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Pharmacotherapy variability is defined as the variability in drug response among 
and within individuals that is attributed to the inter and intra-individual differences 
in the action and disposition of drugs. Neurological and medical complications 
in neurocritical care contribute significantly to the overall disease prognosis. 
Pharmacological management plays a key role in managing many of those 
complications such as cerebral vasospasm, delayed cerebral ischemia, hyponatremia, 
infections, and seizures. However, pathophysiologic changes secondary to neurological 
and critical illnesses make the medical management of these patients challenging, 
contributing to pharmacotherapy variability. Interindividual differences in disease 
pathophysiology, altered organ function, systemic inflammation, hemodynamic 
instability, and common interventions employed in intensive care settings could alter 
the pharmacokinetics and pharmacodynamics of medications. The use of potentially 
ineffective treatments and suboptimal dosing of medications to manage patients 
can lead to poor outcomes as the understanding of the effect of neurological injury 
on the action and disposition of drugs is limited. This narrative review highlights the 
factors contributing to pharmacotherapy variability in neurocritical care, equipping 
clinicians with critical insights to refine patient management strategies. In conclusion, 
pharmacotherapy variability within neurocritical care introduces additional layers 
of complexity that may significantly contribute to therapy failure, adverse drug 
reactions, and setbacks in drug development. Understanding these variations is 
essential for identifying subpopulations that may derive the greatest benefit from 
specific therapies, representing a critical step toward achieving precision medicine 
in neurocritical care, ensuring the administration of the appropriate medication 
to the right patient at the correct dosage regimen.
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1 Introduction

Pharmacotherapy is essential in managing complications within neurocritical care, where 
timely and targeted interventions are crucial for patient survival and recovery. Neurocritical 
care includes a range of acute neurological conditions, including subarachnoid hemorrhage 
(SAH), intracerebral hemorrhage (ICH), traumatic brain injury (TBI), ischemic stroke (IS), 
and status epilepticus (SE). These conditions often present with secondary complications such 
as cerebral edema, seizures, vasospasm, delayed cerebral ischemia (DCI), electrolyte 
abnormalities, venous thromboembolism, infections, hemodynamic instability, and altered 
organ functions. The pharmacological management of these complications is vital for 
improving patient outcomes. However, pathophysiologic changes secondary to neurological 
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and critical illnesses make the medical management of these patients 
challenging, contributing to pharmacotherapy variability. 
Interindividual differences in disease pathophysiology, altered organ 
function, systemic inflammation, hemodynamic instability, and 
common interventions employed in intensive care settings could alter 
the pharmacokinetics (PK) and pharmacodynamics (PD) of 
medications, potentially resulting in lack of efficacy or increased 
toxicity. The use of potentially ineffective or toxic treatments and 
suboptimal dosing of medications to manage patients may increase 
poor outcomes as the understanding of the influence of neurological 
injury on the action and disposition of drugs is limited. Therefore, it 
is essential to investigate factors affecting pharmacotherapy variability.

The aim of this review is to highlight the factors contributing to 
pharmacotherapy variability in neurocritical care, equipping clinicians 
with critical insights to refine patient management strategies. 
We  summarized our research and other studies investigating the 
variability in pharmacotherapy and its link to patient outcomes. 
Understanding these variations is essential for identifying 
subpopulations that may derive the greatest benefit from specific 
therapies, representing a critical step toward achieving precision 
medicine in neurocritical care.

2 Pharmacotherapy variability

2.1 Definition and significance

Pharmacotherapy variability is defined as the variability in drug 
response among and within individuals that is attributed to the inter 
and intra-individual differences in the action and disposition of drugs. 
Variability arises from differences in drug PK (absorption, 
distribution, metabolism, and excretion) and pharmacodynamics 
(drug action) among patients. In neurocritical care, where patients 
often present with altered physiology due to severe neurological 
injury, systemic inflammation, altered organ function, or concurrent 
therapies, these differences become even more pronounced. Tables 1, 
2 summarize the PK and PD alterations in neurocritical care, 
respectively.

This pharmacotherapy variability directly influences patient 
outcomes by affecting the balance between therapeutic efficacy and 
the risk of adverse events. For example, subtherapeutic levels of 
antiseizure medications (ASM) in SE could result in uncontrolled 
seizures, worsening neurological outcomes (1, 2). Another example is 
the increased risk for hyponatremia in SAH patients receiving 
exogenous vasopressin infusion due to increased sensitivity in this 
patient population (3).

Pharmacotherapy variability contributes to the heterogeneity of 
treatment effect observed in clinical trials within neurocritical care 
(4, 5). Variability in drug absorption, distribution, metabolism, and 
excretion driven by patient-specific factors such as organ dysfunction, 
genetic polymorphisms, disease severity, and concurrent therapies 
can lead to wide inter-individual differences in drug exposure and 
response. This variability can mask true drug effects or falsely 
attribute outcomes to the intervention, leading to inconclusive or 
misleading trial results. To illustrate, in studies investigating the effect 
of hypothermia combined with standard of care versus standard of 
care alone, hypothermia alone can reduce the clearance of many 
standard of care drugs, potentially leading to toxicity if doses are not 
adjusted accordingly. In other words, the standard of care ceases to 

be truly standard if variability in pharmacotherapy is not taken into 
account. Recognizing and accounting for pharmacotherapy variability 
is therefore essential for accurately interpreting trial findings, 
optimizing therapy, and advancing precision medicine in 
neurocritical care.

The economic implications of pharmacotherapy variability 
within neurocritical care settings have not been extensively studied. 
Nevertheless, the overall economic burden in these settings can 
be  inferred by considering the implications of pharmacotherapy 
variability. Notable factors include adverse drug reactions, toxicity, 
and treatment failures, all of which contribute to treatment 
escalation and extended hospital stays. These outcomes significantly 
increase healthcare costs (6–8). Therefore, addressing 
pharmacotherapy variability and precision medicine could 
potentially reduce the economic impact and improve patient 
outcomes (9).

In summary, pharmacotherapy variability in neurocritical care is 
a critical factor that can significantly impact patient outcomes. Current 
clinical guidelines have not fully taken into consideration drug 
variability in neurocritical care. Therefore, understanding and 
addressing this variability is essential to optimize drug efficacy and 
minimize adverse effects.

2.2 Factors contributing to 
pharmacotherapy variability

There are several factors that contribute to pharmacotherapy 
variability. Figure 1 illustrates the Neuro-CPK Pharmaco-variability 
Wheel. It outlines the main factors affecting pharmacotherapy 
variability in neurocritical care, including comorbid conditions, drug 
interactions, practice variations, patient characteristics, 
pharmacogenomics, and co-interventions. Comorbid conditions 
could lead to physiological changes that affects how the body handle 
drugs (10). Moreover, drug interactions play a significant role in 
pharmacotherapy variability as neurocritical care patients usually 
receive multiple drugs (11, 12). Furthermore, variations in practice 
within the same health care facility or between different facilities 
could result in significant discrepancies in pharmacotherapy (13). 
Patient’s specific characteristics such as age, sex and body weight are 
major well-known factors contributing to variability (14). 
Additionally, monogenic and polygenic variability substantially 
contribute to the diverse PK and PD effects observed across 
individuals receiving the same medications (15). And finally, 
neurocritical care patients receive different co-interventions which 
create a highly variable environment for pharmacotherapy that may 
be overlooked in practice. In the following sections we discuss each 
factor in detail, providing examples and discussing the implications 
of these factors on pharmacotherapy variability. It is crucial to 
consider all potential factors that influence drug PK and PD, as the 
observed drug response in patients is essentially the result of the 
interplay among all these factor.

3 Drug-disease interaction (effect of 
comorbid conditions)

Drug-disease interactions are important factors affecting 
pharmacotherapy variability in neurocritical care. Critical illness and 
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TABLE 1 Pharmacokinetic alterations in neurocritical care.

Pharmacokinetic 
alterations

Description Examples

Absorption

  Reduced gut motility 

(Gastroparesis)

Neurological injury, sedation, and opioid use can delay the GIT transit time, resulting in 

reduced and/or delayed drug absorption.

 • Erratic and delayed oral absorption of phenytoin, leading to subtherapeutic levels and poor seizures 

control (125, 205).

 • Oral antimicrobials such as fluoroquinolones (e.g., ciprofloxacin or moxifloxacin) or antifungals (e.g., 

fluconazole) may have reduced absorption in patients with poor gut perfusion, potentially leading to 

inadequate eradication of infections (206, 207).

 • Oral anticoagulants (e.g., apixaban, rivaroxaban) can have variable absorption. Delayed gastric emptying 

or altered gut pH can affect their bioavailability and impact the consistency of their anticoagulant 

effect (208).

 • Phenytoin exhibits significant adsorptive binding to enteral feeding tubes, resulting in reduced 

bioavailability and systemic drug exposure (209).

  Impaired perfusion Hypotension and vasopressor use (e.g., catecholamines) can alter blood flow to the GIT, 

affecting drug absorption.

  Enteral feeding Continuous enteral feeding can interact with drug formulations, altering their absorption.

  Vomiting and diarrhea Vomiting and diarrhea are common in the ICU, potentially reducing drug bioavailability.

 pH changes Frequent administration of PPIs or other acid-suppressing agents elevates gastric pH, which 

can consequently influence the ionization state and subsequent gastrointestinal absorption.

Distribution

  Hypoalbuminemia Critical illness often leads to decreased serum albumin levels, resulting in a higher free drug 

fraction, potentially increasing the pharmacological effect and the risk of toxicity, but also 

clearance.

 • Hypoalbuminemia increases the free fraction of phenytoin and valproic acid, necessitating the frequent 

monitoring for their free levels to prevent toxicity (210–212). Moreover, it increases risk of bleeding 

associated with warfarin administration (213).

 • The distribution of hydrophilic antibiotics like beta-lactams (e.g., cefepime) can be significantly altered by 

increased extracellular fluid volume, leading to lower than expected concentrations (214).
  Altered BBB permeability Neurological injury can disrupt the BBB, affecting the penetration of drugs into the CNS.

  Increased extracellular fluid 

volume

Cerebral edema and systemic fluid overload can increase the Vd of hydrophilic drugs, 

potentially leading to lower plasma concentrations.

Metabolism

  Hepatic dysfunction Critical illness can lead to hepatic hypoperfusion and dysfunction, impairing the activity of 

CYP450 enzymes responsible for metabolizing many drugs.

 • Commonly administered neuro-ICU medications such as ASMs (e.g., phenytoin, carbamazepine, and 

valproic acid) and antimicrobials (e.g., macrolides) are known substrates to CYP enzymes. Therefore, 

hepatic dysfunction or drug interactions can significantly alter their metabolism and subsequently their 

plasma levels.

 • Enzyme-inducing ASMs, like carbamazepine, can enhance the metabolism of CYP3A4 substrates, 

reducing their effectiveness (215, 216).

 • Systemic inflammation exert an inhibitory effect on the expression and activity of several CYP450 isoforms 

(e.g., CYP3A4), leading to impaired metabolic clearance of their respective substrate medications, such as 

benzodiazepine sedatives (e.g., midazolam), opioid analgesics (e.g., fentanyl), calcium channel blockers 

(e.g., nimodipine), and certain ASMs (e.g., carbamazepine), potentially resulting in increased systemic 

exposure (217).

  Systemic inflammation Systemic inflammation can inhibit CYP enzyme activity.

  Drug interactions Polypharmacy in neurocritical care increases the risk of drug–drug interactions.

  Genetic polymorphism Individual genetic variations in CYP enzymes can lead to significant variability in drug 

metabolism rates.

(Continued)
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neurological conditions can significantly change drug PK and PD 
through systemic physiological changes, such as altered organ function 
(e.g., augmented renal clearance), systemic inflammation, 
hemodynamic instability, changed plasma protein levels, and disrupted 
blood–brain barrier integrity. These disease-induced changes can result 
in unpredictable subtherapeutic or toxic drug levels, and increased risk 
of adverse effects. Understanding drug-disease interactions is therefore 
essential for minimizing variability, optimizing individualized therapy, 
and improving outcomes in this highly vulnerable patient population.

3.1 Augmented renal clearance

Augmented renal clearance (ARC), a state of renal hyperfiltration, 
is a clinical phenomenon observed in critically ill patients (16). First 
described by Udy et al. (17) following observations of unexpectedly 
high creatinine clearance (CLCR) values during investigating 
antimicrobials PK in critical care population. ARC is primarily defined 
by elevated CLCR. However, the exact threshold remains debated. The 
most commonly cited definition utilizes CLCR normalized to body 
surface area (BSA), with a threshold of >130 mL/min/1.73 m2 (16). 
ARC significantly enhances the elimination of renally excreted 
medications, potentially leading to subtherapeutic drug levels and 
compromised treatment outcomes. Notably, commonly used 
estimated CLCR equations, such as Cockcroft-Gault, often 
underestimate ARC occurrence (18). This underestimation, coupled 
with the infrequent use of measured CLCR in clinical practice, 
contributes to the frequent oversight of ARC. The reported prevalence 
of ARC varies considerably across studies, largely due to differences 
in the patient populations examined. A meta-analysis by Hefny et al. 
(19) indicated an overall ARC prevalence of approximately 36% in 
mixed intensive care unit (ICU) patients. However, the percentage 
rises significantly in neurocritical care, with reported prevalence of 
74%, highlighting the significance of this phenomenon in 
neurocritical care.

The pathophysiology of ARC remains incompletely understood 
(Figure 2). The hyperdynamic state characteristic of critical illness, 
driven by increased sympathetic response, increased renal blood 
flow, and the use of vasopressors or aggressive fluid resuscitation, 
contribute to ARC development. Emerging research also highlights 
the role of inflammatory mediators in augmenting kidney functions. 
Systemic inflammatory response syndrome (SIRS), common in 
critical care, has been implicated in increasing glomerular filtration 
rate (GFR) and subsequently inducing ARC (20). Specifically, atrial 
natriuretic peptide (ANP) has been identified as a potential 
mediator. Studies have demonstrated an association between 
elevated ANP levels and ARC development in patients with TBI 
(21). Regarding the underlying renal mechanisms, Udy et al. (22) 
demonstrated that ARC is characterized by concurrent increases in 
GFR, tubular reabsorption, and active tubular anion secretion. These 
combined effects result in enhanced excretion of renally 
cleared drugs.

Younger age, particularly below 50 years, and male sex are 
consistently identified demographic risks (17, 23–25), with a single 
study also identifying African American race as a risk factor (26). 
Other reported risk factors include trauma (24), hematological 
malignancies (27), ICH (28), the absence of cardiovascular 
comorbidities and lower morbidity scores (28–31). Low baseline serum T
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creatinine concentrations (25), the use of mechanical ventilation and 
vasopressors (30, 32), and increased protein intake (26) were also 
reported as ARC risk factors. One study identified SAH, especially 
when accompanied by younger age, higher mean arterial pressure, 
absence of prior hypertension, and increased nitrogen loss significantly 
elevate ARC risk (33).

Current research focuses on optimizing drug dosing regimens in 
the context of ARC (34). Strategies to mitigate the risk of 
subtherapeutic drug exposure include escalating drug doses, 
shortening dosing intervals, administering drugs via continuous 
infusion, or prolonging infusion durations.

3.1.1 Impact of ARC on renally eliminated 
antiseizure medications

Seizures are common following acute neurological illnesses, 
necessitating immediate initiation of adequately dosed ASMs (35–37). 
ARC can significantly increase the clearance of renally eliminated 
ASMs, potentially resulting in reduced drug exposure, therapeutic 
failure, and breakthrough seizures (24).

Levetiracetam is a first line ASM that is commonly used to control 
seizures in neurocritical care, with reference range of 
12–46 mg/L. Levetiracetam is predominantly renally eliminated, with 
~66% of the administered dose excreted unchanged in urine (24). The 
remaining portion is eliminated by non-cytochrome P450 enzymes, 
mainly by hydrolysis. Several studies have reported the positive 
correlation between CLCR and levetiracetam clearance (38–40). 
Consequently, ARC significantly decrease levetiracetam exposure, 
which necessitates an increase in the dosage to achieve concentrations 
within the reference range (24, 41). The recommended initial dose of 
levetiracetam of 500 mg twice daily was clearly proven to result in 
subtherapeutic concentrations in patients with ARC, necessitating at 
least 1,500 mg to be administered twice daily to achieve concentrations 
within the reference range (24, 34, 42).

Lacosamide is utilized in the management of focal and generalized 
seizures, typically as adjunctive therapy or for seizures refractory to 
first-line agents and status epilepticus (43). Exhibiting linear PK, 
approximately 40% of lacosamide is eliminated unchanged via renal 
excretion (44). Studies have also demonstrated a positive correlation 
between CLCR and lacosamide clearance in patients with renal 
impairment, highlighting the impact of renal function on drug 
elimination (44–46). There is a gap in the literature about ARC’s 
impact on lacosamide pharmacokinetics, more research is needed (47).

Other antiseizure medications such as pregabalin and gabapentin 
are commonly used in neurocritical care primarily for neuropathic 
pain; they are less frequently employed for seizure control in the 
ICU. Both drugs are predominantly eliminated by the kidneys, with 
almost 100% of gabapentin and approximately 90% of pregabalin 
excreted renally (48, 49). Their clearance strongly correlates with CLCR 
(50–54). Further research is needed to establish appropriate 
administration strategies for these medications in this patient 
population. Topiramate is another medication less commonly used in 
the ICU. Research has demonstrated a correlation between its 
clearance and renal function (55). While studies have extensively 
investigated dose adjustments for reduced kidney function (48, 56, 
57), the impact of ARC on ASM exposure in neurocritical care 
remains unstudied.

3.1.2 Impact of ARC on renally eliminated 
antimicrobials

Neurocritical patients are highly prone to hospital acquired 
infections (HAI) due to prolonged ICU stay, invasive procedures and 
compromised neurological function (58). HAI occurs in approximately 
11% of neurosurgical ICU patients, however, the rate increases to 36% 
for those who stays for more than 48 h (59). Examples of HAI include 
ventilator-associated pneumonia, catheter- associated urinary tract 
infection, central line- associated blood stream infections and surgical 

TABLE 2 Pharmacodynamic alterations in neurocritical care.

Pharmacodynamic 
alterations

Description Examples

Altered drug sensitivity/toxicity Patients with brain injuries or other neurological illnesses often 

exhibit altered pharmacodynamics. The involvement of the 

CNS can lead to significant pharmacotherapy variability due to 

several factors:

 • Receptor modulation: neurological damage alters the 

expression of neurotransmitter receptors and drug targets 

within the CNS and peripheral nervous system. This can lead 

to diminished or enhanced drug efficacy.

 • Autonomic nervous system dysregulation: this can alter 

physiological responses such as heart rate, blood pressure, 

and gastrointestinal motility.

 • Endothelial dysfunction and BBB disruption: many 

neurological conditions are associated with endothelial 

dysfunction, which can compromise the integrity of the BBB.

 • Altered drug metabolism and elimination: neurological 

conditions can influence drug elimination processes through 

systemic effects on organ function or altered blood flow.

 • Patients with brain injury or increased ICP may exhibit increased 

sensitivity of GABAA receptors. Therefore, this might potentiate the 

sedative effects of benzodiazepines (e.g., lorazepam, midazolam), 

resulting in prolonged sedation and respiratory depression (224).

 • Similar to sedatives, patients with neurological illnesses can be more 

sensitive to the respiratory depressant and sedative effects of opioids 

such as fentanyl and morphine (225).

 • SAH patient exhibits increased sensitivity to exogenous vasopressin, 

leading to increased propensity to hyponatremia (3).

 • In patients with status epilepticus or severe brain injury, the brain 

may become less responsive to doses of benzodiazepines. This can 

be due to changes in receptor expression (internalization of GABAA 

receptors) (226).

 • Certain medications, including some antidepressants (e.g., 

bupropion, tricyclic antidepressants) and antipsychotics (e.g., 

clozapine), exhibit proconvulsant effects by lowering the seizure 

threshold. This necessitates the need to reassess their use in such 

patient population and careful dose optimization of ASMs to 

maintain seizure control in susceptible individuals (227).

ASMs, antiseizure medications; BBB, blood brain barrier; CNS, central nervous system; GABA, Gamma-aminobutyric acid; SAH, subarachnoid hemorrhage.
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site infections (60). A wide range of antimicrobials are used to treat these 
infections, and the majority are renally eliminated (61). ARC may lead 
to sub-therapeutic-drug concentrations of renally eliminated 
antimicrobials, treatment failure and the development of antimicrobial 
resistance (17). It is essential to achieve therapeutic concentrations as 

early as possible because the time is a significant factor in infections, as 
for example each one hour delay in the start of antimicrobials may result 
in 9% increase in mortality in sepsis (62). Among the most used 
antimicrobials to treat HAI are vancomycin, piperacillin-tazobactam 
and meropenem. Around 60–90% of these antibiotics are excreted 

FIGURE 1

Hanafy’s Neuro-CPK Pharmaco-variability Wheel illustrates the factors influencing the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs in 
neurocritical care. Pharmacogenomics contribute to inter-individual variability in drug responses, affecting PK through mechanisms such as 
cytochrome P450 (CYP) polymorphisms and altered transporter expression, and PD through drug tolerance and structural/functional changes at the 
drug-target level. Co-interventions in neurocritical care, including renal replacement therapies, therapeutic hypothermia, fluid resuscitation, and 
therapeutic plasma exchange, can result in pharmacotherapy variability. Comorbid conditions like systemic inflammation, ARC, and neurological injury 
impact the body’s drug response, leading to erratic and unpredictable drug levels. Practice variations between institutions and health care teams are 
critical factors often underemphasized. Different formulations and administration techniques result in variable drug plasma levels. Drug dosing 
practices may also vary. Concomitant medication administration is prevalent among ICU patients, resulting in drug–drug interactions, with many drugs 
classified as CYP inducers or inhibitors. Drug-food interactions may also occur through adsorption, chelation, or complexation. Patient characteristics, 
including age, sex, race and socioeconomic status are important factors affecting drug concentrations in the body. Despite efforts to identify factors 
causing drug variability, gaps remain that are currently unexplainable. Neuro-CPK, Neurotherapeutics and Clinical Pharmacokinetic laboratory; PK, 
pharmacokinetics; PD, pharmacodynamics; CYP, Cytochrome P450 enzymes. Created in BioRender. Lab, Neuro-CPK. (2025) https://biorender.com/
bu0h3tj.
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unchanged through the kidney, thus any alterations in the kidney 
function could have a crucial impact on their systemic exposure (63, 64).

Vancomycin is a glycopeptide antibiotic used to treat infections 
caused by gram positive bacteria especially those caused by 
methicillin resistant staphylococcus aurous (MRSA) (65). 
Therapeutic drug monitoring (TDM) is recommended for 
vancomycin. It is recommended to achieve a target area under the 
curve/minimum inhibitory concentration (AUC/MIC) ≥ 400 (66), 
or if difficult to obtain AUC, a trough concentration within the 

range of 10–20 mg/L is to be targeted as a surrogate measure. ARC 
patients on standard vancomycin dosing have been reported to 
achieve below-target trough concentrations, requiring higher doses 
(67–70).

Piperacillin-tazobactam is a broad spectrum β-lactam antibiotic 
that used to treat infections secondary to gram negative bacteria 
especially Pseudomonas aeruginosa (71). Since TDM of piperacillin is 
not a part of the standard care, ensuring target therapeutic 
concentrations is essential. It was found that around 37% of patients 

FIGURE 2

Pathophysiology of augmented renal clearance (ARC) (top) the use inotropes, autonomic dysregulation, fluid resuscitation, and systemic inflammatory 
response syndrome (SIRS) contribute to increasing cardiac output and hence renal blood flow. Other mechanisms (e.g., vasodilatory vasopressors, 
atrial natriuretic peptide (ANP) secreted secondary to hypervolemia, or SIRS directly increase renal blood flow), also contribute subsequently leading to 
ARC development. Independent predictors of ARC (bottom) comprise patient demographics (young age, male sex), neurological illnesses [traumatic 
brain injury, intracranial hemorrhage (ICH) and subarachnoid hemorrhage (SAH)], and clinical factors (e.g., lower morbidity scores, lower serum 
creatinine, increased protein intake, and vasopressor administration). Created in BioRender. Lab, Neuro-CPK. (2025) https://BioRender.com/0fuwuz5.
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who have CLCR > 120 mL/min had insufficient piperacillin 
concentrations (72). Moreover, around 31% of patients with ARC had 
underexposures to piperacillin versus 0% in the non-ARC patients 
(defined using a target of MIC>16 mg/L) (73).

Meropenem is a broad spectrum carbapenem antibiotic that 
exhibits coverage against a wide range of organisms (74). It was 
reported that around 55% of patients with CLCR > 200 mL/min and 
received 2 grams every 8 h, had sub-therapeutic concentrations (target 
8 mg/mL) (75). A recommended approach to achieve target 
meropenem concentration in ARC patients is either to increase the 
dose or administer it via prolonged continuous infusion (76).

It is challenging to administer the right dose to patients with ARC 
to achieve therapeutic concentrations and avoid any undesirable 
consequences of sub therapeutic concentrations and treatment failure 
(67). TDM in such population might be valuable tool to guide the 
dosing (77), however, there is a clear need for further research to guide 
specific dosing recommendations in neurocritical care.

3.2 Inflammation in neurocritical care

Inflammation is a complex biological response initiated by the 
immune system following exposure to a range of adverse stimuli in 
the body, including pathogens, exogenous toxins, ischemia, and tissue 
injury (78). It is characterized by the activation of immune cells and 
inflammatory mediators such as cytokines, chemokines, histamines, 
and acute-phase proteins to coordinate further immune responses, 
vascular permeability, and tissue remodeling (79). Although localized 
inflammation is protective against damaging physiological stressors, 
downstream systemic effects or maladaptive responses can lead to 
pathophysiological consequences that may impair innate cellular 
function, compromise vascular integrity, or heighten organ stress (80). 
Inflammation in neurocritical care patients is consistently linked to 
worse clinical outcomes, such as neurological deficits, prolonged 
hospital stays, and higher rates of morbidity and mortality (81).

Many conditions in neurocritical care have been associated with 
inflammation, including SAH, TBI, IS, ICH, SE and infections of the 
central nervous system (82–86). For example, patients with SAH have 
elevated inflammatory markers, resulting in the activation of various 
inflammatory pathways (81). Animal models of SAH investigated the 
inflammatory pathways, including the nuclear factor-kappa B (NF-κB) 
pathway responsible for regulating the expression of pro-inflammatory 
genes such as tumor necrosis factor alpha (TNF-α) and interleukin 6 
(IL-6). Activation of the mitogen-activated protein kinase/extracellular 
signal-regulated kinase (MAPK–ERK) pathway within the MAPK 
signaling cascade is also implicated in SAH models, elevating the 
expression of pro-inflammatory cytokines that regulate cellular 
responses to stress and inflammation (87–89). Similarly, in patients 
with TBI, neuroinflammation is associated with both the acute and 
chronic phases of the condition. Immune cell activation occurs at the 
point of injury, releasing pro-inflammatory cytokines that can disrupt 
the blood–brain barrier and exacerbate neuronal damage. In the 
chronic phase, inflammation is linked to ongoing neuronal injury and 
long-term cognitive and behavioral deficits (90).

Inflammation often complicates neurocritical care by altering 
drug metabolism and overall clearance, thereby affecting the PK and 
PD of commonly used therapies in this setting. In Humans and animal 
models of inflammation, inflammatory cytokines modulate the 

activity of cytochrome P450 (CYP) drug metabolizing enzymes such 
as CYP3A4 and CYP2C9, and drug transporters such as 
P-glycoprotein. This results in decreased drug metabolism, altered 
drug distribution, and impaired transport across the blood brain 
barrier (BBB), increasing patient susceptibility to drug toxicity or 
reduced drug efficacy. Inflammation can also downregulate or alter 
the conformation of drug targets, such as L-type calcium channels and 
β-adrenergic receptors, diminishing drug binding affinity (91–94). 
Table 3 summarizes the preclinical evidence of inflammation-induced 
pharmacotherapy variability in drugs relevant to neurocritical care. 
For example, nimodipine, a calcium channel blocker utilized to 
improve outcomes in SAH patients, is metabolized by CYP3A4. 
Inflammation-induced suppression of this enzyme can lead to reduced 
nimodipine clearance, causing elevated systemic concentrations and 
a heightened risk of hypotension in SAH patients (95). Concurrently, 
the upregulation of P-glycoprotein at the blood–brain barrier seen in 
preclinical models may limit nimodipine’s ability to penetrate the 
central nervous system, potentially reducing its therapeutic efficacy 
despite higher plasma levels (96, 97).

These interactions emphasize the need for personalized dosing 
regimens in neurocritical care, considering both the patient’s 
inflammatory status and the pharmacodynamics of each drug. 
Systemic inflammation not only worsens the primary injury but also 
introduces variability in pharmacotherapy, complicating treatment 
and outcomes. This highlights the importance of targeted anti-
inflammatory strategies to optimize therapeutic effectiveness. Future 
research should focus on developing PK-PD models that address the 
impact of inflammation, leading to more precise and individualized 
treatments in neurocritical care.

3.3 Neurologic injury and altered drug 
actions

Neurologic injury itself is a major driver of pharmacotherapy 
variability in neurocritical care due to its profound effects on both 
systemic and cerebral physiology as shown in (Table 2) (98–101).

Increased sensitivity to exogenous vasopressin infusion in SAH 
patients is an example of altered PD of drugs secondary to neurological 
injury. In critically ill patients with septic shock, exogenous 
vasopressin administration is infrequently associated with the 
development of hyponatremia (102). In contrast, Marr et al. reported 
that the administration of exogenous vasopressin in SAH patients may 
lead to the development of hyponatremia, which is already the most 
common electrolyte imbalance encountered after SAH (3). They 
concluded that vasopressin is an independent predictor of 
hyponatremia in SAH patients. A possible explanation for this could 
be  that SAH patients have higher serum levels of endogenous 
vasopressin due to the syndrome of inappropriate anti-diuretic 
hormone (SIADH), where exogenous vasopressin further enhances 
the action of the endogenous hormone (103, 104).

Another example is the altered drug absorption secondary to 
neurological injury-induced gastrointestinal dysfunction. 
Kranawetter et al. (105) investigated the effect of SAH on the gut 
function using esomeprazole as a probe. All SAH patients in this 
study received esomeprazole via feeding tube while the control 
group swallowed it orally. Median esomeprazole AUC was eight-
folds lower in the SAH group compared to the control group (24.8 

https://doi.org/10.3389/fneur.2025.1630163
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Mahmoud et al. 10.3389/fneur.2025.1630163

Frontiers in Neurology 09 frontiersin.org

vs., 208 mg.min/L, respectively, p- value < 0.001), suggested 
significantly reduced oral bioavailability. This aligns with previous 
results suggesting reduced bioavailability of nimodipine in SAH with 
increased disease severity (high grade) (106–108). Disease severity 
itself may be  associated with bleeding, gastric reflux, decreased 
peristalsis, poor perfusion to the splanchnic region potentially 
contributing to reduced bioavailability of orally administered 
drugs (105).

In summary, it is important to consider how neurological injury 
may alter the safety and effectiveness of pre-existing treatments that 
were previously well-tolerated, as dose adjustments, route change or 
alternative therapies may be necessary.

4 Drug–drug interactions

Drug interactions are common in neurocritical care secondary to 
polypharmacy, presence of impaired organs function and altered 
protein binding (109). Interpatient variability, including genetic 
polymorphisms affecting the activity of multiple CYP enzymes, 
transporters, and other relevant proteins, also plays a crucial role. 
Additionally, patient-specific characteristics such as age, sex, race, and 
social habits can influence drug interactions (109). Mechanistically, 
these interactions can affect any stage of drug disposition, including 
any of the PK processes. PD interactions, such as synergism, 
antagonism, or receptor competition, are also common. Finally, 
physical incompatibilities, such as the formation of insoluble 
complexes, can occur, leading to a loss of drug activity (110).

A significant proportion of drug–drug interactions (DDI) occur 
at the level of hepatic drug metabolism mediated by CYP enzymes (11, 

111). Many administered medications are substrates for specific CYPs 
while simultaneously exhibiting inhibitory or inducing effects on the 
same or different CYP isoforms. Consequently, the co-administration 
of drugs impacting CYP enzyme activity frequently results in altered 
PK of other medications, often necessitating dosage optimization to 
maintain therapeutic efficacy. For instance, carbamazepine, a 
commonly used ASM, acts as a potent inducer of CYP3A4 and 
CYP2B6. Given the broad substrate specificity of CYP3A4, 
carbamazepine can lead to increased clearance and potentially 
subtherapeutic concentrations of numerous co-administered drugs 
(112). Conversely, CYP inhibitors, such as the azole antifungal 
ketoconazole, certain calcium channel blockers like verapamil, and 
proton pump inhibitors such as omeprazole, can inhibit the 
metabolism of their respective substrate drugs (113–115). This 
inhibition can result in elevated drug plasma concentrations, 
increasing the risk of adverse drug reactions and toxicity.

Several classes of medications frequently used in neurocritical 
care warrant careful consideration for potential DDIs, including ASMs 
(e.g., phenytoin, valproic acid, carbamazepine, benzodiazepines, 
barbiturates), antimicrobials (e.g., certain beta-lactams and 
quinolones), calcium channel blockers (e.g., nimodipine, diltiazem, 
verapamil), sedatives (e.g., dexmedetomidine), and opioids (e.g., 
fentanyl, morphine) (11).

Therefore, careful assessment and continuous monitoring of DDIs 
are crucial for reducing pharmacotherapy variability and enhancing 
patient safety. Adopting a strategy of prioritizing medications with a 
safer DDI profile, such as drugs primarily eliminated renally with 
minimal CYP involvement (e.g., levetiracetam compared to other 
ASMs, certain beta-lactam antimicrobials like piperacillin/tazobactam 
and cefepime, and the anticoagulant enoxaparin), can contribute to 

TABLE 3 Preclinical evidence of inflammation-induced pharmacotherapy variability for drugs relevant to neurocritical care (93, 228–236).

Drug Primary metabolism / 
Transport/Target

Inflammation impacts PK changes PD changes

Nimodipine CYP3A4

L-type calcium channels

IL-6/IL-2 suppress CYP3A4; upregulation 

of P-glycoprotein at BBB

Inflammatory suppression of calcium 

channel expression

Decreased clearance, 

increased systemic levels, 

decreased CNS penetration

Potential for decreased CNS 

efficacy despite increased 

concentrations

Potential for decreased CNS 

efficacy due to reduced receptor 

binding

Phenytoin CYP2C9, CYP2C19 Cytokine-mediated suppression of 

metabolic enzymes

Increased variability in serum 

levels (increased risk of 

toxicity)

Unpredictable therapeutic 

response

Midazolam CYP3A4 IL-6 suppresses CYP3A4 activity Drug accumulation; 

prolonged sedation

Increased sedative effects; 

delayed emergence from 

sedation

Levetiracetam Renal (OCTN1 transporter) Cytokine effects on transporter activity Potential changes in CNS 

distribution

Possible alteration in CNS 

availability

Propofol Hepatic (non-specific enzymes), 

protein binding

Inflammation reduces clearance and alters 

protein binding

Increased Free drug fraction; 

prolonged action and risk of 

toxicity

Increased risk of 

cardiopulmonary depression

Propranolol β-adrenergic receptor Downregulation of β-receptors in 

inflammatory states

- Decreased response to beta-

blockade

Nicardipine L-type calcium channels Inflammatory suppression of calcium 

channel expression

- Decreased vasodilatory efficacy

BBB, blood brain barrier; CNS, central nervous system; CYP, cytochrome P450; IL, interleukin.
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reducing the risk of interactions. However, medication selection in 
neurocritical care necessitates case-by-case approach to achieve an 
individualized therapy plan that optimizes therapeutic outcomes 
while minimizing the risk of DDIs.

5 Drug-food interactions

The interaction between drugs and nutrients is a significant 
concern in hospitalized patients, particularly in the ICU, where the 
number of prescribed medications is high (116). Drug-food 
interactions are one of the factors contributing to pharmacotherapy 
variability and is usually undermined or unrecognized.

The interaction between phenytoin and nutritional feeds is a well-
documented example of drug-food interactions that is particularly 
relevant to neurocritical care. The absorption of phenytoin is 
influenced by the nutrient composition of the meal. Specifically, high-
carbohydrate meals can enhance its absorption, whereas high-protein 
diets can diminish it (117, 118). Furthermore, binding feeds 
significantly reduce phenytoin bioavailability. To address this issue, it 
is recommended to withhold enteral feeding 2 h prior to and following 
the administration of the drug to ensure optimal bioavailability 
(118, 119).

The oral administration of certain antimicrobials can be associated 
with altered bioavailability secondary drug-food interactions. For 
instance, fluoroquinolones such as ciprofloxacin may form complexes 
with divalent cations, thereby reducing their absorption and 
subsequent bioavailability (120, 121). Consequently, it is 
recommended that ciprofloxacin be taken 1–2 h before meals and 
vitamin supplementation. Similarly, tetracyclines bind to calcium to 
form precipitates, which result in sub-therapeutic drug levels, 
extended hospital stays, and additional economic burdens (122). 
Furthermore, the bioavailability of azithromycin, a macrolide, is 
reduced by 43% when taken with food (122).

Nimodipine is another example. The nimodipine monograph 
notes a 40% reduction in nimodipine peak concentrations and double 
time to peak concentration, though overall absorption remains 
consistent, recommending administration with or without meals but 
consistently (123). In the ICU, crushing tablets for feeding tube 
delivery leads to erratic concentrations and low bioavailability (95, 
106–108, 124). Holding feeds before or after nimodipine dose is 
impractical for SAH patients who need dosing every two to 4 h. 
Further research is needed to determine the optimal nimodipine 
dosing and administration technique to maximize its benefits.

The studies assessing the clinical impact of drug-nutrient 
interactions are limited, and existing recommendations are based on 
weak evidence (125). There is a need for well-designed studies. 
Standardizing drug administration protocols in conjunction with 
enteral nutrition and developing monitoring methods are crucial steps.

6 Co-interventions

Co-interventions, therapies or procedures administered alongside 
the primary treatment, may contribute to pharmacotherapy variability 
in neurocritical care. Patients in this setting often undergo a range of 
concurrent interventions, such as mechanical ventilation, targeted 

temperature management, continuous renal replacement therapy 
(CRRT), or the use of vasopressors and sedatives, all of which can 
influence drug PK and PD. For instance, hypothermia can reduce 
hepatic enzyme activity and slow drug metabolism, while CRRT can 
increase drug clearance, particularly for hydrophilic agents with low 
protein binding. Additionally, fluid resuscitation, altered pH, and 
hemodynamic instability can further modulate drug distribution and 
efficacy. These co-interventions can modify drug exposure 
independently of the primary treatment, contributing to variability in 
therapeutic outcomes and complicating the interpretation of clinical 
trial data. Recognizing and adjusting for the impact of co-interventions 
is essential for accurate dosing, minimizing variability, and ensuring 
effective, individualized care in neurocritical patients.

6.1 Therapeutic plasma exchange

Therapeutic plasma exchange (TPE) is an extracorporeal 
treatment where blood is withdrawn from a patient’s vein, the plasma 
is separated, and the blood is subsequently returned to the patient 
with or without fluid or plasma replacement. TPE is employed in 
neurocritical care for various conditions, such as Guillain-Barré 
syndrome and myasthenic crisis. Furthermore, it can be utilized for 
drug filtration in cases of intoxication.

TPE may affect drug exposure by removing protein-bound drug 
fractions, which could potentially lead to treatment failure. The PK 
characteristics of the drug, as well as the specific attributes of the 
TPE procedure, determine the extent of drug removal during 
TPE. The volume of distribution (Vd) and plasma protein binding 
(PPB) are essential in predicting the impact of TPE on drug plasma 
concentrations (126, 127). A high Vd indicates that the drug is 
widely distributed throughout the body, resulting in a lower amount 
of the drug present in the plasma to be removed. Conversely, drugs 
with a low Vd (0.2–0.3 L/kg) are extensively extracted during the 
TPE procedure (126–128). PPB defines the fraction of the drug that 
is bound to plasma proteins and the free unbound fraction 
remaining. Highly bound drugs (>80%) are readily removed by 
TPE. For drugs exhibiting multi-compartment PK models, which 
feature distinctive distribution and elimination phases, the timing of 
the TPE procedure is critical. Conducting TPE during the drug’s 
distribution phase results in a higher likelihood of drug removal. The 
half-life (t1/2) and drug clearance are important intrinsic factors for 
drug removal from plasma. As drug clearance is not always 
mentioned in monographs, t1/2 serves as a surrogate marker for 
clearance (127–130). TPE-specific factors include the timing of TPE 
initiation, procedure duration, exchanged plasma volume, and 
frequency of the procedure. One TPE session typically lasts 2 to 3 h, 
making drugs with a t1/2 longer than 2 h more liable to extraction. 
The number of plasma volume exchanges correlates directly with the 
percentage of plasma components removed. The number of TPE 
sessions impacts drug removal, with most of the drug being removed 
in the first session, followed by a decrease in the extraction 
percentage in subsequent sessions due to the exponential nature of 
drug removal (127, 131).

Evidence reporting drug removal by TPE is scarce; however, 
utilizing the drug PK characteristics can help estimate the likelihood 
of drug extraction by TPE. Figure 3 depicts a conceptual proposed 
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tool to determine how likely drugs are removed by TPE based on the 
PK characteristics of the drug and the current evidence at the time of 
the study (127). However, this developed tool needs to be validated in 
future research.

6.2 Renal replacement therapies

Renal replacement therapies (RRTs) are not uncommon in 
neurocritical care (132). Neurological conditions often lead to 
systemic inflammatory responses and hemodynamic instability, 
predisposing patients to acute kidney injury (AKI) and necessitating 
RRT to maintain electrolyte balance, remove metabolic waste, and 
control fluid overload (133). In this context, RRT serves not only to 
support renal function but also to optimize neurological recovery by 
preventing complications like cerebral edema and electrolyte-induced 
seizures (134–136). The primary RRT modalities used include CRRT, 
preferred for hemodynamically unstable patients due to its gradual 
fluid and solute removal, intermittent hemodialysis (IHD), suitable for 
stable patients requiring efficient solute removal over a shorter time 
period, and peritoneal dialysis (PD), less common in acute 
neurocritical care but a possible alternative in some cases (135, 
137, 138).

CRRT is a form of extracorporeal blood purification employed in 
hemodynamically unstable critically ill patients, where IHD is poorly 
tolerated (139). It operates on the principles of convection and diffusion, 
continuously removing solutes and fluids across a semipermeable 
membrane via a slow, controlled process (139). Indications include AKI 
complicated by hemodynamic instability, severe electrolyte imbalances, 
and conditions necessitating strict fluid management, such as cerebral 
edema (140, 141). The gradual nature of CRRT minimizes rapid shifts in 
solute concentrations and intravascular volume, thus reducing the risk 
of cerebral perfusion pressure fluctuations and elevated intracranial 

pressure (141). However, CRRT can potentially lead to unintended 
consequences, including the removal of certain medications, 
necessitating careful drug dosing adjustments (142). Therefore, 
subtherapeutic levels of medications are frequently encountered, arising 
from the combined effects of altered PK in critically ill patients and the 
extracorporeal clearance provided by CRRT. Antimicrobials (e.g., 
vancomycin, meropenem and piperacillin-tazobactam) and ASMs (e.g., 
levetiracetam) demonstrate significant susceptibility to CRRT mediated 
removal (143). These drugs share PK characteristics, including low 
protein binding, small volumes of distribution and/or significant renal 
clearance (144). Consequently, initial recommended dosing regimens 
often result in subtherapeutic drug levels, potentially compromising 
therapeutic efficacy and increasing the risk of treatment failure. PK 
studies are increasingly focused on optimizing drug dosing during CRRT 
(143, 145–147).

IHD is an another blood purification technique that removes 
waste products and excess fluids over a shorter period, typically 3–4 h 
(139). It relies primarily on diffusion to clear solutes across a 
semipermeable membrane, driven by a concentration gradient 
between the blood and dialysate (139). In neurocritical care, IHD can 
be  utilized when rapid correction of electrolyte imbalances or 
significant fluid removal is needed, provided the patient can tolerate 
the hemodynamic shifts associated with the procedure. However, IHD 
can cause rapid changes in blood volume and electrolyte 
concentrations, potentially leading to hypotension and disequilibrium 
syndrome (neurological symptoms due to rapid solute shifts), 
potentially resulting in increased intracranial pressure (148, 149). 
Medications, especially those with low volumes of distribution and 
low protein binding may be  significantly cleared during IHD, 
necessitating careful monitoring and post-dialysis dosing adjustments 
to maintain therapeutic levels and prevent neurological complications. 
Similar to CRRT, significant research has been dedicated to optimizing 
medication dosing regimens in IHD (146).

FIGURE 3

Checklist to determine how likely drugs are removed by therapeutic plasma exchange (TPE). Mahmoud et al. (127) reproduced with permission from 
Springer Nature.
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6.3 Therapeutic hypothermia

Therapeutic hypothermia is a treatment strategy that lowers the 
body temperature intentionally to 32–34°C over a period of 12–24 h 
(150). It is used in certain conditions such as cardiac arrest, ischemic 
stroke and traumatic brain injury to limit or restore brain damage 
(150–153). It has a neuroprotective function as it decreases the brain 
damage after reduced blood flow (154). There are several 
hypothesized mechanisms by which therapeutic hypothermia could 
reduce brain injury. For example, it reduces the metabolic rate by 
6–8% per 1°C decrease in the temperature which in turn reduces the 
brain demand for oxygen. Moreover, it suppresses inflammation, as 
excessive and continuous inflammation could lead to further brain 
damage (155). Conversely, some randomized controlled trials did 
not show any outcome differences if therapeutic hypothermia was 
applied (156, 157). Therapeutic hypothermia is a three phases 
process: induction, maintenance and re-warming (155). However, 
each of these phases carries its risks, and close monitoring of the 
patient is important. In the induction phase, immediate risks such 
as electrolyte disturbance, hyperglycemia and shivering could result. 
On the other hand, monitoring of nosocomial infections and 
pressure ulcers are important in the maintenance phase. And the 
rewarming phase should be  done very slowly to avoid again 
electrolytes disturbances and risks of hypoglycemia (155). 
Therapeutic hypothermia slows down all the processes inside the 
body which in turn alters the PK and PD of some drugs variably 
between patients. From the PK point of view, it mainly affects the 
drugs metabolism and results in increasing the drug concentrations 
which in turn leads to prolonged response (158). And from the PD 
aspects it could affect target sensitivity (158).

ASMs such as phenytoin and phenobarbital could be affected by 
hypothermia (159, 160). A study examined phenytoin PK during and 
after mild hypothermia (34°C), found that phenytoin metabolism is 
inhibited by hypothermia. Additionally, phenytoin concentrations 
were higher during hypothermia compared to concentrations after 
hypothermia. In addition, there was an 180% increase in AUC and 
67% decrease in phenytoin clearance (159). This should be carefully 
monitored given that phenytoin is a drug with a narrow therapeutic 
range and any increased serum concentrations could lead to toxicity.

Sedatives and analgesics are commonly used in neurocritical care 
and therapeutic hypothermia could also impact their disposition in 
the body. To illustrate, it has been shown that hypothermia (30°C) 
significantly resulted in increased morphine concentrations in the 
plasma and cerebrospinal fluid. Moreover, it increased the mean 
residence time and lowered its clearance significantly (161). 
Hypothermia also increases the sensitivity to morphine, which could 
expose the patient to toxicity risks. As such, hypothermia has dual 
effects on morphine disposition in the body and may lead to morphine 
toxicity. Additionally, there was a significant decrease in the 
metabolism of midazolam in healthy volunteers treated with 
hypothermia. There is a positive correlation between body temperature 
and inter-compartmental clearance of midazolam, with an 11.1% 
decrease in clearance for each degree Celsius decrease in 
temperature (162).

Therapeutic hypothermia has the potential to not only limit 
cerebral damage but also impact the entire body. Consequently, it is 
essential to carefully monitor patients undergoing this treatment, and 
adjustments to medication dosages may be required.

6.4 Fluid resuscitation

Fluid resuscitation, a common intervention in neurocritical care, 
significantly contributes to pharmacotherapy variability by altering 
the PK of many drugs. Aggressive fluid administration can expand the 
extracellular fluid volume, leading to dilutional effects and increased 
volume of distribution, particularly for hydrophilic drugs such as 
beta-lactam antibiotics (163, 164). This can result in lower plasma 
drug concentrations and potentially subtherapeutic effects unless 
dosing is appropriately adjusted (164). Changes in renal perfusion and 
function caused by fluid resuscitation may also modify drug clearance, 
either increasing elimination in hyperdynamic states (e.g., ARC) or 
reducing it in cases of fluid overload and renal impairment (16). These 
changes necessitate close therapeutic drug monitoring and dose 
adjustment to ensure effective and safe pharmacotherapy in 
neurocritical care patients.

7 Practice variations

Practice variation in neurocritical care significantly impacts 
pharmacotherapy variability and clinical outcomes. Differences in 
institutional protocols, clinician preferences, and resource availability 
often lead to inconsistent prescribing practices, affecting the quality 
and uniformity of care. For instance, variations in the choice, dosing 
and administration of sedatives, ASMs, antimicrobials or 
anticoagulants can result in diverse pharmacological responses and 
safety profiles. This inconsistency can lead to underdosing, resulting 
in therapeutic failure, or overdosing, increasing the risk of adverse 
drug reactions. Reducing practice variation is critical to optimizing 
pharmacotherapy and improving outcomes in neurocritical care. 
Standardized protocols, enhanced communication across 
multidisciplinary teams, and the integration of decision-support tools 
into clinical workflows can minimize variability and ensure consistent 
application of best practices. Such measures, combined with ongoing 
education and research, can help mitigate the impact of practice 
variation, fostering more reliable and equitable patient outcomes. In 
this section we present two examples from our research, highlighting 
the impact of practice variations on patient outcomes.

7.1 Nimodipine administration techniques 
and formulations

An example of how practice variations could contribute to 
pharmacotherapy variability is the variability in nimodipine 
administration in SAH. Nimodipine is a dihydropyridine calcium 
channel blocker, characterized by being the only member of this class 
to cross the blood brain barrier and act on the cerebral vascular 
smooth muscles. Nimodipine inhibits L-type voltage gated calcium 
channels, hindering the calcium ions influx and hence a vasodilator 
effect (165, 166). Nimodipine was found to improve outcomes in SAH 
patients, therefore guidelines recommend that all SAH patients receive 
a fixed dose of oral nimodipine administered as 60 mg every 4 h for 
21 days from ictus (36, 167). To date, nimodipine is the only drug 
approved for this indication.

Many studies have indicated variability in plasma concentrations 
of nimodipine, potentially resulting in pharmacotherapy variability 
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(Figure 4). These variations have led to questions regarding whether 
all patients are receiving the optimal benefit from the administered 
dose (95, 106, 107, 168). Multiple factors could contribute to 
nimodipine pharmacotherapy variability such as: age, sex, comorbid 
conditions, drug–drug interactions, disease severity on admission, 
genetic polymorphisms, and nimodipine formulations and 
administration techniques (97). Practice variations in the 
administration techniques may result in differences in patient 
outcomes. In a single-center retrospective study comparing the 
outcomes of administering nimodipine tablets orally (PO) to 
conscious patients versus delivering the crushed tablet through a 
feeding tube (FT) to dysphagic, unconscious, or mechanically 
ventilated patients. The study found that patients who received the 
crushed tablet via the FT had a higher prevalence of moderate to 
severe vasospasm and DCI following adjustment for disease severity 

(124). A multicenter retrospective study conducted across North 
America included 727 patients from 21 hospitals to compare different 
nimodipine formulations administered enterally in terms of efficacy 
and safety. Various oral dosage forms were tested since the oral tablet 
is the only dosage form marketed in Canada, while capsules and oral 
solution are available in US institutions. For unconscious, 
mechanically ventilated, or dysphagic patients, tablets were crushed 
and administered through FT. Similarly, capsule contents were 
withdrawn from the gelatin shell using a syringe, either by pharmacists 
or nurses at the bedside, followed by emptying the syringe content into 
the FT. Thirty one percent of the patients included in the study 
developed DCI. The highest prevalence was among the group 
receiving the crushed tablet via the FT followed by the group receiving 
the liquid withdrawn from the capsule at bedside (108). From both 
studies, it is plausible to say that different formulations/administration 

FIGURE 4

Peak plasma nimodipine concentrations following oral administration (CmaxPO) of a single 60-mg nimodipine dose in healthy individuals and patients 
with liver cirrhosis and epilepsy. This figure illustrates the pharmacokinetic variability of nimodipine across studies. Mahmoud et al. (97) reproduced 
from Springer Nature under a creative commons attribution-non commercial 4.0 international license.
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techniques may not be  equivalent. Factors such as differences in 
excipient formulations, inconsistencies in medication delivery due to 
institutional practices, and altered drug bioavailability may contribute 
at least in part to the observed differences (108, 124).

7.2 Herpes encephalitis and acyclovir 
dosing

Herpes encephalitis is a fatal viral infection caused by viruses 
of the Herpesviridae family specifically herpes simplex virus and 
varicella zoster virus. It has high mortality rate of 70% without 
treatment, however, even with treatment the mortality rate is 20% 
(169, 170). Herpes encephalitis diagnosis is confirmed through 
polymerase chain reaction (PCR) testing of the cerebrospinal fluid 
to detect the presence of the virus (171). Given the severity of 
herpes encephalitis, it is crucial to start adequate antiviral therapy 
as early as possible to improve the morbidity and mortality 
(172, 173).

Acyclovir is the standard treatment of herpes encephalitis, given 
intravenously as 10 mg/kg every 8 h for 14–21 days (174, 175). It was 
first discovered in 1974 to treat cutaneous and genital herpes infection 
(176, 177); however, in 1994 it was recommended to be started in all 
patients with suspected encephalitis (172). High acyclovir 
concentrations in the body could lead to acyclovir nephrotoxicity and 
neurotoxicity (178). Acyclovir nephrotoxicity is observed as AKI due 
to precipitation of acyclovir crystals in the kidney tubules (178). 
Acyclovir induced neurotoxicity observed as hallucination, confusion 
and other neurological symptoms that also mimic herpes 
encephalitis (179).

There is a wide practice variations on what body weight to be used 
in calculating the dose specifically in obese patients (180). An abstract 
published in 1991, recommended that clinicians should use ideal body 
weight in calculating the dose to be given to obese patients (181). 
However, a pharmacist survey reported that there is a clear lack of 
uniformity to agree on a specific body weight to be used in calculating 
acyclovir dose in obese patients (182). Pharmacists tend to use 
adjusted body weight, which is the ideal body weight in addition to 
the water content of the extra fat in the patient, in overweight patients 
(182, 183). In obese patients, using actual body weight results in high 
acyclovir plasma concentrations, which may lead to toxicity (184). On 
the other hand, using ideal bodyweight could result in lower 
concentrations compared to using actual body weight in non-obese 
patients (185). There is no evidence reporting the outcomes associated 
with using different body weight. Few studies suggest that adjusted 
body weight could be used in calculating acyclovir dose in obese 
patients. In our comprehensive literature review, we suggested to use 
adjusted body weight in obese and actual body weight in 
non-obese (180).

Another important consideration when dosing acyclovir is the 
kidney function. The dosing of acyclovir in impaired kidney function 
patient is well reported, however, its dosing in adult patients with ARC 
is not well studied. A study conducted on pediatrics patients, suggests 
that patients with ARC (CLCR > 250 mL/min/1.73m2) require larger 
doses of acyclovir to get effective concentrations (186). However, there 
is a need for larger prospective studies to confirm the dosing proposals 
based on the main factors affecting acyclovir concentrations which are 
body weight to be used and kidney function.

8 Pharmacogenomics in neurocritical 
care

Pharmacogenomics, the study of how genetic variations impact 
drug response, plays a critical role in optimizing medication therapy 
(187). Neurocritical care patients often require complex treatment 
regimens involving high-risk medications with narrow therapeutic 
ranges such as sedatives, ASMs, analgesics, anticoagulants, and 
antimicrobials. As time is crucial, the proper choice of drugs 
considering any genetic variations is important to prevent any 
secondary brain injury and improve outcomes. Practitioners can 
improve drug safety and effectiveness in neurocritically ill patients by 
considering the genetics behind drug metabolism, efficacy, and 
toxicity. Of the three main areas of pharmacogenomics is metabolism, 
transporters and targets. Pharmacogenomics variations could be at the 
level of single gene involvement (monogenic) or more complex 
involving more than one gene (polygenic) (187, 188).

Around 75% of drugs are metabolized by CYP, where genetic 
variations could greatly result in drugs PK variation (189). 
Clopidogrel, an antiplatelet agent commonly used in the ICU, is 
metabolized by CYP2C19. There are 2 genetic variations in the 
CYP2C19, specifically the 2* and 3* alleles, that lead to reduced drug 
activation and increased risk of thrombotic events (190, 191). Another 
example of a drug that CYP genetic variations affect its PK and PD is 
codeine, an opioid analgesic often prescribed in neurocritical care 
(192). CYP2D6 polymorphisms could lead to either poor metabolism 
or extensive metabolism. Poor metabolism of codeine impairs its 
activation to morphine and subsequently decreases the analgesic 
effect. On the other hand, ultra rapid metabolism could lead to 
morphine toxicity (193). Moreover, in sedatives such as midazolam 
where CYP3A4/3A5 plays a significant role in its metabolism, genetic 
variations can change drug clearance, necessitating dose adjustments 
to avoid either prolonged or inadequate sedation (194).

Genetic variations in drug transporters also play a role in 
pharmacotherapy variability. For example, polymorphisms in the 
SLCO1B1 gene affect the transport of statins, which can lead to an 
increased risk of myopathy (195). Moreover, genetic variations in 
ABCB1, a p-glycoprotein transporter, could influence the transport of 
ondansetron and therefore it will result in variability in its antiemetic 
activity (196). Polygenic variations are common given the complexity and 
the interplay of several genes to drug disposition in the body. Warfarin, 
an anticoagulant medication, genetic markers like VKORC1 (target 
receptor) and CYP2C9 (metabolizing enzyme) are critical for optimizing 
its anticoagulation (197, 198). Another example is phenytoin. CYP2C9 
(metabolizing enzyme) and HLA-B (involved in hypersensitivity 
reaction) genes play a significant role in phenytoin toxicity (199, 200).

The integration of pharmacogenomics into neurocritical care 
holds great promise for transforming neurocritical care by enabling a 
precision-based approach to drug therapy, ultimately aiming to 
improve the outcomes and prevent toxicity of patients with severe 
neurological illnesses. However, this is limited by the availability and 
applicability of genetic testing in acute neurocritical care settings 
because of the time sensitivity of the setting, the cost of the testing and 
the complexity of pharmacogenomics data. Overcoming these barriers 
will require multidisciplinary collaboration, the development of 
enhanced clinical decision-support tools, and continued research to 
create a solid pharmacogenomics knowledge base for neurocritical 
care relevant medications.
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9 Patient characteristics

Patient-specific characteristics such as age, sex, race, body mass index 
(BMI), socioeconomic status and social history play a critical role in 
pharmacotherapy variability in neurocritical care. Clinicians are vigilant 
to take these characteristics into consideration when making treatment 
decisions especially for drugs that known to cause adverse effects in 
patients with specific characteristics. However, less attention is given to 
the PK/PD changes caused by variable patients’ characteristics.

Age-related physiological changes can significantly impact drug 
metabolism and clearance. It is not only the elderly patients have reduced 
renal and hepatic function, but also young adults who are admitted with 
neurological illness such as TBI are highly prone to have ARC (16).

Many factors could contribute to sex-based differences, such as 
hormonal and genetic factors. Pharmacotherapy variability could 
be  attributed to different enzyme expression, drug transport, and 
receptor sensitivity among males and females (201). For example, 
higher prevalence of ARC was observed in males (16).

Understanding the role of race in pharmacotherapy variability in the 
neurocritical illness presentations and therapy response is crucial to 
provide the best care to patients. Because of genetic variations in 
CYP3A5, an enzyme involved in nimodipine metabolism, different 
populations could have variable drug exposure depending on the enzyme 
genotype (extensive, normal, intermediate and poor metabolizers) (202).

Body weight and composition affect Vd and clearance of drugs. 
For drugs with Vd similar to the total body weight, dosing should 
carefully consider the type of body weight used. Using ideal body 
weight may result in lower concentrations due to the water content of 
fat tissues, while using actual body weight could lead to higher, 
potentially toxic concentrations. Acyclovir is an example of a drug 
requiring weight-based dosing, where the choice of weight calculation 
significantly impacts toxicity, especially in obese patients (180).

Social history such as smoking and alcoholism could greatly 
impact the drugs PK/PD in the body. Chronic alcohol intake is well 
known for its induction of CYP2E1enzyme which is involved in 
metabolizing some drugs such as acetaminophen to its hepatotoxic 
metabolite (203, 204). Gathering such information is important to 
be considered as one source of variability.

In neurocritical care, where therapeutic windows are limited and 
treatment responses can vary, it is important to consider patient-
specific characteristics to ensure safe and effective pharmacotherapy.

10 Limitations, research gaps, and 
future directions

This review is limited by its narrative format. The absence of a 
systematic search methodology may result in subjectivity and restricts 
the evaluation of the quality of the included studies. Additionally, some 
studies mentioned in this review do not provide high levels of evidence 
and their results should be interpreted with caution. Significant research 
gaps persist in understanding pharmacotherapy variability in 
neurocritical care. Limited studies have systematically characterized these 
alterations or translated findings into individualized dosing strategies. 
The use of potentially ineffective or toxic treatments, as well as suboptimal 
medication dosing, may contribute to poor patient outcomes due to the 
limited understanding of how neurological injury influences drug action 
and disposition. There is a need for precision pharmacotherapy research 

tailored to neurocritical care to optimize patient outcomes and minimize 
adverse effects. Further research is required to enhance data capture, 
characterize clinical phenotypes and their impact on pharmacotherapy 
variability, and identify biomarkers that predict and guide treatment. 
Moreover, decision-making tools need to be developed to assist clinicians 
in making timely decisions within the fast-paced environment of 
neurocritical care. It will be valuable to incorporate pharmacotherapy 
variability insights into clinical decision support system. For instance, an 
electronic health record integrated alert for dosing antimicrobials in a 
patient with high-risk factors for ARC will efficiently help the clinician to 
optimize the care. The integration of evidence generated from 
pharmacotherapy variability research with clinical, genomic, 
metabolomic, and proteomic data, utilizing machine learning, represents 
the future of precision medicine in neurocritical care. Table 4 summarizes 
research focus areas relevant to pharmacotherapy variability and 
precision medicine in neurocritical care.

11 Conclusion

Pharmacotherapy variability within neurocritical care introduces 
additional layers of complexity that may significantly contribute to 
therapy failure, adverse drug reactions, and setbacks in drug 
development. By investigating these unique complexities inherent to 
neurocritical care, we  can advance precision pharmacotherapy, 
ensuring the administration of the appropriate medication to the right 
patient at the correct dosage regimen. This approach aims to ultimately 
enhance clinical outcomes in this vulnerable population.

Clinical implications

 • Pharmacotherapy variability, the variability in drug response 
among and within individuals, complicates management in 
neurocritical care by potentially contributing to therapy failure, 
adverse drug reactions, and setbacks in drug development.

 • Clinicians should be cognizant of factors that may contribute to 
pharmacotherapy variability, including comorbid conditions, 
drug interactions, practice variations, patient characteristics, 
pharmacogenomics, and co-interventions.

 • Augmented renal clearance (ARC) in neurocritical care 
accelerates the elimination of renally excreted medications, 
risking subtherapeutic drug levels and poor treatment outcomes. 
Proper dosing for those with ARC risk factors is essential.

 • Systemic inflammation and neurological injury introduce 
variability in pharmacotherapy, complicating treatment and 
outcomes. Further research is needed in this area.

 • Clinicians should be  vigilant of drug–drug and drug-food 
interactions in neurocritical care and take appropriate measures 
to mitigate those interactions, such as holding feeds prior to 
medication administration, using alternate non-interacting 
medications, and performing therapeutic drug monitoring.

 • Co-interventions, such as therapeutic plasma exchange and 
renal replacement therapies, may reduce the systemic 
exposure of drugs, potentially leading to treatment failures. 
Clinicians should consult available evidence to determine the 
appropriate dosing and measures to mitigate the effects of 
co-interventions.
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 • Incorporating pharmacotherapy variability into treatment 
guidelines is key to reducing practice variation and advancing 
personalized care.

 • Pharmacists serve as invaluable resources in neurocritical care, 
offering drug expertise that is essential for managing and 
minimizing pharmacotherapy variability.

 • Until decision-making tools become broadly accessible, 
individualized patient assessment and monitoring are essential 
to ensure the delivery of optimal care to patients.
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