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Purpose: We aimed to assess whether a composite SVD score derived from 
MRI features improves stroke outcome prediction when integrated with clinical 
factors.

Materials and methods: A 2019–2022 retrospective analysis included patients 
who had MRI prior to stroke admission. A semi-automated approach evaluated 
SVD MRI markers (white matter hyperintensities (WMH), lacunar infarcts, 
perivascular spaces (PVS), and cerebral microbleeds (CMBs)) using continuous 
and categorical measures to create a composite SVD score. Multivariate 
regression analyses compared performance across three models: (1) SVD score, 
(2) clinical factors, and (3) SVD score + clinical factors for outcomes, including 
stroke etiology, ICU and hospital stay, NIH Stroke Scale (NIHSS), 90 day modified 
Rankin Scale (mRS), functional independence (mRS < 2), and stroke recurrence.

Results: Forty-eight patients were included in this study. The combined 
SVD + clinical factors model outperformed other models in predicting functional 
independence with area under the curve (AUC) 0.58 (95% CI 0.41–0.75) and 
stroke etiologies of large artery atherosclerosis AUC 0.78 (0.62–0.91), small 
vessel occlusion 0.65 (0.41–0.88), and other determined etiology 0.74 (0.37–
0.96). The combined model also better predicted the following outcomes with 
lower mean absolute error (MAE): NIHSS MAE 5.16 (3.80–6.69), ICU days 1.26 
(0.86–1.66), total length of stay 2.62 (2.08–3.17), and 90 day mRS 1.74 (1.39–
2.12).

Conclusion: Combining an SVD score with clinical variables improved prediction 
of stroke outcomes when compared to either predictor alone, although the 
added value is modest and requires further validation. Nonetheless, integrating 
an SVD score into clinical practice may guide management in acute stroke 
settings and support risk stratification and prognostication.
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1 Introduction

Cerebral small vessel disease (SVD) which affects small blood 
vessels in the brain contributes to increased risk of stroke and 
dementia (1). SVD can be  evaluated noninvasively on 
MRI. Characteristic neuroimaging markers of SVD include white 
matter hyperintensities (WMH), lacunar infarcts, perivascular spaces 
(PVS), and cerebral microbleeds (CMBs) visible on fluid-attenuated 
inversion recovery (FLAIR), T2-weighted, and susceptibility-weighted 
imaging (SWI) MRI sequences, respectively (2).

These neuroimaging markers have been found to correlate to 
stroke risk and outcome. WMHs have been linked to increased 
stroke incidence and increased risk of recurrent stroke based on 
WMH severity (3–5). Lacunar infarcts, smaller strokes that affect 
deep gray and white matter structures, are associated with an 
increased risk of recurrent stroke, cognitive decline, and dementia 
(6). Patients with an increased burden of small-size PVS have been 
shown to have increased vascular events such as myocardial 
infarction, stroke, and vascular-related death (7). Additionally, 
PVS located in the basal ganglia have been correlated to the other 
SVD components and to increased future ischemic stroke risk in 
patients with prior ischemic stroke or transient ischemic attack 
(TIA) (8). A higher burden of CMBs has also been linked to 
increased stroke risk in a prospective study of the general 
population (9).

Prior studies have evaluated the overall SVD burden by calculating 
an SVD score based on a combination of these imaging markers, 
showing promise in predicting stroke outcomes (10–12). However, 
current methods present several important limitations. First, the 
categorical nature of the score reduces granularity, potentially 
obscuring clinically meaningful differences in lesion burden. For 
example, researchers have found that the number of CMBs on a 
continuous scale and the presence of lacunes as a binary output were 
independent predictors of functional stroke outcome measured by the 
modified Rankin scale (mRS), supporting the idea that clinical SVD 
features may be better assessed using a hybrid approach of continuous 
and categorical metrics (13). Second, although SVD scores have 
shown a significant association with stroke, cognitive decline, stroke-
related mortality, and recurrent stroke, the score assumes equal 
weighting of each marker, although different features may have 
distinct prognostic relevance (11, 14). Third, inter-rater variability 
may affect reliability, particularly when qualitative thresholds are used. 
Lastly, despite the evidence supporting SVD score as a valid 
assessment of stroke-related outcomes, manual calculation of the 
components of the SVD score can be  time-consuming and error-
prone, limiting their clinical utility (15, 16). Recent advances in 
artificial intelligence (AI) and machine learning (ML) have accelerated 
efforts to automate neuroimaging analysis; however, the utility of 
automated tools to evaluate SVD burden remains underexplored. 
Thus, improvements are needed to calculate the SVD score in a timely 
and accurate fashion.

To address these limitations, we  developed a semi-automated 
method to detect all four components of the SVD score and evaluated 
SVD imaging markers using both continuous and categorical 
assessments in a composite SVD score. The purpose of our study was 
to determine whether a composite SVD score could provide additional 
benefit in comparison to clinical risk factors to predict stroke 
etiologies and outcomes in stroke patients. Specifically, we compared 

three multivariate models: (1) SVD score alone, (2) clinical factors 
alone, and (3) combined SVD score + clinical factors.

2 Materials and methods

2.1 Patient selection

This study was a retrospective analysis of patients admitted 
between 2019 and 2022 for stroke to the University of California, 
Irvine (UCI), a comprehensive stroke center. The study selected only 
patients who had received a brain MRI prior to their stroke admission. 
Patient demographics (age, sex, race, ethnicity), stroke risk factors 
(hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation, 
heart failure, obesity, and smoking history), stroke etiologies (large 
artery atherosclerosis, cardioembolism, small vessel occlusion, stroke 
of other determined etiology, and stroke of undetermined etiology), 
and clinical outcomes (total hospital length of stay, total ICU days, 
NIHSS on stroke admission, 90 day mRS, 90 day functional 
independence [binary mRS], and stroke recurrence were recorded). 
90 day functional independence was a binary output determined by 
an mRS cutoff of 2, where mRS < 2 was considered functionally 
independent. Stroke recurrence was determined by stroke readmission 
during the study period. The study was conducted in accordance with 
local Institutional Review Board protocols and informed consent 
was waived.

2.2 MRI acquisition and semi-automated 
processing

All MRIs were obtained on either a 1.5 T or 3 T scanner (Siemens 
Avanto 1.5 T, Siemens Trio 3 T, Siemens Vida 3 T, or Philips Achieva 
3 T). Only MRIs with axial FLAIR (3–7 mm slice thickness), axial T2 
(3–7 mm), and axial SWI (2 mm) sequences were included. If 
necessary, the MRI sequences were pre-processed by padding into a 
square shape before being uploaded into a dedicated in-house viewer 
for analysis.

A simple threshold-based semi-automated segmentation strategy 
was implemented for SVD marker annotation. First, the user manually 
selected a representative area within the target region on a single 
image slice. Subsequently, an intensity threshold was set based on the 
voxel statistics within the user-defined region, calculated as either a 
lower intensity threshold (80% of mean within selected region) for 
hyperintense targets (perivascular spaces, lacunes) or an upper 
intensity threshold (120% of mean within selected region) for 
hypointense targets (microbleeds). The user then manually selected 
all target regions on a slice-by-slice basis, with the option to repeat the 
process to redefine thresholds for different lesions as required.

2.3 SVD analysis

MRIs were screened for SVD markers in accordance with criteria 
set forth by the Standards for Reporting Vascular Changes on 
Neuroimaging (STRIVE) (12). SVD analysis using both continuous 
and categorical assessments was performed by two readers, 1 board-
certified neuroradiologist with 8 years experience and either of 2 
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medical students (Figure 1). The neuroradiologist provided consensus 
reading for all cases reviewed by the other readers. SVD categorical 
assessment was performed based on a prior established SVD 
score (10).

WMH in the deep and periventricular supratentorial white matter 
on FLAIR sequence were segmented for total volume (mm (3)) in 
continuous variable evaluation and for Fazekas grading (0–3) in 
categorical evaluation (17). Lacunes were defined as round or ovoid, 
fluid-filled, CSF signal intensity foci within a diameter of 3–15 mm 
and located in the deep grey or white matter structures or brainstem. 
Lacunes were segmented on T2 for total number of lesions. PVS were 
classified as small fluid-filled CSF signal intensity spaces <3 mm 
typically coursing along perforating vessels. PVS were segmented at 
the level of the basal ganglia on T2 choosing the slice with the most 
number of PVS on one side. The total number of lesions based on this 
definition and grading based on a validated semi-quantitative scale 
were recorded for continuous and categorical assessment, respectively 
(10, 18). CMBs were defined as small (approximately 2–5 mm), low 
signal intensity foci on SWI. Total number of CMBs was recorded.

For continuous assessment, the total volume was analyzed for 
WMH, and total number of lesions was analyzed for lacunes, PVS, and 
CMBs. For the categorical evaluation, an SVD summation score from 
0 to 4 was evaluated based on the following criteria: (1) confluent 
WMH were given 1 point (deep WMH Fazekas grade 2–3 or 
periventricular WMH Fazekas grade 3), (2) presence of lacunes was 
given 1 point, (3) PVS grades 2–4 (at least 11 PVS) was given 1 point, 
and (3) presence of CMBs was given 1 point. A composite SVD score 

was created which included continuous and categorical assessments 
for each imaging marker.

2.4 Statistical analysis

The following independent variables were evaluated: both 
continuous and categorical assessment of WMH, lacunes, PVS, and 
CMBs, as well as the categorical SVD score. Interrater agreement was 
assessed for categorical SVD score evaluation using Cohen’s kappa. 
Clinical variables including patient demographics and stroke risk 
factors were also evaluated as independent variables. Dependent 
stroke outcome variables included stroke etiologies, total hospital 
length of stay, total ICU days, NIHSS on stroke admission, 90 day 
mRS, 90 day functional independence, and stroke recurrence. 
Statistical significance was set at p < 0.05.

2.4.1 Univariate analysis
For univariate analysis, t-tests, Pearson correlation, and 

Chi-square were performed where appropriate for continuous and 
categorical assessment. To adjust for multiple comparisons, we also 
implemented a false discovery rate (FDR) control procedure using the 
Benjamini-Hochberg method with adjusted p values reported.

2.4.2 Multivariate models
Multivariate models were created to predict dependent variable 

stroke outcomes based on independent variables including continuous 
and categorical SVD variables as well as clinical factors. Three different 
combinations of multivariate model inputs were evaluated: (1) 
composite SVD only, (2) clinical only, and (3) combined SVD + clinical 
factors (full feature set). Separate models were trained for each target 
dependent variable stroke outcome. Binary variable outcomes were 
modeled with multivariate logistic regression, and continuous variable 
outcomes were modeled with multivariate linear regression.

Prior to multivariate modeling, the top features for each 
dependent variable were ranked using univariate statistics (unpaired 
t-test, Pearson correlation, Chi-square test). A recursive feature 
selection technique was used to identify the top N variables needed 
for optimal performance. A leave-one-out cross-validation technique 
was implemented for all experiments. All reported results reflect 
validation set statistics. Binary outcomes were assessed using area 
under the receiver operating characteristic curve (AUC) as well as 
overall accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) based on an optimal 
threshold derived from the Youden index. Continuous outcomes were 
assessed using mean absolute error (MAE). A Wilcoxon signed rank 
test was used to evaluate the statistical significance of model 
differences. 95% confidence intervals were determined via 
bootstrapping with 1,000 repetitions.

3 Results

A total of 48 stroke patients who had a baseline MRI were 
included in our study. Patient characteristics and clinical outcomes are 
summarized in Table 1, and SVD imaging markers are described in 
Table 2. There was no missing data for our cohort. Hypertension was 
excluded from analysis since almost every patient (47/48) had this risk 

FIGURE 1

Semi-automated segmentation of SVD markers on MRI, including 
white matter hyperintensities seen on FLAIR (A, purple), lacunar 
infarcts on T2 (B, yellow), perivascular spaces on T2 (C, green), and 
cerebral microbleeds on SWI (D, blue).

https://doi.org/10.3389/fneur.2025.1628787
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Nguyen et al. 10.3389/fneur.2025.1628787

Frontiers in Neurology 04 frontiersin.org

factor. Mean time interval between MRI acquisition and stroke 
admission was 614.38 days. Stroke recurrence occurred in 9 patients 
and averaged 218.67 days in the study period. SVD semi-automated 
segmentation time averaged 5 min. The agreement between readers 
for categorical SVD score evaluation was high (Cohen’s kappa = 0.85).

3.1 Univariate analysis

The presence of lacunes was significantly correlated with a 
worse outcome measured by the binary mRS (p < 0.05, X = +5.215). 

Ethnicity (p < 0.05, X = +5.512), atrial fibrillation (p < 0.05, 
X = +8.926), categorical WMH (p < 0.05, X = +7.922) and WMH 
volume (p < 0.05, t = +2.167) correlated with the stroke etiology of 
large artery atherosclerosis. Atrial fibrillation (p < 0.05, 
X = +14.236) and race (p < 0.05, t = +2.093) correlated with 
cardioembolic stroke etiology. Both categorical WMH (p < 0.05, 
X = +5.538) and WMH volume (p < 0.05, t = −3.443) correlated 
with small vessel occlusion, as did the categorical SVD score 
(p < 0.05, t = −2.333). Smoking history correlated with stroke of 
other determined etiology (p < 0.05, X = +5.073). Heart failure was 
correlated with recurrent stroke (p < 0.05, X = +6.927). Diabetes 
mellitus (p < 0.05, t = +2.068), hyperlipidemia (p < 0.05, 
t = −2.518), and increased age (p < 0.05, r = +0.408) correlated with 
a higher NIHSS score. The presence of diabetes mellitus was 
associated with a longer ICU stay (p < 0.05, t = −2.786), whereas the 
presence of atrial fibrillation and number of CMBs was associated 
with a longer total length of stay (p = 0.05, t = −2.009 and p < 0.05, 
r = +0.362, respectively). After controlling for multiple comparisons 
using FDR correction, the following correlations with stroke 
etiologies remained statistically significant (p < 0.05): atrial 
fibrillation with cardioembolism, atrial fibrillation and categorical 
WMH with large artery atherosclerosis, and WMH volume with 
small vessel occlusion.

3.2 Multivariate analysis

Three models were evaluated in predicting stroke etiologies and 
outcomes: (1) SVD score, (2) clinical factors, and (3) combined SVD 
score + clinical factors. The models differed statistically significantly 
from each other across all outcome measures, based on pairwise 
comparisons using the Wilcoxon signed-rank test. Table  3 and 
Figure  2 compare overall model performance, and 
Supplemental Table 1 includes all other performance metrics.

3.2.1 SVD score
The SVD score predicted the binary mRS with AUC 0.56 (95% CI: 

0.39–0.74). The SVD score demonstrated a range of performance for 
predicting stroke etiologies with AUC ranges from 0.29 (0.07–0.49) 
for stroke of undetermined etiology to 0.61 (0.38–0.84) for small 
vessel occlusion. There was poor performance for recurrent stroke 
prediction with AUC 0.18 (0.07–0.33). For continuous outcomes, the 
SVD score predicted NIHSS with MAE 6.68 (5.23–8.12), ICU days 
MAE 1.46 (0.85–2.20), total length of stay MAE 2.74 (2.14–3.32), and 
3-month mRS MAE 1.81 (1.48–2.15).

3.2.2 Clinical factors
The clinical factors model predicted binary mRS with AUC 0.52 

(0.35–0.69). Stroke etiology AUC ranged from AUC 0.48 for small 
vessel occlusion (95% CI: 0.28–0.66) and stroke of other determined 
etiology (95% CI: 0–0.81) to AUC 0.77 for cardioembolism (95% CI: 
0.64–0.90) and stroke of undetermined etiology (95% CI: 0.64–0.88). 
Recurrent stroke AUC was 0.73 (0.57–0.89). Mean absolute error for 
NIHSS was 5.52 (4.13–7.03), ICU days 1.29 (0.74–1.91), total length 
of stay 2.74 (2.21–3.27), and 3-month mRS 1.82 (1.52–2.13).

TABLE 1 Baseline demographics, stroke etiologies, and clinical outcomes.

Clinical variables Patients, N = 48

Baseline demographics

Age, years mean (SD) 71.2 (13.5)

Sex, Male% 46.0

Hypertension, % 98.0

Diabetes Mellitus, % 62.5

Hyperlipidemia, % 62.5

Atrial Fibrillation, % 35.4

Stroke etiology

Large Artery atherosclerosis, % 33.33

Cardioembolism, % 33.33

Small vessel occlusion, % 18.75

Stroke of other determined etiology, % 6.25

Stroke of undetermined etiology, % 8.33

Clinical outcomes

Total Length of stay, days mean (SD) 4.0 (3.3)

Total ICU stay, days mean (SD) 3.3 (1.6)

NIHSS on stroke admission, median 

(IQR)

6 (3–13.3)

90 day mRS, median (IQR) 2 (1–5)

90 day functional independence, % 29.2

Stroke recurrence, n 9

TABLE 2 Continuous and categorical SVD imaging markers.

SVD imaging variables Patients, N = 48

Continuous SVD assessment

WMH volume in mm3, mean (SD) 9308.6 (11105.0)

Lacunes, n mean (SD) 2.9 (4.3)

PVS, n mean (SD) 10.1 (8.3)

CMBs, n mean (SD) 5.5 (14.3)

Categorical SVD assessment

WMH Fazekas grade 2–3 (deep) or grade 

3 (periventricular), %

33.3

Presence of lacunes, % 70.8

PVS (at least 11), % 29.2

Presence of CMBs, % 43.8
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3.2.3 SVD score + clinical factors
The combined model predicted binarized mRS with AUC 0.58 

(0.41–0.75). Stroke etiology prediction improved for large artery 
atherosclerosis 0.78 (0.62–0.91), small vessel occlusion 0.65 (0.41–
0.88), and stroke of other determined etiology 0.74 (0.37–0.96). The 
other categorical outcomes, including cardioembolism and stroke of 
undetermined etiology, as well as recurrent stroke, did not improve 
with the combined model over the clinical model.

The combined model also lowered MAE for continuous outcomes: 
NIHSS MAE 5.16 (3.80–6.69), ICU days 1.26 (0.86–1.66), total length 
of stay 2.62 (2.08–3.17), and 3-month mRS 1.74 (1.39–2.12).

4 Discussion

The purpose of this study was to develop a semi-automated 
method of calculating an SVD score and evaluate its performance in 
predicting stroke outcomes. The univariate analysis found that the 
SVD score significantly correlated with small vessel occlusion etiology 
of stroke. Individual components of the SVD score also had significant 
associations including lacunes correlating with worse binary mRS and 
both categorical and continuous WMH correlating with large artery 
atherosclerosis etiology of stroke. WMH presence also positively 
correlated with small vessel occlusion, but when analyzing the volume 
of WMH, there was a negative correlation. Number of microbleed 
lesions correlated with length of total hospital stay. In multivariate 
analysis, the combined SVD + clinical factors model outperformed 
the other models in predicting functional independence and stroke 
etiologies of large artery atherosclerosis, small vessel occlusion, and 
stroke of other determined etiology. The combined model also 
demonstrated the lowest MAE across all continuous outcomes, 
including NIHSS, ICU days, total length of stay, and 90 day mRS.

Across nearly all outcomes, the combined SVD + clinical factors 
model outperformed the other two models, underscoring the added 
predictive value of a multimodal approach to modeling stroke 

outcomes and etiologies. Our results show that the SVD score provides 
some added value in terms of predicting stroke outcomes when 
combined with clinical factors. This finding is in agreement with 
previous literature which has demonstrated that higher SVD scores 
are associated with increased risk of recurrent ischemic stroke and 
worse post-stroke cognitive and functional outcomes (14, 19). Similar 
to prior studies, our model incorporated SVD severity in addition to 
the traditional SVD score to provide a more comprehensive 
assessment of SVD imaging markers in predicting stroke outcomes 
(13, 14). Small vessel occlusion discrimination was moderate for the 
combined and SVD alone models, but poor for the clinical factors 
model, highlighting the relevance of SVD imaging markers in 
identifying this stroke etiology. The combined model had the lowest 
MAE for predicting ICU days and total LOS, suggesting the utility of 
this model for resource allocation and risk stratification.

However, these results should be interpreted with caution given 
marginal improvement for some variables. For binary MRS, all models 
demonstrated fair to poor performance in predicting functional 
independence, suggesting that additional inputs are needed to improve 
prognostication. Cardioembolism and stroke of undetermined etiology 
were predicted equally well by the combined model and the clinical 
factors model, but not the SVD alone model. Thus, imaging biomarkers 
alone are likely not sufficient for classifying these stroke subtypes. The 
MAE for NIHSS was high across all models, suggesting that the three 
models may not be able to accurately estimate stroke severity and 
highlight the need for improved model calibration or incorporation of 
additional clinical inputs when attempting to predict NIHSS. Similarly, 
the models had moderate errors for 90 day mRS prediction and would 
need to be improved for individual prognostication.

Some of the marginal improvement could possibly be explained 
by the existing overlap of SVD score components with known vascular 
risk factors (10). Although prior literature has found that an SVD 
score greater than or equal to two is by itself associated with increased 
risk for recurrent stroke after adjustment for other risk factors, 
measurement of the SVD score has not been optimized, with different 
studies incorporating different metrics (13, 14, 20).

TABLE 3 Comparison of SVD score, clinical factors, and combined SVD + clinical factors models to predict stroke outcomes.

Multivariate analysis SVD Clinical SVD + Clinical

Clinical outcomes

Binary mRS 0.56 (0.39–0.74) 0.52 (0.35–0.69) 0.58 (0.41–0.75)

NIHSS (MAE) 6.68 (5.23–8.12) 5.52 (4.13–7.03) 5.16 (3.80–6.69)

ICU days (MAE) 1.46 (0.85–2.20) 1.29 (0.74–1.91) 1.26 (0.86–1.66)

Total length of stay (MAE) 2.74 (2.14–3.32) 2.74 (2.21–3.27) 2.62 (2.08–3.17)

90 day mRS (MAE) 1.81 (1.48–2.15) 1.82 (1.52–2.13) 1.74 (1.39–2.12)

Stroke etiology

Large artery atherosclerosis 0.44 (0.28–0.61) 0.67 (0.51–0.83) 0.78 (0.62–0.91)

Cardioembolism 0.47 (0.29–0.66) 0.77 (0.64–0.90) 0.77 (0.64–0.90)

Small vessel occlusion 0.61 (0.38–0.84) 0.48 (0.28–0.66) 0.65 (0.41–0.88)

Stroke of other determined etiology 0.57 (0.42–0.72) 0.48 (0–0.81) 0.74 (0.37–0.96)

Stroke of undetermined etiology 0.29 (0.07–0.49) 0.77 (0.64–0.88) 0.77 (0.64–0.88)

Recurrent stroke 0.18 (0.07–0.33) 0.73 (0.57–0.89) 0.73 (0.57–0.89)

Area under the ROC curve (AUC) is reported for categorical outcomes and mean absolute error (MAE) for continuous outcomes, with 95% confidence intervals.
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While this initial SVD analysis shows promise in aiding stroke 
prognostication, there are several limitations to this study. The modest 
sample size and retrospective design at a single institution limits 
generalizability. Nearly all patients in our cohort had hypertension 
(47/48) which prevented the incorporation of this important vascular 
risk factor into the statistical models. This exclusion limits the model’s 
capacity to evaluate interactions between hypertension and SVD 
imaging burden. For imaging analysis, we  used different MRI 
vendors, field strengths, and imaging parameters which could 
contribute to variability in imaging interpretation. In addition, bias 
field correction was not done to account for field inhomogeneities of 
the various scanners, which may limit interpretation of subtle 
features. Evaluation for stroke recurrence was only assessed in the 
time frame of the study, and no long-term longitudinal follow-up was 
performed. Also notably, SVD markers like WMH and CMBs are 
highly prevalent in older adults and may be influenced by non-stroke 
conditions such as chronic hypertension, cerebral amyloid angiopathy, 
and age-related microangiopathy (21). These overlapping pathologies 
could bias associations with stroke outcomes, particularly in older 
populations where distinguishing causal from incidental findings is 
challenging. This may explain the apparent contradiction we found 
in categorical WMH being positively associated with small vessel 
occlusion while WMH volume was negatively correlated, possibly 
reflecting threshold effects in categorical classification versus the 
broader vascular burden captured by volumetric quantification. Such 
discrepancies underscore the importance of measurement method 
and the heterogeneity of underlying cerebrovascular pathology. 
Future models may benefit from incorporating the location of lesions 
to help disambiguate these contributions, as it has been shown that 
hypertensive arteriopathy and cerebral amyloid angiopathy may result 

in different WMH distribution patterns, but this will require further 
exploration. (21) Despite these shortcomings, our results corroborate 
findings in previous studies that use larger sample sizes, and the 
combined SVD and clinical factors model consistently had better 
predictive value for nearly all outcomes (11, 14, 19).

Future studies could utilize a larger sample size to assess the 
generalizability of our model. Optimization of the model using various 
thresholds could also be tested. While our combined SVD + clinical 
factors model yielded statistically significant improvements in 
predicting nearly all outcomes, the clinical relevance of this 
improvement is unknown. Real-world impact may depend on whether 
these improvements meaningfully influence triage, therapy decisions, 
or patient counseling, and future validation in larger prospective 
cohorts is needed.

This tool may have value in specific clinical workflows. For 
instance, early identification of high SVD burden could aid in triage 
decisions in acute stroke units, helping clinicians predict which 
patients are more likely to experience poor outcomes despite 
reperfusion therapy. Additionally, SVD-informed stratification could 
guide secondary prevention strategies, identifying patients at elevated 
risk for recurrence who may benefit from closer monitoring, 
aggressive risk factor modification, or targeted rehabilitation planning. 
Integration into electronic health record systems or stroke decision 
support tools could further streamline its use in real time.

Although this study used a semi-automated method to calculate 
an SVD score, we envision a fully automated deep learning AI method 
in the future which integrates automated segmentation of SVD 
features and a predictive model capable of incorporating imaging 
features and clinical data into outcome prediction. Benchmarking 
against existing open-source or commercial solutions for SVD feature 

FIGURE 2

Bar graphs comparing model performance for prediction of stroke outcomes, including: (A) binary MRS, (B) stroke recurrence, (C) stroke etiologies and 
(D) NIHSS, ICU days, total LOS, and 90 day mRS.
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segmentation could provide critical evaluation for relative 
performance and improvements to generalizability.

In sum, we evaluated a semi-automated SVD score to predict 
stroke outcomes, with the incorporation of SVD score to clinical 
factors allowing for better predictive value than either alone.
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