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Objective: To identify independent risk factors for Parkinson disease mild 
cognitive impairment (PD-MCI) and develop a prediction model integrating 
clinical indicators, blood biomarker, and neuroimaging data, aiding in detection 
and intervention.

Methods: A retrospective study was conducted with 150 PD patients. The PD-MCI 
group (n = 64) and PD with normal cognition (PD-NC, n = 86) were identified 
using the Montreal Cognitive Assessment scale. Data on demographics, motor 
symptoms, cognitive function, quality of life, blood markers, and diffusion 
tensor imaging along perivascular spaces (DTI-ALPS) were collected. Univariate 
analysis identified significant variables, and multivariate logistic regression 
identified independent risk factors. A nomogram prediction model was 
developed using R software. Model performance was evaluated using Receiver 
Operating Characteristic (ROC) curves, bootstrap resampling calibration curves, 
and decision curve analysis (DCA).

Results: Significant differences between the groups were found in levodopa 
equivalent daily dose (LEDD), PD Quality of Life Questionnaire, creatinine, 
cystatin C, and ALPS index. Multivariate regression identified higher LEDD 
(OR = 1.01, 95%CI 1.00–1.03, p = 0.005) and creatinine levels (OR = 1.34, 
95%CI 1.10–1.66, p = 0.005) as independent risk factors. The nomogram model 
demonstrated strong discriminatory ability (AUC = 0.864, 95%CI 0.807–0.922) 
and good calibration. DCA showed a significant net benefit within clinical 
threshold ranges.

Conclusion: This study developed a PD-MCI prediction model incorporating 
DTI-ALPS and clinical blood biomarkers. It confirmed that LEDD and creatinine 
levels are independent risk factors, with high clinical value for early screening 
and individualized treatment.
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1 Introduction

Parkinson’s disease (PD), the second most common 
neurodegenerative disease after Alzheimer’s disease (AD), is 
characterized by motor symptoms accompanied by a wide range of 
non-motor symptoms (1). Non-motor symptoms are common 
throughout the disease, including anxiety, depression, cognitive 
impairment (CI), and autonomic dysfunction, which not only severely 
impact patients’ mental health and quality of life, but also significantly 
increase the complexity of clinical diagnosis and treatment (2). There 
are currently more than 10 million people with PD worldwide, and 
most patients experience varying degrees of CI as the disease 
progresses (3). Studies have shown that CI in PD patients has a 
complex pathological mechanism. In addition to Lewy bodies formed 
by abnormal aggregation of α-synuclein (α-syn), AD-associated 
biomarkers such as β-amyloid (Aβ) and tau proteins play an important 
role in the process of PD-induced CI (4, 5). These pathological 
changes ultimately lead to progressive cognitive decline by inducing 
neuronal damage, disrupting synaptic function and compromising the 
integrity of neural networks. CI typically progresses through three 
stages: subjective cognitive decline, mild cognitive impairment (MCI), 
and Parkinson’s disease dementia (PDD). Of these, MCI is considered 
a prodromal state in the development of dementia, representing the 
transition between normal aging and marked cognitive dysfunction. 
Epidemiological studies have shown that approximately 80% of people 
with Parkinson’s disease will develop dementia within 20 years of 
diagnosis (6). Similarly, studies have shown that approximately 50% 
of PD patients with normal cognition at baseline will develop cognitive 
impairment within 6 years, and all new cases of MCI will progress to 
dementia within 5 years (7).

Presently, the diagnosis of PD-MCI is undergoing a shift toward 
multimodal assessment, integrating a range of methodologies 
including single photon emission computed tomography imaging of 
dopamine transporters, the detection of α-syn and AD markers in 
cerebrospinal fluid, as well as neurophysiological and genetic analysis 
(8). Nevertheless, there are still many challenges in reality: the 
prevalence of advanced magnetic resonance imaging (MRI) sequence 
examinations is relatively low, the risk of invasive operation in 
cerebrospinal fluid collection, and the high cost of the examination 
also limit its wide application. Consequently, subjective assessment 
tools such as Montreal Cognitive Assessment (MoCA) scale remain 
the prevailing standard in clinical practice. In this context, there is an 
urgent need to construct a multidimensional prediction model based 
on routine examination tools to achieve early identification of 
PD-MCI, facilitate intervention and improve prognosis. The model 
constructed in previous studies (9), combining neuron-specific 
enolase and nigrostriatal hyperchromicity, demonstrated high 
accuracy in predicting CI associated with PD (AUC = 0.823, 95% CI 
0.781–0.864, p < 0.001). This study also suggests that integrating 
clinical indicators with neuroimaging biomarkers can help improve 
the identification of CI in patients with PD.

It is worthy of note that recent interdisciplinary studies have found 
evidence to suggest a potential association between the pathological 
processes of neurodegenerative diseases and renal function 
abnormalities. In particular, the abnormal phosphorylation of 
pathological α-syn in renal parenchymal cells may constitute a key link 
in the propagation of the “kidney-brain axis” pathology (10). Multiple 
cohort studies have confirmed that inflammatory markers such as 

plasma C-reactive protein (CRP) (11) and the specific proteins of the 
central nervous system (S100) protein family (12), as well as renal 
function parameters including creatinine (Cr) (13), cystatin C (Cys C) 
(14), and estimated glomerular filtration rate (eGFR), are associated 
with PD. The glymphatic system serves as a crucial pathway for 
interstitial fluid circulation and metabolic waste clearance in the central 
nervous system. Traditionally, studies have employed linear 
gadolinium-based contrast agents administered intrathecally or 
intravenously, followed by time-resolved MRI to track their distribution 
and evaluate glymphatic drainage in the brain (15). However, these 
methods are invasive and carry potential risks. In recent years, a 
promising non-invasive technique known as diffusion tensor image 
analysis along the perivascular space (DTI-ALPS) has been developed. 
First introduced by Taoka et al. (16), this approach utilizes MRI-DTI 
sequences to measure the anisotropic diffusion of water molecules in 
the brain’s white matter, thereby enabling indirect functional 
assessment of the cerebral glymphatic system. The ALPS index is 
calculated by placing regions of interest (ROI) at the intersections 
where periventricular veins cross perpendicularly with white matter 
fibers, including projection and association fibers. Diffusivity values are 
extracted along various directions, and the ratio of diffusivity along the 
perivascular direction to that in the perpendicular direction is 
computed. This index reflects the efficiency of fluid movement along 
perivascular spaces within the brain and can be used as an indirect 
measure of the functional status of the brain’s glymphatic system (17).

Many clinical trials are currently underway to explore potential 
disease-modifying therapeutic strategies for PD, in the hope of halting 
or significantly slowing the neurodegenerative process (18). However, 
most studies on PD-MCI focus on the correlational analysis of 
influencing factors, and the practical applications for disease 
prevention and early detection are still limited. Additionally, there is 
a lack of studies assessing the risk of PD-MCI through the construction 
of clinical prediction models. In conclusion, this study integrates 
routine multidimensional data, including clinical assessments, 
hematological tests, and imaging indices, to construct a clinical model 
for predicting PD-MCI risk. This model aids in early identification of 
high-risk individuals and provides a foundation for early screening 
and delayed cognitive decline.

2 Materials and methods

2.1 Study type

It was a single-center retrospective study.

2.2 Research subjects

This study was approved by the Ethical Committee of the First 
People’s Hospital of Lianyungang (approval number: KY-20220812002-
01), and all participants provided written informed consent prior to 
enrollment. Involving 178 PD patients who were admitted to the 
Department of Neurology at the First People’s Hospital of Lianyungang 
between January 2023 and June 2024. All patient diagnoses adhered 
to the revised Parkinson’s Disease Society Brain Bank criteria and were 
confirmed by at least two consultants using a double-blind method. 
Cognitive function was assessed using the standard MoCA scale, 
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following Movement Disorder Society guidelines. The Level II 
comprehensive neurological psychological assessment protocol was 
employed to evaluate PD-related cognitive characteristics, ensuring 
study rigor and result comparability (19).

Inclusion criteria for this study required subjects to comply with 
cognitive-behavioral treatment, to complete neuropsychological 
assessment and multimodal imaging, and to have disease duration of 
≥1 year from initial diagnosis. Exclusion criteria included: (1) missing 
key data; (2) secondary Parkinson’s syndrome or superimposed 
Parkinson’s syndrome; (3) intracranial space-occupying lesions; (4) 
psychoneurological disorders due to severe cerebrovascular disease, 
traumatic brain injury and other diagnoses; and (5) Hoehn-Yahr stage 
(H-Y stage) > 3 or the presence of motor/consciousness deficits.

After a standardized screening process, 7 cases were excluded due 
to loss to follow-up; 13 chose to withdraw because of their own 
movement disorders, which prevented them from cooperating with 
MRI examinations and clinical evaluations; and 6 cases were excluded 
due to motion artifacts or substandard image quality during the 
imaging process. After the above screening, a total of 150 PD patients 
successfully completed the entire assessment process and were 
included in the subsequent research analysis. Given the high specificity 
of MoCA in identifying PD-MCI, a score of 26 was used as the cut-off 
in this study: patients with a score greater than 26 were included in the 
normal cognition group (NC group), and patients with a score 
between 16 and 26 were classified as the PD-MCI group (20, 21).

2.3 Collection of clinical data

Baseline demographic data including age, sex, education time and 
disease duration were collected, and body mass index (BMI) (weight 
[kg]/height [m]2) was calculated using standardized anthropometric 
methods as an indicator of metabolic status. Doses of antiparkinsonian 
medication were converted to levodopa equivalent daily doses (LEDD) 
according to the formula recommended by the International 
Movement Disorders Society (22). The neuropsychiatric assessment 
system included the Hamilton Anxiety Scale (HAMA) and the 
Hamilton Depression Scale (HAMD) to quantify anxiety and 
depressive symptoms, respectively, and the Pittsburgh Sleep Quality 
Index (PSQI) to assess sleep rhythm disturbances. PD status was 
assessed by a systematic multidimensional analysis using the Unified 
Parkinson’s Disease Rating Scale (UPDRS), which includes four 
subscales to quantify non-motor symptoms (Section I), activities of 
daily living (Section II), motor signs (Section III), and motor 
complications (Section IV). Meanwhile, the modified (H-Y stage) was 
used to objectively assess symptom severity and staged disease 
progression. In addition, the PD Quality of Life Questionnaire 
(PDQ-39) and the Scale for the Assessment of Autonomic Function 
(SCOPA-AUT) were used together to comprehensively assess patients’ 
health-related quality of life and autonomic dysfunction characteristics, 
and a comprehensive scoring system covering symptom dimensions, 
functional status and quality of life was constructed.

2.4 Peripheral examination

Peripheral blood test indices including total neutrophil count, 
C-reactive protein (CRP), and S100-β were recorded during the 

patients’ hospitalization. Renal function-related indices included Cr 
and Cys C. All subjects had their peripheral blood specimens collected 
through elbow vein in the early morning fasting state, and the serum 
was separated by centrifugation at 3500 rpm for 6 min, and then 
immediately placed at −20°C for freezing and storage. The serum 
samples were equilibrated and rewarmed at room temperature and 
vortexed thoroughly before testing. Cys C was measured by latex-
enhanced immunoturbidimetric assay, and Cr was measured by 
enzymatic assay. Both assays were performed on a fully automated 
biochemical analyzer, and the whole process was carried out in strict 
accordance with standardized operating procedures, and 
comprehensive quality control measures were implemented.

2.5 MRI image acquisition

Image data acquisition was performed by two radiologists with 
more than 5  years of neuroimaging experience to ensure image 
quality. Subjects were required to abstain from anti-Parkinsonian 
medication for at least 12 h prior to scanning. The MRI was performed 
using a 3.0 T Siemens Prisma scanner in the imaging department of 
the First People’s Hospital of Lianyungang. The parameters of the 
T1-weighted images (T1WI) scan were as follows: repetition 
time = 3,800 ms, echo time = 90 ms, flip angle = 70°, slice 
thickness = 6 mm, slice spacing = 1 mm, field of view = 210 mm, 
matrix size = (210 × 220), and number of scanned slices = 92. The 
parameters of the DTI scan were as follows: SE-EPI sequence imaging, 
repetition time = 9,300 ms, echo time = 69 ms, slice thickness =  
1.5 mm, slice spacing = 0 mm, field of view = 256 mm × 256 mm × 100, 
matrix = 110 × 110, 64 diffusion-weighted scans were performed with 
b = 1000s/mm2 and another diffusion-weighted scan with b = 0 and 
another diffusion-weighted scan with b = 1,000 s/mm2 and another 
diffusion-weighted scan with b = 0. Another diffusion-weighted image 
was performed with b = 0 and number of excitations = 2. The total 
scan time was 8 min 35 s.

2.6 DTI-ALPS processing

A standardized DTI data processing procedure was used for the 
study. After the raw image data in DICOM format were uniformly 
converted to NIFTI format using the dcm2niix tool, batch processing 
was performed using the Diffusion Toolkit1: first, head motion 
correction was performed to remove motion artifacts, followed by 
extracranial tissue stripping using the Brain Tissue Extraction (BET) 
algorithm, and then voxel-level diffusion tensor fitting was performed 
using the DTIFIT model to obtain maps of anisotropy fraction (FA), 
mean diffusivity (MD), principal eigenvalues (λ1–λ3), and diffusion 
tensor component (Dxx/Dyy/Dzz) parameters. Based on the eigenvalue 
parameters, radial diffusion coefficient (RD) maps were calculated 
using the (λ2 + λ3)/2 equation. For the calculation of the DTI-ALPS 
index, a 5 mm diameter ROI region was manually outlined in the 
region of the intersection of projection and contact fibers in the 
bilateral cerebral hemispheres based on color-coded FA maps using the 

1 https://trackvis.org/dtk/
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FSLeyes (version 1.14.2) tool2. By measuring the x-axis (Dxxproj) and 
y-axis (Dyyproj) diffusion coefficients in the projection fiber region 
and the x-axis (Dxxassoc) and z-axis (Dzzassoc) diffusion coefficients 
in the contact fiber region, the ALPS indices of the bilateral cerebral 
hemispheres were calculated, The ALPS indices of the bilateral cerebral 
hemispheres were calculated separately according to Taoka’s method 
(16), and the final average value of the bilateral hemispheres was taken 
as the ALPS index for the comprehensive assessment of the structural 
integrity of the cerebral fiber-vessel unit. ALPS index.

The calculation formula is as follows: 
 
 ( )

( )
− =

mean Dxxproj,Dxxassoc
ALPS Index

mean Dyyproj,Dzzassoc .

2.7 Statistical methods

SPSS 26.0 with R 4.5.0 was used for statistical analysis and model 
building in this study.

Normally distributed measures were expressed as mean (standard 
deviation) [Mean (SD)] and t-test was used to compare between 
groups; non-normally distributed data were expressed as median 
(interquartile range) [Median (IQR)] and Mann–Whitney U-test was 
used; and the categorical variables (Sex, H-Y stage) were described as 
frequency (percentage) [n (%)] and Chi-square test was used. 
Variables that were statistically significant (p < 0.05) in the univariate 
analysis were included in the multifactorial logistic regression analysis 
to screen for independent risk factors for PD-MCI. Based on the 
results of the multifactorial logistic regression analysis, a column-line 

2 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes

graph prediction model was constructed using the rms program 
package in the R language to quantify the risk factor weights. Model 
discrimination was assessed by receiver operating characteristic 
(ROC) curve, and internal validation was performed by 
bootstrap 1,000 resampling, and model calibration and clinical net 
benefit were analyzed by calibration curve and decision curve, 
respectively. The significance level was set at α = 0.05 (two-tailed test).

3 Results

3.1 Baseline demographic information and 
clinical data

A total of 150 PD patients who met the enrolment criteria were 
included in this study and cognitively stratified by MoCA, including 
64 patients in the PD-MCI group and 86 patients in the PD-NC group 
(Figure 1). The baseline characteristics of the two groups (Table 1), 
showed statistically significant differences between the LEDD, 
PDQ-39, UPDRS I, Cr, Cys C and ALPS index (p < 0.05).

3.2 Multivariate logistic regression analysis 
of PD-MCI patients

One-way logistic regression showed that the Cr (OR = 1.61, 
95%CI 1.34–1.93, p < 0.01) and ALPS index (OR = 0.56, 95%CI 0.38–
0.83, p < 0.01) were statistically significant (Figure 2). Furthermore, 
whether PD patients had comorbid MCI or not was used as a 
dependent variable (1 = yes, 0 = no) and variables with p < 0.05 in 
univariate analysis (LEDD, PDQ-39, UPDRS I, Cr, Cys C and ALPS 
index were included). A multivariate model was constructed using 
backward stepwise regression, which showed that LEDD (OR = 1.01, 

FIGURE 1

Study flowchart.
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95%CI 1.00–1.03, p = 0.005) and Cr (OR = 1.34, 95%CI 1.10–1.66, 
p = 0.005) retained their independent predictive value. Notably, 
although PDQ-39, Cys C and ALPS index were significant in the 
univariate model, they did not show independent associations in the 
multivariate model (Table  2), suggesting that their effects may 
be influenced by confounders or attenuated by the limited sample size.

3.3 Construction of the PD-MCI risk 
nomogram prediction model

Based on the results of the multivariate logistic regression analysis, 
a nomogram model for predicting the risk of MCI in patients with PD 
was constructed using the R software (Figure 3).

3.4 Validation of the PD-MCI risk 
nomogram prediction model

The prediction model developed in this study demonstrated 
strong performance in terms of discriminatory ability, calibration, 
and clinical applicability. ROC curve analysis revealed an AUC 
of 0.864 (95% CI: 0.807–0.922), indicating excellent 
discriminatory power for predicting the risk of PD-MCI. At the 
optimal cut-off, the model showed high sensitivity (0.87) and 
specificity (0.81), effectively identifying high-risk individuals 
(Figure 4). Calibration results, assessed by the Hosmer-Lemeshow 
test, confirmed no significant deviation between predicted 
probabilities and observations, with the calibration curve closely 
following the ideal curve, indicating good calibration accuracy 
(Figure  5). To evaluate robustness and prevent overfitting, 
we conducted 1,000 bootstrap resampling validations, showing 
consistency in key predictive parameters across resamples. The 
calibration curves from these validations mirrored those of the 
original model, supporting its robustness. Decision curve analysis 

TABLE 1 Comparison of baseline data between PD-MCI group and PD-
NC group.

Variables PD-NC 
(n = 86)

PD-MCI 
(n = 64)

p-value

Age (year)

Mean (SD)
68.92 (4.30) 69.61 (5.05) 0.37a

Sex 0.78c

  Female 41 (47.67) 32 (50.00)

  Male 45 (52.33) 32 (50.00)

BMI (kg/m2)

Mean (SD)
21.79 (1.91) 21.30 (2.00) 0.13a

Education time 

(year)

Median (IQR)

9.00 (6.00, 9.00) 6.00 (6.00, 9.00) 0.40b

Disease duration 

(year)

Median (IQR)

3.00 (2.00, 5.00) 3.00 (2.00, 4.25) 0.72b

LEDD (mg)

Mean (SD)
399.34 (45.21) 449.95 (44.49) <0.01a

H-Y Stage 0.91c

  Stage 1 15 (17.44) 12 (18.75)

  Stage 2 51 (59.30) 39 (60.94)

  Stage 3 20 (23.26) 13 (20.31)

UPDRS I

Mean (SD)
6.50 (2.67) 8.27 (2.76) <0.01a

UPDRS II

Median (IQR)
9.00 (7.00, 10.00) 9.00 (8.00, 12.00) 0.17

UPDRS III

Mean (SD)
28.10 (4.56) 29.38 (4.55) 0.09a

PDQ-39

Median (IQR)

35.00 (32.00, 

40.00)
43.00 (38.00, 51.25) <0.01b

SCOPA-AUT

Mean (SD)
17.45 (3.65) 17.17 (3.50) 0.64a

MoCA

Mean (SD)
28.07 (1.03) 19.55 (2.67) <0.01a

HAMA

Median (IQR)
9.00 (5.25, 12.75) 10.00 (6.75, 15.25) 0.20b

HAMD

Median (IQR)

10.00 (6.25, 

13.00)
9.00 (6.00, 14.00) 0.64b

PSQI

Median (IQR)
9.00 (7.00, 11.00) 10.00 (8.00, 13.25) 0.08b

Neutrophil count 

(109/L)

Mean (SD)

3.80 (0.98) 3.72 (0.83) 0.62a

CRP (mg/L)

Mean (SD)
7.22 (1.11) 7.08 (0.82) 0.38a

Cr (μmol/L)

Mean (SD)
68.23 (2.19) 70.42 (2.06) <0.01a

Cys C (mg/L)

Mean (SD)
0.95 (0.12) 1.06 (0.12) <0.01a

(Continued)

TABLE 1 (Continued)

S100-β (ng/ml)

Median (IQR)
0.10 (0.10, 0.11) 0.10 (0.10, 0.10) 0.52b

L-ALPS

Mean (SD)
1.37 (0.12) 1.30 (0.08) <0.01a

R-ALPS

Median (IQR)
1.33 (1.26, 1.38) 1.31 (1.22, 1.40) 0.20b

ALPS Index

Mean (SD)
1.35 (0.10) 1.31 (0.07) <0.01a

Education time, Disease duration, UPDRS II, PDQ-39, HAMA, HAMD, PSQI, S100-β are 
presented as the median (interquartile range); Sex and H-Y Stage are presented as number 
(frequency). The other parameters are presented as the mean (standard deviation). aUnpaired 
independent t-test; bnon-parametric Mann–Whitney test; cχ2 test. BMI, Body Mass Index; 
LEDD, Levodopa Equivalent Daily Dose; H-Y Stage: Hoehn and Yahr Stage; UPDRS I/II/III, 
Unified Parkinson’s Disease Rating Scale part I/II/III; PDQ-39, Parkinson’s disease Quality of 
Life Questionnaire; SCOPA-AUT, Scale for the Assessment of Autonomic Function; MoCA, 
Montreal Cognitive Assessment; HAMA: Hamilton Anxiety Rating; HAMD, Hamilton 
Depression Rating; PSQI, Pittsburgh Sleep Quality Index; CRP, C-reactive Protein; Cr, 
Creatinine; Cys C: Cystatin C; S100-β: specific proteins of the central nervous system protein 
beta; ALPS Index: diffusion tensor image analysis along the perivascular space index. 
P-values < 0.05 were considered statistically significant.
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demonstrated a net benefit over standard practice when the 
decision threshold was set between 0.05 and 0.75, confirming the 
model’s clinical utility, particularly for low and intermediate-risk 
stratification. However, in scenarios with higher thresholds, the 

relatively small high-risk subgroup sample size may introduce 
greater variability (Figure 6).

4 Discussion

The objective of this study was to curtail the reliance on high-cost 
specialized tests by optimizing the clinical assessment process, 
focusing on admission routine testing indicators, and combining 
brain structure and white matter fiber bundle integrity parameters 
obtained by multimodal MRI to assess the function of the glymphatic 
system based on the ALPS index. A multidimensional prediction 
model of PD-MCI was constructed by integrating and analyzing 
clinical features, blood biomarkers and neuroimaging indexes. 
Multifactorial logistic regression analysis demonstrated that LEDD, 
PDQ-39, Cr, Cys C and ALPS index were significantly associated with 
the occurrence of PD-MCI (p < 0.05). Among the identified 
predictors, LEDD (OR = 1.01, 95%CI 1.00–1.03) and Cr (OR = 1.34, 
95%CI 1.10–1.66) were found to be  independent predictors. The 

FIGURE 2

Forest plot of single-factor logical regression analysis of the occurrence of MCI in PD patients. BMI, Body Mass Index; LEDD, Levodopa Equivalent Daily 
Dose; H-Y Stage: Hoehn and Yahr Stage; UPDRS I/II/III, Unified Parkinson’s Disease Rating Scale part I/II/III; PDQ-39, Parkinson’s disease Quality of Life 
Questionnaire; SCOPA-AUT, Scale for the Assessment of Autonomic Function; HAMA: Hamilton Anxiety Rating; HAMD, Hamilton Depression Rating; 
PSQI, Pittsburgh Sleep Quality Index; CRP, C-reactive Protein; Cr, Creatinine; Cys C, Cystatin C; S100-β, specific proteins of the central nervous system 
protein beta; ALPS Index, diffusion tensor image analysis along the perivascular space index.

TABLE 2 Multivariate logistic regression analysis of risk factors for  
PD-MCI.

Variables OR S. E. Z 95%CI P-value

LEDD 1.01 0.005 2.81 1.00, 1.03 0.005

PDQ_39 1.06 0.032 1.90 1.00, 1.13 0.058

Cr 1.34 0.104 2.81 1.10, 1.66 0.005

Cys C 1.36 0.197 1.55 0.93, 2.01 0.121

ALPS Index 0.68 0.253 −1.50 0.41, 1.11 0.133

OR, odds ratio; S. E., Standard Error; Z, Regression coefficient; CI, confidence interval. 
LEDD, Levodopa Equivalent Daily Dose; PDQ-39, Parkinson’s disease Quality of Life 
Questionnaire; Cr, Creatinine; Cys C, Cystatin C; ALPS Index, diffusion tensor image 
analysis along the perivascular space index. P-values < 0.05 were considered statistically 
significant.
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column-line graph model demonstrated excellent predictive efficacy, 
with an AUC of 0.864 (95%CI 0.807–0.922). Internal validation was 
conducted using the bootstrap method with 1,000 iterations, and the 
corrected C-index was maintained at 0.864. This suggests that the 
model is stable and that the risk of overfitting is controllable. The 
calibration curve analysis demonstrated that the predicted 

probabilities exhibited a high degree of consistency with the actual 
observations, and the decision curve analysis further confirmed that 
the model had the capacity to provide significant net clinical benefits 
within the risk probability threshold of 5–75%. It is important to note 
that in the high-risk prediction interval with a risk threshold greater 
than 0.75, the MoCA scores of the CI group in this study were not 
centrally distributed in the threshold interval, suggesting severe 

FIGURE 3

Presents the constructed nomogram to visually display the individual probabilities for the diagnosis of PD-MCI. LEDD, Levodopa Equivalent Daily Dose; 
PDQ-39, Parkinson’s disease Quality of Life Questionnaire; Cr, Creatinine; Cys C, Cystatin C; ALPS Index, diffusion tensor image analysis along the 
perivascular space index.

FIGURE 4

Receiver operating characteristic (ROC) curve of the nomogram 
model for predicting PD-MCI risk. AUC, area under the curve.

FIGURE 5

Calibration curve of the PD-MCI risk prediction model.
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cognitive impairment. Furthermore, the limited sample size of high-
risk subgroups, such as PDD, may increase the variability of the 
prediction estimates and thus reduce the decision stability in this 
threshold interval.

The pharmacological treatment of PD frequently necessitates 
dopaminergic drug combination regimens, and dose escalation due 
to the fluctuating nature of symptoms during disease progression is 
susceptible to the triggering of cumulative effects. LEDD, as a 
standardized indicator of dopaminergic drug load, has been 
extensively utilized to evaluate clinical progression in PD (23). A 
meta-analysis demonstrated that factors such as increased LEDD 
and diminished quality of life were associated with PD-MCI (24). 
However, none of the studies that utilized MoCA to screen for risk 
factors for PD-MCI corroborated the independent predictive value 
of LEDD for the total MoCA score (25). This finding is consistent 
with the study referenced in this article, which failed to demonstrate 
significant predictive efficacy in a multifactorial model despite the 
possible correlation of LEDD with PD-MCI. This suggests that 
LEDD may be weakened due to clinical confounding factors such 
as movement complications or limitations in statistical power. The 
PDQ-39, a validated self-report scale, quantifies patients’ health-
related quality of life through 39 entries, with higher total scores 
suggesting more severe quality of life impairment. Cross-sectional 
analyses revealed that the PDQ-39 total score was significantly 
higher in the PD-MCI group compared to the PD-NC group, 
suggesting that attention and language impairments are associated 
with a poorer quality of life (26). Consequently, in clinical practice, 
there is a greater imperative to adopt individualized drug delivery 
strategies, with a preferential selection of dopaminergic drugs that 
exhibit superior cognitive safety, and a regular evaluation of the 
dynamic relationship between the cumulative dose of drugs and 
cognitive function, in accordance with the guidelines established by 
the International Movement Disorders Association. Concurrently, 
life interventions should be implemented for patients with severely 
impaired motor function, in conjunction with physical therapy and 
the utilization of assistive devices to enhance the capacity to 
perform daily activities. It is to be posited that, in the final analysis, 

the cognitive decline may be  delayed by a variety of 
intervention modalities.

In recent years, the “kidney-brain axis” theory, proposed by 
interdisciplinary research, has provided a new perspective on the 
pathogenesis of PD. Evidence suggests that renal α-syn oligomers can 
migrate through the circulation, cross the blood–brain barrier, and then 
induce the formation of Lewy bodies in the central nervous system 
through a prion-like transfer mechanism (27). A large prospective cohort 
study from Biobank UK confirmed that an impaired eGFR, estimated 
based on Cr and Cys C, is strongly associated with a significantly 
increased risk of developing PD (28). It has also been found in PD-MCI 
cohorts that decreased eGFR and decreased uric acid/creatinine ratio 
predict progressive cognitive decline in PD patients (29). These findings 
support the view that renal dysfunction is a key risk factor for PD and 
suggest that disruption of renal metabolic homeostasis may be an early 
driver of neurodegenerative disease. Cr is the traditional indicator of 
kidney function, reflecting muscle mass and renal excretion capacity, but 
it is susceptible to confounding by age, sex, diet and activity, and may 
mask the effects of early kidney disease on PD (30). In contrast, Cys C, 
which is produced stably and undisturbed by non-renal factors, is more 
sensitive to changes in GFR and is the biomarker of choice for assessing 
renal dysfunction (31). Indeed, studies have attempted to assess the 
relationship between renal function and PD using composite indicators 
such as uric acid/creatinine ratio (32) and microalbumin/creatinine ratio 
(33). However, while such composite metrics increase the sensitivity and 
dimensionality of the assessment to some extent, they may also obscure 
the direct relationship between a single renal function parameter and the 
pathomechanism of PD. There is only one large case–control study that 
included 3,797 patients with PD who were followed for 7 years. The 
results of the study showed that patients’ serum creatinine levels did not 
show a significant downward trend in the time window from 2 years 
before to 2 years after PD diagnosis, while only CRP levels showed some 
correlation with PD progression (34). This suggests that although 
combined indicators may reveal certain disease associations, the role of 
individual renal function indicators in the early detection and prediction 
of progression of PD needs to be clarified in further studies. Serum Cys 
C levels have been shown to be significantly elevated in patients with 
PD-MCI compared with those with PD-NC, and this indicator correlates 
with neurofilament light chain protein, a key biomarker of neuronal 
axonal damage (35). A cross-sectional study in a Chinese population 
further confirmed that elevated serum Cys C levels were not only 
associated with PD disease progression but also showed a more 
significant trend of elevation in the PD-MCI subgroup (14). It is worth 
noting that there is a lack of research evidence directly investigating the 
association between PD-MCI and Cr levels. Based on this, Cr and Cys 
C, two biomarkers that can accurately reflect renal function, were 
included in the prediction model construction in this study, and one-way 
regression analysis showed that both were potential risk factors for 
PD-MCI. However, after multifactorial correction, only Cr retained an 
independent predictive value, which may be  related to the 
pathophysiological interactions mediated by the “kidney-brain axis” and 
is consistent with previous studies on the influence of renal metabolites 
on neurodegenerative processes.

Under the framework of the “kidney-brain axis,” the association 
between Cr and the risk of PD-MCI deserves in-depth study. When renal 
function is impaired, the neurotoxicity caused by the accumulation of 
uremic toxins may trigger PD-MCI. Moreover, impaired renal function 
may also interfere with the lymphatic drainage throughout the body and 
the central nervous system. Dysfunction of the lymphatic system will 

FIGURE 6

Decision curve analysis of the PD-MCI risk prediction model.
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reduce the ability to clear metabolic waste in the brain, leading to the 
accumulation of harmful substances and exacerbating neural damage. 
DTI-ALPS is a new method proposed in recent years to assess glymphatic 
function in patients. Available research suggests a possible link between 
glymphatic dysfunction and CI in patients with PD (36). Studies have 
been conducted to differentiate between different levels of CI using the 
Summary Mental State Examination or MoCA scores, both of which 
confirmed that glymphatic dysfunction was significantly correlated with 
cognitive scores, suggesting that the function of the glymphatic system 
may influence cognitive levels (37, 38). Buccellato et al. (4) suggest that 
the glymphatic system is responsible for removing harmful substances 
such as α-syn, and that abnormalities in its function may directly 
contribute to the progression of PD. Current experiments in both PD 
patients and animals have shown significant changes in the glymphatic 
system of the brain, in particular reduced expression of aquaporin-4, a 
change that may affect the efficiency of waste removal in the brain. 
Imaging analysis also revealed that this association may involve multiple 
mechanisms of action in the inferior frontal gyrus, the orbital white 
matter structures of the anterior cingulate gyrus and the area of the blue 
patch (37, 39). Taken together, this evidence suggests that there are 
multiple lines of evidence supporting remodeling of the intracerebral 
glymphatic system in patients with PD-MCI. Chen et al. (40) refined the 
stratification of the PD group (NC/MCI/dementia) and found that the 
ALPS index was significantly lower in the MCI group compared with the 
NC group, and the index was negatively correlated with the degree of 
cognitive decline on a gradient, suggesting that glymphatic dysfunction 
may be associated with cognitive decline in a progressive manner. These 
lines of evidence suggest that the ALPS index not only serves as a novel 
imaging marker of PD-associated cognitive impairment but also 
influences cognitive trajectory by regulating the efficiency of metabolite 
clearance in the brain, which is both methodologically and 
mechanistically consistent with the core findings of the present study. Of 
course, there are conflicting findings in existing studies on the 
lateralization characteristics of the cerebral glymphatic system, with 
some studies finding an abnormal L-ALPS index in PD patients (41) and 
others examining the correlation between glymphatic function and 
motor symptoms suggesting a lower R-ALPS index than in the left 
hemisphere (42). Notably, the present study found a significant decrease 
in left hemisphere ALPS index in patients with right-handed PD-MCI, 
a spatial distribution characteristic that is consistent with the findings of 
a longitudinal study showing that baseline left-sided ALPS index could 
serve as an independent predictor of conversion of PD-MCI to dementia, 
as shown by the data of Pang et al. (43).

Although the L-ALPS index was not included in the multivariate 
model to avoid multicollinearity confounding in this study, univariate 
regression analysis showed that L-ALPS had a stronger predictive 
validity for PD-MCI than R-ALPS. This left hemisphere dominance 
effect may be related to the right-handedness of the enrolled patients, 
and its spatial distribution characteristics are anatomically consistent 
with the pattern of lateralization in PD neurodegenerative lesions (44).

It is well known that PD-MCI is an important transition stage in 
the progression from PD to PDD, and early identification of risk factors 
has a dual clinical value in slowing disease progression and improving 
patient prognosis. In this study, we constructed a multidimensional 
scoring model by integrating conventional clinical indicators and 
found that increased LEDD, increased PDQ-39 scores, increased Cr 
and Cys C levels, and decreased ALPS index were all risk factors for 
PD-MCI. Multifactorial logistic regression analysis confirmed that 

LEDD and Cr could be used as independent predictors of PD-MCI 
progression. The novelty of this study is that it is the first to combine 
the pathological mechanism of the kidney-brain axis with the theory 
of cerebral glymphatic system dysfunction, providing a new perspective 
on the cross-system interactions in the analysis of cognitive decline in 
PD. However, this study has several limitations. The proportion of 
excluded cases due to loss to follow-up or inability to cooperate with 
MR examination was relatively high (14.6%), which may lead to 
selection bias in the selection of included cases. Due to the single-
center design and limited sample size, the statistical power of the 
correction for confounding may be affected. In addition, patients with 
cognitive impairment with MoCA scores below 18 were under-
represented, resulting in reduced clinical applicability of the DCA 
curve at risk thresholds above 0.75. Future research should incorporate 
larger sample sizes derived from multicenter prospective cohorts. The 
application of machine learning algorithms could facilitate the 
integration of multimodal biomarkers and the development of dynamic 
prediction models, thereby improving the management of different 
cognitive impairment subgroups in PD. Additionally, prospective 
designs with optimized patient retention strategies, such as rapid MR 
sequences and sedation when necessary, should be implemented. The 
inclusion of sensitivity analyses would also be crucial to quantify and 
mitigate the impact of potential biases, ultimately enhancing the 
robustness and generalizability of the study findings.

In conclusion, we found that LEDD and Cr were independent 
predictors of PD-MCI. Meanwhile, we constructed an intuitive clinical 
column-line graph prediction model that integrated clinical features 
such as LEDD, PDQ-39 score, UPDRS I score, Cr, Cys C and ALPS 
index, blood biomarkers and neuroimaging indices to assess the risk 
of comorbid MCI in PD patients. The model showed good diagnostic 
efficacy in identifying PD-MCI.
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