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A genetic predisposition to PML is now substantially supported by case reports 
of patients molecularly diagnosed with an inborn error of immunity (IEI) and 
progressive multifocal leukoencephalopathy (PML). Over the past 10 years, 4 IEI 
genes linked to PML has now grown to 26 as of 2025. Of these 26 genes believed 
to be causal of an IEI and PML, 24 (92%) are also linked with hemophagocytic 
lymphohistiocytosis/macrophage activation syndrome (HLH/MAS)—a severe 
hyper-inflammation syndrome associated with several IEI genes, most notably 
in 4 genes (PRF1, STX11, STXBP2, UNC13D) causing familial forms of the syndrome. 
Many HLH-linked genes are associated with life-threatening Epstein–Barr virus 
infections, which analogously suggests JC virus infection plus presence of a 
pathogenic variant in an HLH-linked IEI gene also increases risk of PML. PML also 
occurs as a serious adverse event for a subset of immunosuppressive therapies 
(e.g., natalizumab and rituximab) used to treat patients with immune disorders (e.g., 
multiple sclerosis and hematological malignancies). Recently, 4 PML risk variants 
were reported for use in a PML risk test to screen patients who are considering 
treatment with PML-linked therapies. Interestingly, of the 4 genes with a PML risk 
variant, 2 (LY9 and STXBP2) cause or are linked to HLH. The aim of our review is 
two-fold: (1) raise awareness among researchers and clinicians (e.g., neurologists, 
oncologists, and rheumatologists) that patient genetics are a key risk factor for 
PML, and (2) further reinforce the rationale for screening at-risk patients for PML 
risk variants before prescribing a PML-linked drug.
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Introduction

Progressive multifocal leukoencephalopathy (PML) is a neurological disorder 
characterized by progressive white matter degeneration. PML occurs as a secondary and often 
fatal brain disease in immune-suppressed patients infected with human polyomavirus 2 
(HPyV2) (1, 2), commonly known as JC virus (JCV) (3, 4). Immune-linked primary diseases 
associated with an increased risk of PML include HIV infection, hematological malignancies, 
and autoimmune disorders (3). Treatment of a patient’s primary disease with an 
immunosuppressant therapy (or non-compliance with antiretroviral therapy in HIV-infected 
patients) is often a triggering factor for developing PML. We propose that a patient’s underlying 
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genetics are also a key risk factor for developing PML based on two 
lines of investigation: (1) our genome-wide study of two large cohorts 
of PML cases revealed four genes that increase PML risk (5, 6) and (2) 
our assembly of an updated review of the PML case report literature 
(Figure  1; Supplementary Table  1) on patients diagnosed with an 
inborn error of immunity (IEI) (7). We note that a majority (73%) of 
the cases reported in Supplementary Table 1 had a PML diagnosis of 
definite or probable (3, 8), but diagnostic criteria were not reported 
for the other PML case reports. PML is an under-appreciated risk in 
IEI patients and in the wide range of patients on immunosuppressant 
therapies. Our principal aims are to raise awareness in the clinical 
communities and increase the vigilance for PML onset, especially in 
patients with deleterious genetic variants in PML-linked IEI genes.

Genetic underpinnings of PML—IEI 
case reports and PML risk variants

Host genetics as an underlying risk factor for PML were first 
proposed based on a limited number of case reports in patients 
diagnosed with an IEI and PML (9, 10). The International Union 
of Immunological Societies (IUIS) Expert Committee has reported 
there are now 508 IEI genes (7), but none are presently reported to 
cause an increased risk of PML. In the last 10 years, IEI genes 
linked to PML based on patients diagnosed with both disorders has 
increased from 4 to 26 (Figure  1A; Supplementary Table  1). 
Including PML cases found to have a PML risk variant (Figure 1B; 
Supplementary Table 1) (6), the total is 28 IEI genes. Notably, a 
majority of these IEI genes are directly causal or implicated in an 
increased risk of the hyperinflammation syndrome hemophagocytic 
lymphohistiocytosis (HLH) (11, 12) and/or severe Epstein–Barr 
virus (EBV) infections (7, 13), see below for details. Of the four 
PML risk variant genes (Figure 1B), two are known to cause an IEI, 
C8B is 1 of 33 IEI genes causing complement deficiencies and 
STXBP2 is 1 of 7 IEI genes causing familial HLH (FHL) syndromes. 
Two genes not yet known to cause an IEI are linked to complement 
and HLH, respectively—FCN2 is 1 of 3 ficolin genes (FCN3 is an 
IEI gene) and LY9 is linked to the EBV/HLH IEI gene SH2D1A via 
interaction of their protein products—see below for details. 
We also note that, like IEI in general, there is extensive genetic and 
phenotypic heterogeneity reported for IEI plus PML genes, with 
many (21 of 26, 81%) linked to the broader category of common 
variable immunodeficiency (CVID) (14). Incomplete penetrance 
is common and attributed to a number of factors, such as digenic/
oligogenic/polygenic inheritance (14) and allele-specific expression 
(termed transcriptotype) (15). Thus, it should not be surprising 
that many individuals with an IEI are undiagnosed and PML only 
emerges upon treatment with immunosuppressive drugs (see 
below and Supplementary Table 2).

PML and the EBV/HLH connection

Primary HLH (FHL caused by an IEI gene) and secondary 
HLH (often a complication of rheumatic diseases)—also known 
as macrophage activation syndrome (MAS) and cytokine storm 
syndrome (CSS)—are now considered to be  a continuum of 
immune dysfunction (11, 12). The term HLH/MAS has been 
adopted by experts in the field (12) but, for simplicity, herein will 
be  termed HLH. Since the vast majority of PML case report 
patients (Figure 1A) were also diagnosed with an IEI linked to 
EBV/HLH (24 of 26, 92%) (7, 13, 16–34), we also searched the 
literature and public databases for case reports of patients 
diagnosed with PML and HLH. We found three cases although 
genetic information was not reported (unknown genes in 
Figure 1A; Supplementary Table 1) (35–37). Along with the XIAP 
plus PML case report (38), there are four patients with a diagnosis 
of PML and HLH. Given the rarity of PML (39, 40) and HLH (11), 
this is highly unlikely to be a chance association.

PML risk genes STXBP2 and LY9 further underscore the 
connection to EBV/HLH. Familial HLH (FHL syndromes) have 
a high risk for serious EBV infections (13, 23, 29). Of the four 
FHL genes, only STXBP2 (FHL5) is reported to have an 

FIGURE 1

Genes reported for previously published PML cases with an IEI 
diagnosis, HLH diagnosis, or positive for a PML genetic risk variant 
(see Supplementary Table 1) (10, 20, 35–38, 96–127). (A) Each patient 
was genetically diagnosed with an IEI plus developed PML or 
diagnosed with HLH (indicated) and PML. All other PML cases were 
not reported to also have HLH, but 19 of 26 IEI genes are linked to an 
increased risk of EBV and/or HLH as associated features (7, 13, 16–
28, 30–34, 128). (B) Each patient tested positive for a PML risk variant 
(5, 6). Two genes (C8B and FCN2) are in the complement pathway 
(129–133) and two genes (LY9 and STXBP2) are linked to EBV/HLH 
(see Figure 2).
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inheritance model of autosomal dominant (AD) or autosomal 
recessive (AR), while all others are AR only (7). All four PML 
cases with the same STXBP2 variant were heterozygous 
(Supplementary Table 1) and in a comparison of natalizumab-
treated multiple sclerosis (MS) patients who developed PML 
(n = 2/86) versus matched controls (natalizumab-treated MS 
patients who did not develop PML, n = 0/604) there was a 36-fold 
increased risk of PML (observed positive predictive value of 
100%) (6). While LY9 is not known to cause an IEI, it is 1 of 9 
signaling lymphocytic activation molecule family (SLAMF) 
members (41, 42) involved in host defense against pathogens (43, 
44). SLAMF proteins interact with the protein product of 
SH2D1A (gene alias SAP), an IEI gene that causes X-linked 
lymphoproliferative syndrome (XLP1) characterized by severe 
EBV infections (13, 23, 29). Another SLAMF gene, CD48 (gene 
alias SLAMF2), is potentially the first family member linked to 
an IEI (not yet reported by the IUIS) and HLH based on one case 
report with a de novo variant (45). SLAMF genes are also 
implicated in cancers (particularly hematological malignancies) 
(46, 47) and autoimmune diseases such as rheumatoid arthritis 
(RA) and systemic lupus erythematosus (SLE) (48). Interestingly, 
the SLAMF locus on chromosome 1 (1q23) harbors all nine 
SLAMF genes and SLE genetic linkage studies in human (between 
markers SPTA1 and FCGR3A) (49) and mouse (50) also map to 
this region. Follow up studies further support the link between 
SLAMF genes and SLE (51–54).

To highlight the interactions between PML-linked IEI and other 
immune genes, we  performed a protein network analysis using 
STRING (Figure 2) (55). The analysis included 37 genes: 26 IEI plus 
PML case report genes (Figure 1A), SH2D1A, PML risk variant genes 
(STXBP2 and LY9, but not complement pathway genes C8B and 
FCN2), and other SLAMF genes. All genes had multiple connections 
except ZBTB24 (Figure 2, upper right). However, 14 of 26 IEI plus 
PML genes (including ZBTB24) are linked to natural killer (NK) cell 
deficiency or impaired NK cell function (56, 57). PML risk genes LY9 
and STXBP2 are also linked to NK cell function (57–59). Finally, while 
several complement system genes cause IEI (including PML risk gene 
C8B) (7), they are not extensively linked to HLH. However, more 
recent studies do show coexistence of defects in complement and HLH 
(60), particularly in patients diagnosed with both HLH and 
thrombotic microangiopathy (TMA) (61, 62).

Functional evidence for PML-linked 
genes and JCV

For detailed background on JCV biology, see three recent 
reviews (4, 63, 64). One of the earliest links between JCV and an 
IEI gene is a study (65) that found JCV’s agnoprotein interacts 
with the protein product of XRCC6 (gene alias KU70, a DNA 
repair protein) and impairs function of the protein product of IEI 
gene PRKDC (66), which causes DNA-PKcs deficiency (7). 
Subsequent work (67, 68) by this group identified JCV protein 
links to two other DNA repair genes, IEI genes DCLRE1C (gene 
alias ARTEMIS) and RAD51 (a cause of Fanconi anemia) (7). 
PML case reports were found for patients with mutations in 
DCLRE1C and PRKDC (Figure  1A; Supplementary Table  1). 
Another group (69) reported an interaction between JCV’s 

agnoprotein and the protein product of AP3D1, which is an IEI 
gene that causes an FHL syndrome (Hermansky-Pudlak, type 10) 
(7). The agnoprotein-AP3D1 interaction was validated in a 
proteomics study (70). Adapter protein (AP) complexes are 
comprised of host gene proteins, such as AP3D1, that many 
viruses hijack for viral propagation and evading host immune 
responses (71).

Further evidence supporting PML-linked genes comes from a 
recent study (72) using proteomic and single cell RNA sequencing 
methods on cerebrospinal fluid (CSF) and serum samples from 
PML patients. Top genes/proteins from these analyses included 
chemokines and their receptors (e.g., CCL4, CCL5, CCR2, CCR5, 
CXCR3, CXCR6) as a key feature in PML versus non-PML samples. 
This is not surprising given their role in NK cell biology (58, 59), 
but this study also highlighted a link to PML risk genes LY9 and 
STXBP2 (6). We observed the following genes in the top quartile 
(25%, average log2 fold change) of genes in the RNA sequencing 
data: CD4-PML cluster vs. other CD4 + T cells included PML risk 
gene STXBP2, 2 SLAMF genes (SLAMF1, SLAMF6), 8 PML plus 
IEI case report genes (CD40LG, DOCK8, IKBKG, RAC2, RMRP, 
SASH3, STAT1, WAS), and ITGA4 (target of natalizumab); 
CD8-PML cluster vs. other CD8 + T cells included SLAMF7, 9 
PML plus IEI case report genes (CTPS1, DIAPH1, DOCK8, RAC2, 
RELB, RMRP, SASH3, STAT1, WAS), and ITGA4.

Like other IEI disorders, severe infection risk is increased for 
some genes/viruses, although the IUIS has yet to add risk of PML 
due to JCV infection to a subset of their current list of 508 IEI 
genes (7), likely because PML from JCV infection is a rarer entity 
in IEI patients. We note two key parallels between EBV and JCV 
causing severe, life-threatening infections in IEI patients and those 
with milder immunodeficiency (e.g., lymphoma and SLE patients): 
(1) the ubiquitous presence of these viruses in worldwide 
populations (EBV > 90%, JCV 60–80%) (4, 13) wherein the 
infection is usually asymptomatic or relatively benign, and (2) both 
viruses are linked to HLH, which we think the current evidence 
suggests is due to host genetics (Figure 1; Supplementary Table 1). 
While co-infection with HIV and JCV leading to PML was 
common before the era of antiretroviral therapies (3, 4, 73), not 
much is known about patients co-infected with EBV and JCV. Two 
interesting observations that will hopefully lead to further research 
are EBV-JCV recombination leading to increased neurovirulence 
of JCV (74) and a case report of a HIV-infected patient who 
developed primary central nervous system lymphoma with tumors 
infected with both EBV and JCV (75).

Iatrogenic (drug-linked) PML as a 
serious adverse event (SAE) is not 
going away

In the first two epochs of reported PML cases, hematological 
malignancies and acquired immunodeficiency syndrome (AIDS) due 
to HIV infection were the main risk factors (3, 4). Around 2002–2005, 
reports of iatrogenic PML (i.e., drug-linked) were emerging (3). PML 
is now recognized as a significant risk factor in a wide range of patients 
treated with a wide range of immunosuppressive therapies for their 
primary disease. The highest number of drug-linked PML cases to date 
are from natalizumab (used to treat MS and Crohn’s disease) and 
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rituximab, which is primarily used to treat cancers and autoimmune 
disorders (76–78). To assess the current landscape of drugs with the 
highest PML risk, we used the FDA Adverse Event Reporting System 
(FAERS)1 to identify the number of PML cases reported after treatment 
with a given drug (Supplementary Table 2). The FAERS database is an 
excellent resource even though underreporting is a limitation of this 

1 https://www.fda.gov/drugs/surveillance/

fdas-adverse-event-reporting-system-faers

database (79–81) and not all reported PML cases will have been 
validated as definite/probable PML (3, 8). Our FAERS analysis focused 
on the past 5 years (2020–2024) in order to better represent the current 
situation for older drugs plus highlight newer drugs with an appreciable 
number of PML cases. To minimize counting duplicate reports of PML 
cases, we filtered the data using the original manufacturer (Sender) for 
a given drug, although this may result in an underreporting of PML 
cases linked to generic drugs. Also, since natalizumab is the highest risk 
PML-linked drug, when filtering the data we excluded instances for a 
given drug if natalizumab was also listed (i.e., oftentimes multiple drugs 
are listed for a given PML case). Drug data in Supplementary Table 2 

FIGURE 2

Protein network analysis of PML-linked IEI genes using STRING (55). Default STRING settings were used for 37 genes: 26 IEI + PML case report genes 
(see Figure 1), 9 SLAMF gene family members (41, 42), SLAMF-interacting gene SH2D1A (an IEI gene that causes XLP1) (7), and 2 PML risk genes (SLAMF 
gene LY9 and IEI gene STXBP2) (5, 6). The protein–protein interaction (PPI) enrichment p-value is < 1.0E-16. ZBTB24 is the only unconnected IEI & PML 
gene (upper right), see text. SLAMF gene CD48 (SLAMF2) was recently identified as HLH-linked and a potential new IEI, the first member of this gene 
family found to cause an immune disorder (45, 134). Both IEI and SLAMF genes have been linked to increased risk of autoimmune diseases (48) and 
hematological cancers (135, 136).
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are grouped according to four main indications (MS, hematological 
malignancies, non-MS autoimmune diseases such as RA and SLE, and 
other). We also highlighted PML risk drugs with a boxed warning (the 
highest warning issued by the FDA) for PML. Finally, we listed some 
newer drugs that have yet to report a PML case to the FDA if it had the 
same mechanism of action (MOA) as drugs already linked to PML.

Even after excluding the large number of historical PML cases 
(i.e., before 2020), the two highest risk drugs continue to 
be natalizumab and rituximab. We note rituximab PML cases are 
listed under 3 of 4 subsections of Supplementary Table 2, reflecting 
its use to treat a wide range of disorders. For MS drugs, natalizumab 
(n = 231) and fingolimod (n = 51, 58 for all drugs targeting S1P 
modulators) had the highest number of PML cases but ocrelizumab 
(n = 28) and other CD20-targeting drugs also have an appreciable 
number of reported PML cases (44 total in the MS section for all 
CD20 drugs). Importantly, we noted FAERS now reports instances 
of natalizumab patients treated with extended interval dosing 
(EID, also termed Q6W) (82, 83), which is reported under the 
Reactions column as “Prescribed Underdose.” About a third of 
natalizumab FAERS PML cases were classified as “prescribed 
underdose” but this did not reduce the death rate: regular dose 155 
PML cases and 17% died vs. 76 underdose and 21% died.

Interestingly, we note that some MS drugs have been linked to 
cases of HLH (84–88), although we did not find any case reports 
of patients treated with these drugs who developed HLH and 
PML. Importantly, several IEI genes are also drug targets 
(Supplementary Table 2): BTK, C5, CD19, CD20 (gene symbol now 
MS4A1), CD3D, CD3E, CD3G, CD79B, JAK1, and JAK3 (7). The 
PML-linked drug belimumab targets TNFSF13B (gene aliases 
BAFF and BLYS), the ligand of IEI genes TNFRSF13B (gene alias 
TACI) and TNFRSF13C (gene alias BAFFR) (89). We  also note 
there are several case reports of multiple myeloma (MM) patients 
diagnosed with PML (90–93). Reported drugs for a subset of these 
cases included bortezomib, daratumumab, ixazomib, lenalidomide, 
pomalidomide, and thalidomide. All of these MM drugs have been 
linked to ≥ 3 PML cases in FAERS (Supplementary Table  2). 
Elotuzumab, an MM drug that targets HLH-linked gene SLAMF7, 
has 5 PML cases reported in FAERS and for one case report the 
MM patient developed PML during treatment with lenalidomide 
and elotuzumab (93). There are presently limited or no warnings 
of PML in the prescribing information for these MM drugs 
(Supplementary Table 2) despite the growing number of PML cases 
reported to FAERS (e.g., in the last 5 years, there are 27 PML cases 
reported for daratumumab but still no warning of PML in its 
prescribing information). These observations, in concert, 
underscore the delicate balance of the immune system in having 
too much or too little of a given IEI gene product.

For clinicians and regulators, the key points to consider are: (1) 
drug-linked cases of PML occur for a wide range of drugs and 
primary diseases, (2) efforts to mitigate risk for natalizumab (e.g., 
EID/Q6W treatment regimen and regular JCV antibody testing) 
are insufficient, (3) additional early detection measures (more 
frequent brain MRIs, JCV testing, and other biomarkers) could 
be implemented for higher risk patients (not just MS patients), and 
(4) preventive testing for PML risk genetic variants/genes (6) may 
help reduce the number of drug-linked PML cases (94). Given that 
PML is often life-threatening, up-to-date information should 
be  made available to clinicians, including via prescribing 

information (i.e., drug labels) (95), to better inform clinicians 
about recent advances in genetic testing for PML risk.

Constellation of PML risk factors: five 
recommendations for clinicians and 
regulators

Based on the continuing increase in PML plus IEI case reports and 
PML cases that carry a PML risk variant (Figure  1; 
Supplementary Table 1), a predominant risk factor of PML appears to 
be host genetics (Supplementary Figure 1). Primary diseases (each 
with their own predisposing genetic variants in immune-linked 
genes), immunosuppressant drugs, and infections (JCV is required 
but co-infection with HIV increases the risk and this may be true for 
other viruses linked to severe infections in IEI patients) also provide 
multiple pathways leading to the development of PML. Since there are 
no approved treatments for PML, prevention is the best defense. 
Therefore, we propose that experts in the field consider the following 
recommendations for increased vigilance of PML: (1) add JCV and 
PML to IUIS tables of IEI, (2) consider HLH/MAS (both primary and 
secondary) to be a concomitant risk factor of PML, (3) use the PML 
risk genetic test in all at risk patients (i.e., included but not limited to 
MS patients prior to treatment with natalizumab), (4) for at risk 
patients, such as carriers of the PML risk variants, implement more 
frequent brain MRIs plus more frequent and widespread JCV DNA 
and antibody testing, and (5) promote PML awareness campaigns to 
patients and clinicians for other diseases (and immunosuppressant 
drugs used to treat them) besides the MS community.
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