNN2b]. Whether the words, and their 
respective tensors, correspond with successful or failed word encoding is defined by the delayed free recall epoch (A3), that follows the arithmetic 
distractor epoch (A2). In the experimental block shown the patient successfully encodes two words “Bag” and “Chair” (magenta). (B) Illustrations of the 
training and cross-validated testing of the 3 CNNs using the 2-D color-coded tensors of convolved high-gamma (HG) and beta burst time series 
recorded solely from the left supramarginal gyrus (LSMG) intracranial EEG (iEEG) contact(s). Different colors are associated with the different tasks and 
the task performance (Key: black and white iEEG: encoding—forgotten; purple and yellow: encoding—recalled; black and green: recall—poor; black 
and blue: recall—good; black and green: recall—good). Note that CNN2a (B2) is distinct from CNN1 (B1), CNN2b (B2), and CNN3 (B3) because it 
utilizes the broadband iEEG recorded from the LSMG contact(s) as the 2-D tensor. Additionally, the recall epoch (B3) is not time locked to the spoken 
words and is evaluated solely by the number of words recalled correctly in the 30 s duration. In (B1), the 3 s. word-presentation encoding epochs and 
compared with scrambled and randomized 3 s epochs from the free recall epoch.
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Methods

Participants

Patient data were collected as part of a multi-center project named 
Restoring Active Memory (RAM, Principal Investigator: Michael 
Kahana) https://memory.psych.upenn.edu/Main_Page#Cognitive_
Neuromodulation at the following centers: Thomas Jefferson 
University Hospital (Philadelphia, PA), University of Texas 
Southwestern Medical Center (Dallas, TX), Emory University 
Hospital (Atlanta, GA), Dartmouth-Hitchcock Medical Center 
(Lebanon, NH), Hospital of the University of Pennsylvania 
(Philadelphia, PA), and Mayo Clinic (Rochester, MN). The research 
protocol was approved by the Institutional Review Board at each 
hospital and informed consent was obtained from each participant. A 
subset of this data, consisting of 103 subjects and 141 delayed free 
recall experiments, previously analyzed in (16) and R01 proposal 
R01MH120161, was utilized by Dr. Weiss and colleagues in accordance 
with an agreement with Thomas Jefferson University. This data is also 
available at FR1: https://openneuro.org/datasets/ds004789/
versions/3.1.0; catFR1: https://openneuro.org/datasets/ds004809/
versions/2.2.0.

Data preprocessing, anatomical 
localization, and inclusion criteria

Intracranial electroencephalography (iEEG) was recorded using 
either subdural grids and strips (10 mm contact spacing) or depth 
electrodes (3–10 mm contact spacing) at various clinical sites. In each 
patient, the clinical team determined the placement of the electrodes 
to best localize epileptogenic regions. The recording systems included 
DeltaMed & XlTek (Natus), Grass Telefactor, and Nihon-Kohden EEG 
systems. Sampling rates varied by site, ranging from 500 Hz to 2000 Hz 
(specifically 500, 512, 1,000, 1,024, or 2,000 Hz). Preprocessing was 
performed using custom Python software. Individual contact signals 
were converted to a bipolar montage by calculating the difference 
between adjacent electrode pairs on each strip, grid, and depth 
electrode. To remove line noise, the bipolar signal was then notch 
filtered at 60 Hz using a fourth-order Butterworth filter with a 2 Hz 
stop-band. Electrode localization involved segmenting hippocampal 
subfields and medial temporal lobe (MTL) cortices from pre-implant 
T2-weighted MRIs using multiatlas segmentation (41). Post-implant 
CT images were manually annotated with electrode coordinates, then 
coregistered with pre-surgical T1- and T2-weighted scans via 
Advanced Normalization Tools (42) to align recording sites with 
anatomical labels. Most MTL depth electrodes, visible on overlaid CT/
MRI, were further localized by expert neuroradiologists. Analyzed 
electrodes are shown in Figure 1 in MNI coordinate space. While 
automatic segmentation and coregistration, particularly in 
neurosurgical patients with altered anatomy or displaced tissue from 
implants, introduce imprecision, the accuracy of our localizations is 
upheld by the research team’s visual inspection of all alignments and 
segmentations, and expert neuroradiologist verification of anatomical 
labels. In this study we included all patients and experiments with at 
least one subdural or depth contact in the left supramarginal gyrus. 
We  excluded all experiments utilizing intracranial electrical 
stimulation during the recording.

Verbal memory task

Each patient participated in a delayed verbal free-recall (FR) task, 
according to previous experimental settings (5–7, 43–46). An 
experimental session consisted of encoding, distractor, and recall 
epochs. The encoding epoch consisted of 12 words, with each word 
shown on the screen for 1,600 ms, followed by a blank inter-stimulus 
interval with a duration between 750–1,000 ms. Immediately following 
the final 12th word in each list, a distractor task consisting of arithmetic 
problems was performed for 20 s. Subsequently in the recall epoch, 
participants were then given 30 s to verbally recall as many words as 
possible from the list in any order (Figure 1A, Supplementary Figure 1). 
We refer to a single trial of the recall epoch as a single experimental 
session, to differentiate it from the trials of the encoding epoch. Further 
details can be  found in Ezzyat et  al. (5, 6). List words in some 
experiments were categorically organized (delayed verbal categorical 
free recall, i.e., catFR). The FR1 and catFR1 experiments were otherwise 
conducted in an identical manner. Patients completed between 
8–50 sessions.

Convolutional high-gamma (HG) and beta 
burst time-series analysis

All custom code was written in Python™. The signal from each 
contact was standardized using StandardScaler (scikit-learn). The 
topographical analysis of the wavelet convolution (47) was adapted 
to detect the discrete HG and beta oscillatory bursts in the 
computed wavelet convolutions of the recording from each contact 
(Figures 2, 3, Supplementary methods). The topographical analysis 
of the wavelet convolution was utilized twice in frequency ranges 
overlapping with high-gamma HG [50,250 Hz] and the beta bands 
[5,50 Hz] to define the onset time, offset time, duration, spectral 
content, and power of distinct bursts in explicitly in the HG 
[80–200 Hz] or beta [15–40 Hz] band. Rather than utilizing the 
raw band-pass filtered iEEG as pairs of 1-D tensors to train CNNs, 
the oscillatory bursts were represented with Gaussian 
kernel functions:

 ( )
( )−
∗=

2

22
x p

wf x Ae

where A is the amplitude of the Gaussian scaled by the power of 
each oscillatory burst, p the midpoint between onset and offset time 
and w the time duration of each oscillatory burst.

For a single LSMG iEEG recording from a single contact during a 
specific epoch of the task, the burst analysis generates both a single 
HG burst Gaussian (i.e., convolved) time series and a single beta burst 
Gaussian (i.e., convolved) time series.

Convolutional neural network (CNN) 
training and cross-validation

We trained four CNNs: CNN1 distinguished memory state 
(encoding versus recall), CNN2a distinguished subsequent memory 
performance (recalled versus unrecalled) of broadband iEEG during 

https://doi.org/10.3389/fneur.2025.1627528
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://memory.psych.upenn.edu/Main_Page#Cognitive_Neuromodulation
https://memory.psych.upenn.edu/Main_Page#Cognitive_Neuromodulation
https://openneuro.org/datasets/ds004789/versions/3.1.0
https://openneuro.org/datasets/ds004789/versions/3.1.0
https://openneuro.org/datasets/ds004809/versions/2.2.0
https://openneuro.org/datasets/ds004809/versions/2.2.0


Weiss et al. 10.3389/fneur.2025.1627528

Frontiers in Neurology 05 frontiersin.org

encoding, CNN2b distinguished subsequent memory performance 
based on HG and beta bursts during encoding, and CNN3 
distinguished good from poor memory performance based on HG 
and beta bursts during recall. For all CNNs in this study, excluding 
CNN2a, the 2-D tensors used for training and cross-validation were 
constructed by stacking the HG and beta burst time series from each 
LSMG recording contact. These 2-D tensors had a size equal to twice 
the number of LSMG contacts.

To train CNN1 to distinguish between encoding and recall 
(Figure  1B1, Supplementary Figure  1), paired input tensors were 
created. Each pair comprised two components: (1) a 2D tensor of 
stacked HG and beta activity from LSMG iEEG during a 3-s, stimulus-
locked word encoding trial, and (2) a randomly selected 3-s segment 
of a similar 2D HG and beta tensor from LSMG iEEG during the 

subsequent 30-s free recall period. These paired tensors, labeled as 
“encoding” or “recall,” were randomly concatenated to form the 2D 
input tensors for training CNN1.

CNN2a and 2b were trained to differentiate between recalled and 
forgotten words during the stimulus locked word encoding epoch 
iEEG recordings (Figures 1A2,B2, Supplementary Figure 1). CNN2a 
was trained using a 2D tensor of the encoding epoch’s word-locked 
broadband iEEG recordings (the size of the 2D tensor was equal to the 
number of contacts), which were labeled as encoded or forgotten 
based on the performance on the free recall block after that session’s 
distractor (Figure 1A3). CNN2b also classified words as encoded or 
forgotten but instead utilized the 2-D tensor consisting of convolved 
HG and convolved beta tensors in the LSMG iEEG during encoding 
(Figures 1A3,B2).

FIGURE 2

Illustrative example of deriving the two-dimensional (2D) tensor of convolved high-gamma (HG) in the left supramarginal gyrus (LSMG). Shown in (A1) 
and (B1) are topographical analyses of the wavelet convolution, in the HG band, during stimulus-locked successful (A1) and failed (B1) word encoding 
trials. (A2) and (B2) are the respective Gaussian convolved time series derived from (A1) and (A2), respectively. Shown in (A3) and (B3) are the Gaussian 
convolved time series recorded by other contacts in the LSMG used to derive the 2-D tensor of convolved HG, for a successfully encoded (A) and 
forgotten (B) word encoding trial.
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CNN3 was used to differentiate between good recall and poor 
recall (Figure 1B3). The LSMG iEEG during the entire 30-s free recall 
epoch, that followed the distractor, was used to derive a 2D tensor 
from paired 1-D tensors of convolved HG and convolved beta. Each 
trial (i.e., session) of the free recall epoch was assigned a binary value 
of good or poor recall based on whether the number of recalled words 
exceeded the mode of the number of recalled words across all the 
experimental sessions. The mode of the number of words recalled 
varied across the individual patients, with some subjects exhibiting a 
mode of 0 words recalled.

CNNs were implemented in Keras™ for binary classification. The 
CNN architecture used for all models consisted of pairs of Conv1D 
and Batch Normalization layers followed by a Global Average Pooling 

layer and a fully connected layer as the output layer. The CNN structure 
utilized for all CNNs was 3 convolutional 1-D layers (with 64, 128 and 
64 units per layer), a Kernel size of 3, padding = ‘same’, ReLu activation 
function and an Adam optimizer. Hyperparameter tuning was 
performed by testing different structures (consisting of 2 or 3 
convolutional layers with 32, 64, 128 or 256 units per layer) and choosing 
the one that maximized the area under the receiver operating curve 
(AUROC) across all patients. For the rest of the Conv1D layer 
parameters, the default values were kept (strides = 1, dilation_rate = 1, 
groups = 1,use_bias = True, kernel_initializer = “glorot_uniform,” bias_
initializer = “zeros,” kernel_regularizer = None, bias_regularizer = 
None, activity_regularizer = None, kernel_constraint = None, bias_
constraint = None). Other hyperparameters were: 100 epochs and a 

FIGURE 3

Illustrative example of deriving the two-dimensional tensor of convolved beta in the left supramarginal gyrus (LSMG). Shown in (A1) and (B1) are 
topographical analyses of the wavelet convolution, in the beta band, during stimulus-locked successful (A1) and failed (B1) word encoding trials. (A2) 
and (B2) are the respective Gaussian convolved time series derived from (A1) and (A2), respectively. Shown in (A3) and (B3) are the Gaussian convolved 
time series recorded by other contacts in the LSMG used to derive the 2-D tensor of convolved beta, for a successfully encoded (A) and forgotten 
(B) word encoding trial.
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batch size of 128 for CNN1; 150 epochs and a batch size of 128 for 
analysis for CNN2a,b; and 100 epochs and a batch size of 32 for 
CNN3. For each patient, for CNN1,2a, and 2b the confusion matrices 
and related measures were derived using five-fold cross-validation 
across all the trials. The number of trials for all the CNNs in each fold 
varied by patient due to variability in the number of experimental 
sessions completed per patient.

In the case of CNN3 two-fold cross-validation was used because 
the sessions were relatively low in number (i.e., 12 trials per session). 
For individual patients the free-recall and categorical free-recall 
experiments were analyzed separately.

To investigate and account for over-fitting due to the use of cross-
validation, for three selected subjects with both FR1 and catFR1 
experiments, CNN2b was trained and tested twice: first using the FR1 
subset for training and catFR1 for testing, then catFR1 for training and 
FR1 for testing. The hyperparameters used for this analysis were kept 
the same as the previous experiments.

The opensource code utilized for the convolutional high-gamma 
and beta burst time-series analysis and CNN training and cross-
validation can be  found at https://github.com/nsawczuk/
iEEG-experiments.

LIME for time series

To explain the CNNs predictions for the best performing subject, 
a modified version of the Local Interpretable Model-agnostic 
Explanations (LIME) for Time Series method (as described in https://
github.com/mdhabibi/LIME-for-Time-Series) was used (48). The 
method splits one signal into segments and generates several 
perturbed copies of it (small perturbations are generated on random 
segments of the signal while leaving the rest unchanged). After 
predicting the class probabilities for each perturbed copy on a 
previously trained CNN model, the LIME method fits a linear 
regression model (with the perturbations and predicted probabilities) 
and ranks the time segments according to how much they influenced 
the model output based on the linear regression coefficients. This way 
the most influential segments (the 20% with the biggest coefficients) 
for each signal can be  identified. To adapt the method to 
multidimensional data, as it was originally designed for one 
dimensional time series, the perturbed segments are randomly 
distributed across all dimensions (each dimension representing a 
different electrode and high gamma or beta frequency).

Visual inspection of iEEG

To better understand why most of the patients exhibited CNN2b 
(AUROC) at chance, or worse, we visually inspected the iEEG recorded 
from the LSMG in all the subjects during the word encoding epoch. The 
iEEG recordings were exported from Matlab format to TRC format and 
visualized in Micromed™ Brain Quick™. The entire duration of each 
iEEG file was evaluated for excessive 60 Hz line noise, poor grounding 
resulting in high-frequency noise and muscle artifact, and inter-ictal 
epileptiform discharges. To estimate the amplitude of HG and beta, the 
iEEG was band-pass filtered between 80–200  Hz and 15–40 Hz, 
respectively, using a built-in finite impulse response (FIR) filter in Brain 
Quick™. The standard cursor, measuring the root-mean-squared 

(RMS) of the individual filtered signal over a 200 ms window in Brain 
Quick™, was then used to estimate the amplitude of HG and beta by 
repeated measures over several minutes of iEEG. Recordings in which 
the maximum of the RMS HG was consistently less than 5 uV, or of beta 
less than 10 uV, were labeled as HG and/or beta low-voltage recordings. 
We presumed these low-voltage recordings may signify contacts in 
white matter or with abnormal impedance.”

Generalized linear models (GLM) and 
high-gamma and beta burst signal to noise 
analysis

Among the patients in which CNN2b AUROC score exceeded 
chance (> 0.52) we sought to understand the variables that explained the 
variance in the CNN2 AUROC score across subjects. We utilized a GLM 
to fit the CNN2a and CNN2b AUROC using the following pre-defined 
variables of: (a) electrode type (depth versus subdural electrodes, 
dummy-coded as 0 and 1 respectively); (b) number of contacts in the 
LSMG; (c) mean high-gamma burst signal to noise ratio (SNR); (d) 
mean beta burst SNR; (e) experiment’s correct recall probability; (f) 
number of word trials. We used the Matlab™ glm.m function with a 
normal distribution and an identity link, and a fixed intercept. All 
interaction terms were included. Random effects were not implemented. 
Using custom Matlab™ code, the HG burst (80–200 Hz) SNR was 
computed using a 500th-order symmetric FIR filter, while the beta burst 
(15–40 Hz) SNR was computed using a 100th-order symmetric FIR 
filter. The root-mean-square (RMS) of each filtered signal served as an 
estimate of noise. To approximate the signal amplitude, for the derivation 
of the SNR, we  identified peaks in the absolute value of the filtered 
signals, representing bursts, using second-derivative inflection points 
above a z-score threshold of 2 (49, 50) and then we  measured the 
amplitude of the 95th percentile of all these bursts. Within each 
experiment, the SNR for both HG and beta bursts was calculated for 
each contact and then averaged across all LSMG contacts within patients. 
These HG and beta burst signal to noise measures were utilized only for 
the GLM and were not implemented for training and testing the CNNs.

Statistics

Youden’s J statistic defined as sensitivity + specificity −1, was 
calculated for each receiver operating curve resulting from cross-
validation of the CNNs, or CNNs trained and tested using distinct 
experiments. Confusion matrix metrics such as sensitivity, specificity, 
positive predictive value (PPV), negative predictive value (NPV), 
accuracy, and F1 score were evaluated at the maximum of the Youden 
J. In addition, the AUROC of CNN2a was compared with the AUROC 
of CNN2b using the fitlm.m function in Matlab.

Results

Labeling remembered words during 
encoding

The multisite collaborative RAM project examined the word 
encoding epoch (Figure 1A1) and used binned spectral power of brain 
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activity, across all frequency bands and diverse brain regions, as 
factors to train a logistic regression classifier to distinguish 
subsequently recalled words from forgotten words (Figure 1A3). The 
RAM team found that this method achieved a mean area under the 
receiver operating curve (AUROC) of 0.63 ± 0.07 (5, 6) using leave-
one-out cross-validation. Based on our prior work (16) and the work 
of others (10), we hypothesized that utilizing recordings solely from 
the LSMG (Figures  1A1,A3,B2) could achieve comparable 
performance in classifying remembered words during encoding to the 
aforementioned RAM studies (5–7). For these experiments we utilized 
all the RAM experiments with at least one electrode contact in 
the LSMG.

To label subsequently recalled words during the encoding epoch, 
we  trialed two distinct convolutional neural networks (CNNs). 
CNN2a utilized a 2D tensor of broadband iEEG recorded from the 
LSMG during the encoding epoch (Figures  1A1,B2, 
Supplementary Figure  1), and in CNN2b the 2D tensor 
(Figures 1A1,B2, Supplementary Figure 1) consisted of stacked 1D 
tensors of convolved high-gamma bursts (Figure 2) and beta bursts 
(Figure 3) derived from the encoding epoch iEEG. For all the 141 
experiments (from 103 subjects see Supplementary Table 1), both 
CNN2a and CNN2b were trained and then tested using leave-one-out 
cross-validation. Across all 141 experiments, the mean AUROC score 
for classifying recalled words during encoding was near chance for 
both machine learning models (CNN2a AUROC = 0.53; CNN2b 
AUROC = 0.51, paired t-test, p > 0.05; Figure 4A).

Explanatory variables correlating with the 
variability of within-experiment CNN2 
AUROC of remembered word labeling

We found that in 79 of the 141 experiments the within-experiment 
trained and cross-validated CNN2b labeled recalled words at chance, 
or reverse labeled words (Figure 4A, Supplementary Tables 1, 2). To 
understand why, we visually examined the iEEG recordings LSMG in 
these 79 experiments. We evaluated if these recordings exhibited: (1) 
minimal amplitude high gamma or beta bursts in 7 experiments; (2) 
poor grounding resulting in 60 Hz line noise; or excessive high-
frequency noise; and/or muscle artifact contamination in 47 
experiments; and (3) were contaminated by frequent inter-ictal 
epileptiform discharges in 9 experiments. Only in 3 of these 79 
experiments were these contaminants absent from the iEEG recorded 
from the LSMG.

We next used generalized linear models (GLMs) to identify 
explanatory variables for the variance of the CNN2a and CNN2b 
AUROC across the 62 experiments that labeled recalled words during 
encoding better than chance (Supplementary Tables 1, 2). The variables 
used in the GLM included: electrode contact type, number of electrode 
contacts, mean beta and HG burst signal-to-noise ratios (SNRs), number 
of word encoding trials, and correct recall probability. For clarity, the 
value of these mean burst SNRs were incorporated into the GLMs and 
not utilized for training or testing CNNs. The GLM significantly 
explained the variance in CNN2b AUROC across subjects (n = 62, 
d.f. = 20, F = 1.7, p = 1 × 10–4), but not CNN2a (n = 62, d.f. = 20, F = 1.7, 
p = 0.1). However, AUROCs for CNN2a and CNN2b exhibited a 
significant positive correlation to each other (p < 1 × 10–5, Figure 4B). For 
the GLM explaining the variance of CNN2b AUROC score, the most 

significant effect was a positive interaction between (1) mean HG burst 
SNR; (2) mean beta burst SNRs; (3) the number of electrode contacts in 
the LSMG; and (4) recall probability (Table 1, t = 3.04, p = 0.006).

Decoding memory state and performance 
in selected experiments

To show feasibility supporting our hypothesis that CNNs utilizing 
paired 2-D tensors of convolved high-gamma and beta bursts 

FIGURE 4

Area under the receiver operating curve (AUROC) for correctly 
labeling remembered words during encoding by convolutional 
neural networks (CNN) utilizing either two-dimensional (2-D) tensors 
of the raw iEEG (CNN2a) or 2-D tensors of convolved bursts of high-
gamma and beta (CNN2b) from contact(s) in the left supramarginal 
gyrus (LSMG). (A) Boxplots of the AUROC derived from cross-
validation of either CNN2b (left) and CNN2a (right) in n = 141 delayed 
free recall experiments in N = 103 subjects (paired t-test, p > 0.05). 
Only 62 of the 141 experiments utilizing CNN2b performed better 
than chance (left, green-dashed-line, AUROC>0.52). The remaining 
80 experiments performed at chance or reverse labeled the data 
(Supplementary Table 1). (B) Scatter plot of CNN2b AUROC as a 
function of CNN2a AUROC (p < 1e−5) in the n = 62 experiments 
from N = 52 subjects that labeled recalled words during encoding 
better than chance. In panels A and B, the blue squares indicate 
experiments that included corresponding recall epoch recordings, 
and/or distinct encoding training and test sets. Experiments labeled 
as red squares included only the encoding epoch.
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exclusively from the LSMG can predict memory state and performance 
in a dichotomized fashion (Figure  1, Supplementary Figure  1), 
we selected 14 experiments with a CNN2b AUROC greater than 0.6 
(Supplementary Tables 1, 2). Among these 14 patients, we calculated 
confusion matrix metrics at the maximum of the Youden’s J statistic 
of the CNN2b receiver operating curve for labeling remembered 
words during the encoding epoch using five-fold cross-validation of 
concatenated encoding epoch trials (Figures 1A,B2, Figure 5). To 
better understand the role of beta bursts in training and testing 
CNN2b, in three of these experiments, we compared the CNN2b 
accuracy (Supplementary Figure  2A) and AUROC values 
(Supplementary Figure 2B) for the CNN2b trained and cross-validated 
using 2D tensors of just high-gamma bursts as compared to the 
CNN2b utilizing 2D tensors of both high-gamma and beta bursts. 
We  found that omitting the convolved beta bursts decreased the 
accuracy of the CNN2b, at the maximum of Youden’s J statistic, for 
labeling recalled words. However, statistical significance could not 
be assessed due to the small sample size of only three experiments. To 
determine whether the AUROC score and accuracy of CNN2b is 
overestimated due to overtraining in cross-validation, we trained and 
tested distinct data sets in eight individual experiments from four 
individual patients (Figures 1A,B2, Figure 6). In this case, the resulting 
AUROCs were less than the AUROCs derived by five-fold cross-
validation. However, CNN2b AUROC score mostly exceeded chance.

The LSMG is part of a frontoparietal network that is important in 
attention (51), cognition (52), memory (39, 53), and speech 
comprehension (54). Among the 14 experiments utilizing high-
gamma and beta bursts from the LSMG with a CNN2b AUROC 
greater than 0.6, the study hoped to examine if high-gamma and beta 
bursts from left pre-frontal and frontal regions can also predict verbal 
memory state and performance. Unfortunately, the study lacked 
statistical power. Consequently, the study shifted focus. For nine of the 
14 patients, the study compared the CNN2b’s performance when 
trained and tested on convolved high-gamma and beta bursts from 
two distinct brain regions: the LSMG iEEG; and left middle temporal 
gyrus (LMTG) iEEG. The study compared the performance of labeling 
recalled words during encoding using both AUROC scores and 
accuracy, determined at the maximum of Youden’s J statistic. The 
analysis revealed no significant difference in CNN2b AUROC scores 
between the two recording sites. The AUROC for LSMG iEEG 
contacts was 0.669 ± 0.034 (mean ± s.e.m.), while for LMTG iEEG 
contacts, it was 0.611 ± 0.025 (unpaired t-test, t-stat = 1.372, 
df = 16, p = 0.19; Supplementary Figure 3). Despite similar AUROC 
values, the CNN2b’s accuracy using LSMG recordings (0.695 ± 0.03) 
was significantly higher than that using LMTG recordings 
(0.491 ± 0.051; unpaired t-test, t-stat = 3.43, d.f. = 16, p = 0.0035, 
Supplementary Figure 3). This suggests that while both regions may 
offer comparable discriminative power (AUROC), the LSMG 
recordings provided more precise classifications of successful 
encoding (Supplementary Figure 3).

The study next investigated whether iEEG during 3-s word encoding 
trials could be correctly labeled when scrambled with 3-s iEEG epochs 
taken from the iEEG recorded during free recall at random by a CNN 
utilizing paired tensors of bursts of high-gamma and beta in the LSMG 
iEEG (i.e., CNN1, Figures 1A,B1). Due to the absence of iEEG recordings 
during the free recall epoch for all experiments (as depicted in Figure 4), 
subsequent analyses were restricted to a subset of the patient cohort. 
Specifically, of the 14 patients exhibiting a CNN2b AUROC greater than 

0.6, only 9 possessed corresponding iEEG recordings during the free 
recall period (Supplementary Table 1). In these 9 patients we used five-
fold cross-validation to label the encoding epochs and found that the 
AUROC score was greater than 0.7 in 8 of 9 experiments (Figure 7).

Finally, the study analyzed the free-recall epochs within the 
delayed verbal free recall task. A significant challenge in attempting to 
label free-recall epochs based on trials with a higher-than-modal 
number of words recalled, using a machine learning approach, was the 
limited number of such trials available from individual patients. 
Specifically, each free-recall session, lasting 30 s, corresponded to an 
encoding session during which 12 individual word-trials were 
presented. However, the majority of the 14 subjects participated in 
fewer than 20 free-recall trials (sessions). We  examined three 
experiments in three subjects with 20 or more free-recall trials. 
We  trained and cross-validated CNN3 (Figures  1A,B3, 
Supplementary Table  1), which utilizes paired 2-D tensors of 
convolved high-gamma and beta during the entirety of the 30 s recall 
epoch, with two-fold cross-validation, to label free-recall epochs in 
which the subject remembered more words than the mode calculated 
across all the free-recall trials. We  found that in two of the three 
patients the AUROC score and accuracy at the maximum of Youden’s 
J provided good classification value (Figure 8). We also asked if the 
number of words recalled during each free recall session correlated 
with the total number of words spoken during that free recall session. 
In the two subjects with a CNN3 AUROC greater than 0.6 we found 
a strong linear correlation (Supplementary Figure  4, p < 0.001) 
introducing a confound.

To facilitate interpretation, a modified version of the LIME for 
Time Series algorithm was applied to the CNNs trained on a subset of 
trials from the best-performing subject. This analysis aimed to identify 
whether specific time segments within particular electrodes 
significantly contributed to the classification results. The algorithm 
generates random perturbations within segments of the input signal 
and quantifies the resulting changes in CNN predictions, thereby 
identifying influential segments. This process was repeated for all 
signals in the subject’s testing dataset. Time segments and electrodes 
were ranked based on their frequency of significance across all trials 
within this dataset. However, no definitive conclusions could be drawn 
from these results (Figure 9).

Discussion

The left supramarginal gyrus (LSMG) is implicated in attentional 
allocation during memory encoding and may also reflect memory 
state and performance (17–20, 22). Given the established roles of beta 
bursts and high-gamma (HG) in working memory (8, 29–35), as well 
as verbal episodic memory (8, 36–40), this feasibility study investigated 
whether CNNs could use features related to the time course and 
amplitude of high-gamma (HG) and beta bursts within the LSMG to 
classify verbal memory state and performance. Using secondary data 
from 103 epilepsy patients undergoing pre-surgical iEEG evaluation, 
we analyzed 141 delayed verbal free recall experiments. Intracranial 
EEG (iEEG) data, recorded solely from LSMG electrode contacts, were 
processed to create two-dimensional tensors of convolved high-
gamma (80–200 Hz) and beta (15–40 Hz) burst activity. Convolutional 
neural networks (CNNs) were trained and cross-validated on these 
tensors to classify encoding versus recall (memory state) and 
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TABLE 1 Generalized linear model predicting area under the receiver operator cure for remembered word classification by CNN2b in n = 62 
experiments and N = 52 subjects.

Name Estimate SE tStat p−value

'(Intercept)' 4.07E−01 1.32E−01 3.08E+00 0.006

'e_type' −5.72E−02 1.06E−01 −5.37E−01 0.597

'e_num' −8.16E−03 1.06E−02 −7.70E−01 0.45

'hg' 4.48E−02 3.42E−02 1.31E+00 0.206

'beta' 4.33E−03 2.71E−03 1.60E+00 0.126

'recall_p' 9.82E−01 6.99E−01 1.41E+00 0.175

'trials' 6.59E−04 3.26E−04 2.02E+00 0.057

'e_type:e_num' −4.00E−02 2.89E−02 −1.38E+00 0.182

'e_type:hg' −1.73E−02 1.09E−02 −1.59E+00 0.128

'e_num:hg' 2.16E−03 2.86E−03 7.56E−01 0.458

'e_type:beta' 4.19E−03 2.30E−03 1.82E+00 0.084

'e_num:beta' 3.24E−04 1.53E−04 2.12E+00 0.047

'hg:beta' 2.27E−04 1.58E−04 1.44E+00 0.166

'e_type:recall_p' 5.39E−01 3.32E−01 1.62E+00 0.12

'e_num:recall_p' 5.54E−02 4.93E−02 1.12E+00 0.274

'hg:recall_p' −1.89E−01 1.74E−01 −1.08E+00 0.292

'beta:recall_p' −4.23E−02 1.70E−02 −2.48E+00 0.022

'e_type:trials' −3.00E−04 1.78E−04 −1.68E+00 0.109

'e_num:trials' −2.50E−05 1.23E−05 −2.04E+00 0.055

'hg:trials' −1.81E−04 8.11E−05 −2.23E+00 0.037

'beta:trials' −1.11E−05 4.68E−06 −2.37E+00 0.028

'recall_p:trials' −2.32E−03 1.27E−03 −1.83E+00 0.081

'e_type:e_num:hg' 5.75E−03 2.87E−03 2.00E+00 0.059

'e_type:e_num:beta' 2.59E−04 4.45E−04 5.82E−01 0.567

'e_num:hg:beta' −1.00E−04 3.78E−05 −2.65E+00 0.016

'e_type:e_num:recall_p' −2.76E−02 3.65E−02 −7.57E−01 0.458

'e_num:hg:recall_p' −2.10E−02 1.39E−02 −1.51E+00 0.146

'hg:beta:recall_p' 1.10E−04 4.81E−04 2.28E−01 0.822

'e_type:e_num:trials' 7.08E−05 3.96E−05 1.79E+00 0.089

'e_num:hg:trials' 6.17E−06 2.67E−06 2.31E+00 0.031

'hg:recall_p:trials' 6.87E−04 3.41E−04 2.01E+00 0.058

'beta:recall_p:trials' 4.92E−05 2.75E−05 1.79E+00 0.089

'e_type:e_num:hg:beta' −1.52E−04 1.11E−04 −1.37E+00 0.186

'e_type:e_num:hg:recall_p' 1.33E−02 1.54E−02 8.64E−01 0.398

'e_num:hg:beta:recall_p' 4.57E−04 1.50E−04 3.04E+00 0.006

'e_type:e_num:hg:trials' −9.13E−06 7.42E−06 −1.23E+00 0.233

'e_num:hg:beta:trials' 1.18E−07 6.96E−08 1.70E+00 0.105

'hg:beta:recall_p:trials' 2.58E−07 5.78E−07 4.47E−01 0.66

'e_type:e_num:hg:beta:recall_p' 1.87E−04 4.76E−04 3.93E−01 0.699

'e_type:e_num:hg:beta:trials' 3.20E−07 1.77E−07 1.81E+00 0.085

'e_num:hg:beta:recall_p:trials' −6.87E−07 2.97E−07 −2.31E+00 0.032

'e_type:e_num:hg:beta:recall_p:trials' −1.07E−06 6.53E−07 −1.63E+00 0.118

e_type: depth electrode ‘0’, subdural electrode ‘1’; e_num: # electrode contacts; hg: mean high-gamma signal to noise ration; beta: mean beta signal to noise ratio; recall_p: the correct word 
recall probability in the experiment; trials: the number of experimental trials. The model had 62 observations, 20 error degrees of freedom, estimated dispersion: 0.00114, F-statistic vs. 
constant model: 5.2, p-value = 1e−4.
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remembered versus forgotten items (memory performance) within 
subjects. Our exploratory analysis reveals the feasibility of iEEG 
recordings from the LSMG alone to derive biomarkers of dichotomized 
verbal episodic memory state and performance during the verbal free 
recall task.

CNN2b was trained and cross-validated to label recalled 
words using the time course and amplitude of convolved HG and 
beta oscillatory bursts extracted from LSMG iEEG recordings 
during the word encoding epoch of the verbal free recall task. 
We included all patients with a single intracranial EEG contact 
localized to the LSMG and excluded experiments that utilized 
intracranial electrical stimulation. Since experiments with poor 
iEEG recording quality or contamination with inter-ictal 
epileptiform spikes (IES) were included, the study found that only 
62 of the 141 experimental sessions the CNN2b AUROC score 
exceeding chance (greater than 0.52), Visual inspection of the 
iEEG recordings with a CNN2b AUROC score at chance or worse 
demonstrated poor recordings, contamination, or IES in all but 3 
of these experiments. Prior publications utilizing data from the 
RAM consortium have excluded experiments presumably based 
on poor recording quality (6, 7, 10).

Among the 141 experiments, 14 experiments exhibited a cross-
validated CNN2b AUROC score greater than 0.6 for correctly labeling 
the subsequently recalled words. This outcome substantiates the 
feasibility of decoding verbal memory performance, specifically the 
recall of words during encoding, through analysis of the time course 
and amplitude of high-gamma (HG) and beta bursts within LSMG 
intracranial electroencephalography iEEG data. Furthermore, this 
study mitigates potential confirmation bias through the application of 

a GLM. The GLM was employed to systematically identify factors 
explaining the variance in CNN2b AUROC scores across experiments 
that performed above chance levels. The GLM found that the CNN2b 
AUROC values were significantly explained by a four-way interaction 
between HG burst signal-to-noise ratio (SNR), beta burst SNR, the 
number of electrode contacts within the LSMG, and recall probability 
(p < 0.006). Given that the input tensors for training and cross-
validating CNN2b were derived from the delineation and 
characterization of HG and beta bursts, a diminished SNR in either 
frequency band could plausibly degrade the CNN2b classification 
performance. Intriguingly, prior research has indicated that decreased 
beta activity in the LSMG is associated with cognitive decline (55), 
suggesting a potential link between beta SNR and mnemonic 
processing. Furthermore, the significant four-way interaction implies 
that iEEG signals recorded from distinct subregions within the LSMG 
provide non-redundant information relevant to classifying memory 
performance, and consequently, increased spatial sampling within this 
region enhances the CNN2 AUROC value. Finally, a higher overall 
recall probability reduces the class imbalance within the dataset 
(recalled vs. forgotten words), which may also contribute to an 
improved CNN2b AUROC score. A prior study utilizing the RAM 
consortium data used synthetic minority over-sampling technique 
(SMOTE) to address this imbalance in the dataset (10). Should 
we  have utilized SMOTE it would have likely improved CNNs 
AUROC scores. This same study (10) also raised concerns regarding 
machine learning over-training in cross-validation. To address this, in 
a small number of subjects’ experiments, we trained and tested on 
distinct datasets (i.e., FR1 and catFR1). While these CNN2b AUROC 
scores were less than the cross-validated CNN2b AUROC score most 

FIGURE 5

In the best performing subjects, the cross-validation results of convolutional neural network (CNN2b) for correctly labeling remembered words during 
encoding using a two-dimensional tensor of convolved bursts of high-gamma and beta recorded from contact(s) in the left supramarginal gyrus. The 
area under the receiver operating curve (AUROC, AUC), confusion matrices values evaluated at the maximum of Youden’s J, and other experimental 
data in n = 14 subjects (see Supplementary Table 1).
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FIGURE 6

In four subjects with two distinct verbal free recall experiments such as, free-recall [FR] and/or categorical FR [catFR], within patient results of 
convolutional neural network (CNN2b), trained on one experiment and tested on the other, for correctly labeling remembered words during encoding 
using a two-dimensional (2-D) tensor of convolved bursts of high-gamma and beta recorded from contact(s) in the left supramarginal gyrus. The area 
under the receiver operating curve (AUROC, AUC), confusion matrices values evaluated at the maximum of Youden’s J, and other experimental data 

(Continued)

https://doi.org/10.3389/fneur.2025.1627528
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Weiss et al. 10.3389/fneur.2025.1627528

Frontiers in Neurology 13 frontiersin.org

of the CNN2b trained and tested on the distinct datasets performed 
better than chance (10).

A prior study compared the performance of a support vector 
machine (SVM) for classifying memory state and performance across 
iEEG recordings from diverse neuroanatomical structures. This study 
found that the left middle temporal gyrus (LMTG) performed best 
(10). Additional evidence that supports LMTG is the optimal memory 
hot spot for the verbal free recall task includes prior literature utilizing 
subsequent memory effect analysis (56–58), and open- (7) and closed-
loop (5, 6) electrical stimulation of the LMTG enhancing word 
encoding performance. Additionally, inter-ictal epileptiform spikes 
(IES) that are generated during word encoding in the LMTG have the 
strongest effect size in disrupting recall of the word as compared to 
IES in other neuroanatomical regions (43). In nine of the 14 patients 

with an LSMG CNN2b AUROC score greater than 0.6, our study 
additionally trained and tested a distinct CNN2b using iEEG 
recordings from the LMTG as a control experiment. Results show that 
the CNN2b AUROC score did not differ between the CNN2b trained 
and tested using LSMG iEEG as compared to that using LMTG 
iEEG. However, the CNN2b accuracy was significantly greater when 
the CNN2b was trained and tested using iEEG from LSMG as 
compared to LMTG. The equivalence in the AUROC scores may 
be due to information carried by beta oscillations in the LMTG (10).

Prior work examining memory encoding and recall has shown the 
presence of subsequent memory effects (SME) in the LSMG using both 
fMRI (18–20) and iEEG (16, 21). Delineating a SME relies on averaging 
responses to repeated stimuli and consequently, many SMEs coincide 
with stimulus presentation. As a departure from this approach, 

that are derived from CNN in n = 8 experiments and N = 4 patients (see Supplementary Table 1). The first experiment in the color code corresponds 
with the training set, while the second experiment corresponds with the test set. In experiment 7 R1421FR- > R1421catFR the positive predictive value, 
sensitivity, and F1 value was zero. This implies that the model made no positive predictions or all the positive predictions were incorrect.

FIGURE 6 (Continued)

FIGURE 7

In the best performing subjects, the cross-validation results of convolutional neural network (CNN1) for correctly labeling encoding trials from recall 
trials using a two-dimensional tensor of convolved bursts of high-gamma and beta recorded from contact(s) in the left supramarginal gyrus. The area 
under the receiver operating curve (AUROC, AUC), confusion matrices values evaluated at the maximum of Youden’s J, and other experimental data in 
n = 9 subjects (see Supplementary Table 1).
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we investigated whether characterization of distinct HG and beta bursts, 
that may or may not be, time locked to stimulus presentation, encode or 
recall individual items in working and episodic memory (31, 32, 46, 59). 

Our results align with primate studies (29, 31, 32) and studies in humans 
(8) showing that beta and HG bursts may encode memory related 
temporal information packets. In support of this notion, human covert 

FIGURE 8

In two of three subjects, the cross-validation results of convolutional neural network (CNN3) for correctly labeling higher performing free recall 
sessions exceeded chance. The area under the receiver operating curve (AUROC, AUC), confusion matrices values evaluated at the maximum of 
Youden’s J, and other experimental data in n = 3 subjects (see Supplementary Table 1).

FIGURE 9

Results of the Local Interpretable Model-agnostic Explanations (LIME) for time series on CNNs for the best performing subject. By generating random 
perturbations in segments of a signal, the LIME algorithm ranks each segment’s influence on predictions. The method was applied to the CNN1 (left 
panel), CNN2 (middle panel) and CNN3 (right panel) models of the best performing subject. For every trial in the testing dataset, the most influential 
segments across all electrodes were identified. The figures show how often each segment in each electrode was considered significant across all trials 
in the testing dataset.
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and overt speech can also be decoded using bursts of HG in the superior 
temporal gyrus with a 50% error rate using a 50-word pool size (60). To 
ask if beta bursts may be redundant with respect to HG bursts, we asked, 
in three experiments, whether the CNN2b accuracy and AUROC score 
differed when trained and cross-validated on 2D tensors of convolved 
high-gamma and beta as compared to high-gamma alone. We found in 
all three experiments that the accuracy for labeling remembered words 
decreased with the beta bursts omitted.

It is well established that in cued recall paradigms salient stimuli leads 
to changes in LSMG activity reflecting the allocation of bottom-up 
attention that improve recall probability (17–20, 22). Based on these 
findings, we anticipated that HG and beta bursts in the iEEG in the LSMG 
during the free recall task would differ between encoding and recall 
epochs. To train and test this CNN (i.e., CNN1) we derived 2D tensors of 
stacked 1D tensors of convolved HG bursts and 1D tensors of convolved 
beta bursts derived from iEEG consisting of intermixed 3 s encoding trials 
and recall trials. These 3 s recall trials were selected at random from the 
30 s recall epoch. We found that CNN1 AUROC score was greater than 
0.7 for 8 of 9 of the experiments. Potential confounds include that CNN1 
labeled encoding trials by utilizing iEEG signals associated with stimulus 
preparation and the stimulus itself and identified recall trials based on 
motor preparation or motor activity during speech. However, our 
exploratory analysis using LIME argues against this because it showed no 
specific interval of the encoding vs. recall trial to be most important.

Limitations

Despite the findings of our study, it remains uncertain whether the 
HG and beta bursts are causative or simply correlate with respect to 
verbal memory state and performance. While the LSMG shows 
significant activity that can be utilized to discriminate memory state 
and performance, it might be part of a larger network necessary and 
sufficient for verbal memory. Perhaps the LSMG does not encode or 
recall the primary verbal memory engram but instead provides 
necessary attentional input or some other integrative input for this 
network. Thus, a shortcoming of our study is that we did not examine 
whether CNN performance may improve if high-gamma and beta 
burst features were characterized in the LSMG in tandem with that in 
other neuroanatomical structures. Prior results examining 
synchronization and desynchronization of different iEEG spectral 
bands across all neuroanatomical structures during time locked verbal 
free recall task trials found that successful word encoding is associated 
with theta band synchronization but gamma and high-gamma band 
desynchronization (58). An explanation is that high-gamma activity 
reflects local processing and increases in high-gamma are often 
temporally dissociated across regions (57). However, characterizing 
inter-regional transmission of beta bursts as well as bursts of slower 
oscillations between the LSMG and hippocampus would likely 
improve the accuracy of decoding memory state and performance (38, 
40). Most published research using the RAM consortium data have 
studied biomarkers of memory state and performance in multiple 
brain regions together (5–7, 10, 11, 45, 46, 61). In contrast to this 
important work, our study aimed to utilize the RAM consortium data 
to demonstrate that the LSMG is a memory hotspot (10, 14, 15). Our 
implementation and interpretation of CNN1, which distinguishes 
encoding trials from recall trials, and CNN3, which labels recall 
sessions in which a greater number of words are recalled, are also 

limited and have potential flaws. Prior work not only differentiated 
iEEG recordings of encoding from recall but also included a 
non-memory related condition (10). Random forest machine learning 
was utilized to differentiate between these three conditions (i.e., 
encoding, recall, and non-memory). In our study, CNN1 was 
dichotomous and differentiated only the encoding from the recall 
epoch. Moreover, if CNN1 was trained and tested using a cued recall 
experimental paradigm accurate classification of encoding and recall 
epochs would be more meaningful. In just two experiments the CNN3 
AUROC score was greater than 0.6. However, we found that during 
the recall epoch the number of words spoken significantly correlated 
with the number of words recalled. Thus, iEEG contamination from 
muscle activity, or IEEG activity related to pre-speech or speech may 
be a confound. However, in cued recall experiments SMEs have been 
found in the LSMG (21). An investigation of HG and beta bursts in 
the LSMG during a cued recall paradigm is required to confirm the 
role of HG and beta bursts in the LSMG in measuring recall 
performance. Lastly, future investigations of HG and beta bursts in the 
LSMG as a biomarker of memory state and performance would 
benefit from comparing several types of machine learning (11).

Conclusion

Using secondary data from the Restoring Active Memory (RAM) 
program, we analyzed intracranial EEG recordings from medically 
refractory epilepsy patients performing a delayed verbal free-recall 
task. We  trained, cross-validated, and tested using distinct 
experiments, convolutional neural networks (CNNs) using 2D tensors 
of convolved HG and beta bursts derived exclusively from the iEEG 
recorded from the LSMG. The CNNs utilized features related to the 
time course and power of HG and beta bursts to label verbal memory 
state and performance. Our results demonstrate that, in certain 
experiments with higher HG and beta SNRs, more electrode contacts 
placed in the LSMG, and higher recall probably, the AUROC scores 
for labeling memory state and performance were comparable to the 
mean AUROC scores reported by RAM researchers using iEEG 
recordings from diverse neuroanatomical sites synergistically. In 
accord with prior investigations (10, 38, 40) these findings indicate 
that the LSMG serves as a verbal memory hotspot. Other brain 
regions, specifically the left middle temporal gyrus, have also been 
implicated as memory hotspots as well. However, the LSMG may 
be unique due to its role in directing attention to memory. More work 
is needed to explore the different features most important for decoding 
memory hotspots and how their information content can be best 
combined. In accord with the established role of HG and beta bursts 
in working memory, an important and unique conclusion from our 
study is that characterizing the temporal and spectral features of HG 
and beta bursts alone accurately labels verbal memory state and 
performance. With respect to future human memory research, LRMs 
utilizing non-invasive high density scalp EEG have been shown to 
label recalled words in the verbal free recall task slightly better than 
chance (62). Perhaps, high-density non-invasive or minimally invasive 
sub-scalp EEG recordings proximal to the LSMG could also classify 
memory state and performance. Epilepsy research has shown that in 
addition to beta frequency, higher frequency (80–150 Hz) ripples can 
be characterized in the scalp EEG (63). Non-invasive or minimally 
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invasive recordings could may be  used for biofeedback (9) or 
neurostimulation (6, 64) to enhance memory.
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