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Introduction: Epilepsy is a neurological disorder characterized by sudden, abnormal 
discharges of neuronal activity in the brain. Electroencephalogram (EEG) analysis 
is the primary technique for detecting epileptic seizures, and accurate seizure 
detection is essential for clinical diagnosis, therapeutic intervention, and treatment 
planning. However, traditional methods rely heavily on manual feature extraction, 
and current deep learning-based approaches still face challenges in frequency 
adaptability, multi-scale feature integration, and phase alignment.

Methods: To address these limitations, we propose an Adaptive Multi-Scale 
Phase-Aware Fusion Network (AMS-PAFN). The framework integrates three 
novel components: (1) a Dynamic Frequency Selection (DFS) module employing 
Gumbel-SoftMax for adaptive spectral filtering to enhance seizure-related 
frequency bands; (2) a Multi-Scale Feature Extraction (MCFE) module using 
hierarchical downsampling and temperature-controlled multi-head attention 
to capture both macro-rhythmic and micro-transient EEG patterns; and (3) a 
Multi-Scale Phase-Aware Fusion (MCPA) module that aligns temporal features 
across scales through phase-sensitive weighting.

Results: The AMS-PAFN was evaluated on the CHB-MIT dataset and achieved 
state-of-the-art performance, with 98.97% accuracy, 99.53% sensitivity, and 
95.21% specificity (Subset 1). Compared to STFTormer, it showed a 1.58% 
absolute improvement in accuracy (97.39% → 98.97%) and a 2.66% increase 
in specificity (92.55% → 95.21%). Ablation studies validated the effectiveness of 
each module, with DFS improving specificity by 6.87% and MCPA enhancing 
cross-scale synchronization by 5.54%.

Discussion: The AMS-PAFN demonstrates strong potential for clinical seizure 
recognition through its adaptability to spectral variability and spatiotemporal 
dynamics, making it well-suited for integration into real-time epilepsy 
monitoring and alert systems.
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1 Introduction

Epilepsy, a prevalent neurological disorder that affects more than 50 million people 
worldwide, is caused by abnormal electrical discharges in the brain (1). It manifests itself as 
recurrent seizures, leading to transient disturbances in consciousness and motor functions, 
and substantially impairs patients’ quality of life. Electroencephalography (EEG), which 
records brain electrical activity, is the gold standard for epilepsy diagnosis. However, manual 
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interpretation of EEG signals is time-consuming and prone to 
observer bias. Moreover, the inherent complexity, non-linearity, and 
inter-patient variability of signals make automated analysis 
particularly challenging (2, 3).

In the early stages of epilepsy prediction research, a wide range of 
machine learning (ML) algorithms were used to analyze EEG signals to 
detect patterns indicative of impending seizures. Various classifiers have 
been explored, including support vector machines (SVMs) (4, 5), which 
are effective in identifying optimal hyperplanes that separate different 
classes. Decision trees, with their intuitive if-then rule structures, provided 
interpretable classification models. The k-nearest neighbors (k-NN) 
algorithm (6) predicts outcomes based on feature similarity among data 
points, while Naive Bayes classifiers (7) offer fast probabilistic predictions, 
albeit under the simplifying assumption of feature independence. These 
early ML-based approaches typically depend on handcrafted features 
extracted from EEG recordings. Statistical descriptors, such as mean, 
variance, skewness, and kurtosis, are commonly used. For instance, 
Marzieh et al. (8) applied these features with k-nearest neighbors (k-NN) 
and support vector machines (SVMs) on the Bonn dataset, achieving high 
classification accuracy. Spectral features, such as sub-band power, were 
also widely used, as demonstrated by Bandarabadi et al. (9), who selected 
optimal sub-band power features to improve predictive performance. 
Time-frequency features extracted using empirical mode decomposition 
(EMD) and wavelet transforms were explored by Usman et al. (10) and 
Alickovic et al. (11), respectively, in combination with classifiers such as 
SVMs, k-NN, and Naive Bayes. Other studies incorporated multi-domain 
features, including time, frequency, complexity, and wavelet entropy, to 
enrich the feature space for classification (12).

When handling epileptic EEG data, each classifier has its advantages 
and disadvantages, and researchers select classifiers based on the task and 
data features. To boost the predictive performance of machine-learning 
methods, researchers have modified conventional machine-learning 
models. To address computational efficiency challenges, researchers have 
developed enhanced machine learning variants. Song et  al. (13) 
reformulated standard SVM constraints into equality forms, creating a 
least squares SVM that reduces computational load while boosting 
operational speed and performance. Separately, Yuan et al. (14) advanced 
traditional Fisher linear discriminant analysis (FLDA) by developing 
Bayesian linear discriminant analysis (BLDA) through Bayesian 
enhancements, enabling more effective parameter optimization 
compared to conventional approaches.

These traditional methods demonstrated acceptable performance; 
however, they relied heavily on manual feature engineering, which is 
both labor-intensive and inherently subjective. Moreover, the success of 
these models was largely dependent on the quality and relevance of the 
selected features (15, 16). With the advancement of deep learning, 
automatic feature extraction from raw data has become feasible, thereby 
reducing dependence on handcrafted features. Inspired by the structure 
and functionality of the human brain, deep learning is a machine 
learning approach characterized by powerful data-mining capabilities. 
Compared to traditional machine learning techniques, deep learning 
algorithms offer superior performance in terms of prediction accuracy, 
generalizability, and scalability. As artificial intelligence and deep learning 
technologies continue to evolve, the scope and direction of epilepsy 
prediction research are also expanding rapidly (17–19).

Several neural network architectures in deep learning, including 
convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), long short-term memory networks (LSTMs), and transformers, 
are capable of automatically learning hierarchical feature representations. 

Currently, a major focus of research lies in enhancing both the predictive 
accuracy and computational efficiency of these models. For example, 
Eberlein et al. (20) used one-dimensional CNNs on downsampled EEG 
to extract time-domain features. Cao et al. (21) used stacked CNNs with 
attention-based fusion mechanisms to learn hierarchical representations. 
Daoud et  al. (22) integrated deep convolutional autoencoders with 
bidirectional long short-term memory (Bi-LSTM) networks to capture 
sequential dependencies. Liang et al. (23) developed a long-term recurrent 
convolutional network (LRCN) to localize epileptic foci from scalp 
EEG. Other studies, such as those by Yang et al. (24), developed dual-
residual attention networks to enhance spatial and spectral feature 
extraction, and Jemal et  al. (25) integrated spatial filters through 
CSP-enhanced DNNs. Li et al. (26) proposed an end-to-end capsule 
network to directly extract spatiotemporal features from raw 
EEG. Transformer architectures, originally developed for natural language 
processing, have recently been adapted to EEG analysis due to their 
capacity for modeling long-range temporal dependencies and their self-
attention mechanisms (27). Bhattacharya et al. (28) pioneered the use of 
transformers in epilepsy prediction by combining SSTF for time-
frequency feature extraction with transformer-based classification. 
Rukhsar et  al. (29). presented a lightweight convolution transformer 
model that is efficient in detecting epileptic seizures across different 
patients using multi-channel EEG signals, demonstrating good 
generalization performance. Lian et  al. (30) introduced a graph 
transformer network for EEG classification, which effectively utilized the 
graph structure of EEG channels to enhance the classification 
performance of epileptic EEG. Zhu et al. (27) proposed a method that 
combines the multidimensional transformer and recurrent neural 
network for epileptic seizure prediction, achieving improved prediction 
accuracy by fusing multiple features.

The aforementioned deep learning models exhibit clear advantages 
in processing EEG signals. They are capable of automatically extracting 
discriminative features through end-to-end training, thereby 
eliminating the need for manual feature engineering inherent in 
traditional approaches. Despite these advancements, existing methods 
still face three key challenges in epilepsy detection tasks. First, the 
dynamic spectral characteristics of EEG signals require models to have 
frequency adaptability. Yet, most methods use a fixed frequency-band 
division strategy. Second, pre-seizure signals have both macro-rhythm 
fluctuations and micro-transient spikes. But existing single-scale 
models cannot handle both. Third, feature fusion in multi-branch 
networks often ignores the phase-alignment needs of different 
physiological waveforms, thus failing to fully integrate temporal 
information. To address these limitations, this paper proposes the 
adaptive multi-scale phase-aware fusion network (AMS-PAFN) for 
epilepsy recognition. Its main innovations are as follows:

First, this novel algorithm introduces a learnable dynamic 
frequency selection (DFS) module. Using the Gumbel-SoftMax 
reparameterization technique, it can adaptively allocate weighting in 
the frequency domain. In the task of epilepsy prediction, this 
mechanism can automatically accentuate the feature bands linked to 
anomalous discharges while suppressing irrelevant noise.

Second, the algorithm uses downsampling at various granularities 
to capture macrorhythm and micro-transient features. It then 
leverages multi-head attention calculations to establish dynamic 
mapping of multi-scale features. In epilepsy prediction, the module 
models both the slow-wave baseline rhythm and spike transient 
characteristics of EEG signals. Compared with single-scale features, it 
can uncover more useful information.
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Third, the algorithm introduces a phase-aware fusion module that 
addresses the timing alignment issue across different branches of a 
multi-scale network. This module assigns channel weights to features 
from multiple branches, enhancing those synchronized with key 
epileptic waveforms and suppressing asynchronous noise.

2 Methodology

This paper presents an adaptive multi-scale phase-aware fusion 
network tailored for EEG-based epilepsy recognition, with its architecture 
outlined in Figure 1. The network comprises three key modules: dynamic 
frequency (MRF) selection module, multi-scale feature extraction 
(MCFE) module, and multi-scale phase-aware (MCPA) module. 
Subsequently, we will conduct an in-depth examination and dissection 
of the structural composition of these three essential modules.

2.1 Dynamic frequency selection module

The dynamic frequency selection module adaptively enhances 
discriminative frequency components in EEG signals through a 

learnable spectral filtering process. Equation 1 shows an input EEG 
signal ×∈ B LX R , where B is the batch size and L is the sequence length. 
First, the signal was transformed into the frequency domain via the fast 
Fourier transform (FFT) (31). This decomposes the EEG signal into its 
complex-valued spectral coefficients:

 ( ) ×= ∈ B NF FFT X R  (1)

where = +/ 2 1N L  denotes the number of unique frequency bins. 
The amplitude spectrum A, calculated as the magnitude of the Fourier 
coefficients, is then derived as Equation 2:

 
×= ∈ B NA F R  (2)

Next, a frequency importance scoring network ( )⋅S , implemented 
as a two-layer perceptron with ReLU activation, processes A to 
generate logits for each frequency bin (see Equation 3).

 ( ) ( )= ⋅ ⋅ + +2 1 1 2ReLUS A W W A b b  (3)

FIGURE 1

Architecture of the adaptive multi-scale phase-aware fusion network (AMS-PAFN).
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where ×∈1
H NW R , ×∈2

N HW R  are learnable weights, ∈1
Hb R , 

∈2
Nb R are learnable biases, and H  is the hidden dimension.

The logits S are converted into probabilistic frequency 
weights using the Gumbel-SoftMax (32) operator to ensure  
differentiability, as shown in Equation 4:

 ( )τ ×= − ∈  Gumbel Softmax ; 0,1 B NW S  (4)

The Gumbel-SoftMax operator converts the discrete frequency 
selection process into a continuous optimization problem by 
introducing differentiable relaxation variables τ . This 
reparameterization technique enables gradients to flow through 
discrete decision-making layers during backpropagation, supporting 
end-to-end spectrum-adaptive learning, where the weights for each 
frequency bin k in batch b are computed as Equation 5:

 

( )( )
( )( )

τ

τ
=

+
=

+∑
,

,
,1

exp /

exp /

b k k
b k N

b j jj

s g
w

s g
 

(5)

In this formulation, kg  and jg  are noise variables 
independently sampled from ( )Gumbel 0,1 . The k and j  denote 
frequency-point indices. ( )~Gumbel 0,1g  introduces stochasticity 
for exploration, and the temperature τ  controls the sparsity of the 
weight distribution.

These weights are applied to the original Fourier coefficients F 
through element-wise multiplication to perform spectral filtering, as 
shown in Equation 6:

 = ⊗F F W  (6)

This operation suppresses non-critical frequencies while 
amplifying task-relevant components. Finally, the filtered 
spectrum 

˜
F is transformed back to the time domain via the inverse FFT 

(IFFT), as shown in Equation 7:

 
( ) ×= ∈

B LIF T F RX F
 

(7)

The output X  preserves the temporal resolution of the input 
signal but emphasizes discriminative spectral features learned through 
end-to-end optimization. The temperature τ  adaptively balances multi-
frequency enhancement (τ →∞) and sparse frequency selection 
(τ → 0), while the learned weights W  provide interpretable insights 
into frequency bands critical for the target task.

2.2 Multi-scale feature extraction

The proposed multi-scale feature fusion (MCFE) framework 
processes signals through a hierarchical cascade of operations 
designed to capture complementary patterns across scales. The specific 
extraction process is shown in Figure 2.

Beginning with multi-scale decomposition, the algorithm first 
decomposes the raw input sequence ×∈ B LX R  into three distinct 
temporal resolutions using adaptive average pooling. For each target 

scale is , the pooling kernel size is computed as = /i ik L r , yielding 
downsampled features (see Equation 8):

 ( ) ×= ∈AvgPool1D ; iB s
i iP X k R  (8)

This multi-scale decomposition ensures the preservation of fine-
grained details in the high-scale branch while enabling progressive 
abstraction in medium- and low-scale branches.

Following this spatial reduction, each downsampled sequence 
undergoes resolution-specific linear projection to map features into a 
shared latent space. The projection operation for scale si is formulated 
as Equation 9:

 = +i i i iH PW b  (9)

where ×∈ 1 D
iW R and ∈ D

ib R  are weights and biases respectively, D  
denotes the unified embedding dimension. These projections transform 
the variably sized temporal sequences into dimensionally consistent 
representations, enabling subsequent cross-scale interactions while 
preserving scale-specific characteristics through dedicated parameters.

Building upon these projected features, the framework uses a 
novel adaptive temperature-controlled multi-head attention 
mechanism to enhance discriminative pattern discovery. For each 
resolution branch iH , the attention process begins with query-key-
value (QKV) projections, as shown in Equation 10:

 ( ) × ×= ∈, , Split iB s D
i i i i qkvQ K V H W R  (10)

where ×∈ 3D D
qkvW R  is shared across resolutions to promote 

parameter efficiency. Each projected tensor is then partitioned into H 
parallel attention heads along the feature dimension Equation 11:

 

( ) ( )
× × = ⋅ + ⋅ ∈ =  

: , : , : 1 , 1,2, ,
i

DB sh Hii
D DQ Q h h R h H
H H  

(11)

with analogous splits applied to h
iK and h

iV . The core innovation 
emerges in the computation of scaled dot-product attention scores, 
where each head h incorporates a learnable temperature parameter τh 
to dynamically regulate attention sparsity, as shown in Equation 12.

 

( )
( ) ( )

( )
τ

τ λ

      =

 =

T

exp

h h
i ih

i
h

h h

Q K
S

 

(12)

where λh initialized as ( )ln /D H  This temperature scaling 
mechanism allows the model to autonomously balance between sharp 
attention distributions (emphasizing critical temporal positions when τh 
is small) and smooth distributions (capturing global context when τh is 
large). The attention weights are subsequently normalized via SoftMax 
(see Equation 13):

 
( ) ( )α × × = ∈     

max 0,1 i ih h B s s
i iSoft S

 
(13)
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which are then used to compute context vectors through weighted 
aggregation of value projections (see Equation 14):

 
( ) ( ) ( )α

× ×
= ⋅ ∈

i
DB sh h h H

i i iC V R  (14)

After processing all heads, the framework concatenates and 
linearly projects the head-specific context vectors to synthesize the 
final attention output for each scale (see Equation 15):

 
( ) ( ) = ⋅ + 

 


1Concat , , H
i o oi iA C C W b

 
(15)

where ×∈ D D
oW R  and ∈ D

ob R  denote the weight and bias of the 
linear projection.

2.3 Multi-scale phase aware

The proposed multi-scale phase aware (MCPA) module integrates 
three novel components: key waveform attention, phase-aware 
fusion, and multi-scale fusion. Achieve accurate sequence feature 
extraction and multi-scale synchronization in physiological 
signal processing.

The key waveform attention mechanism adaptively enhances 
discriminative waveform segments through learnable template 
matching. Given an input signal X , the module first synthesizes a 
hybrid convolution kernel that combines learnable base patterns 

and preset prior knowledge. The dynamic kernel ∈ k
tK R  is 

formulated as Equation 16:

 ( ) ( )α α= ⋅ + − ⋅ 0Tanh 1t bK W K  (16)

where ∈ k
bW R  denotes the trainable base template initialized 

from a normal distribution, ∈0
kK R  represents a fixed impulse kernel 

centered at the middle position, and α∈  0,1  is a learnable coefficient 
balancing between adaptability and prior knowledge. The resultant 
kernel is energy-normalized via SoftMax to ensure stable gradient 
propagation (see Equation 17):

 ( )= ∈ Softmax k
t tKK R

 (17)

This normalized kernel is then convolved with the input signal to 
compute position-wise similarity scores. To handle boundary effects, the 
input is symmetrically padded before convolution (see Equation 18):

 

( )( )
∗

  = =   
 =



ReplicatePad , , ,
2padded

padded t

kX X p p p

S X K
 

(18)

where * denotes the depth-wise convolution operator. The 
similarity scores S are transformed into attention weights through 

FIGURE 2

Multi-scale feature extraction (MCFE) module.
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SoftMax normalization, which accentuates critical waveform regions 
while suppressing noise (see Equation 19):

 ( ) ×= ∈  Softmax 0,1 B LA S  (19)

The final enhanced signal is obtained by element-wise 
multiplication with the attention weights (see Equation 20):

 
×= ⊗ ∈

B LX X A R  (20)

This learnable template matching mechanism adapts to 
morphological variations across subjects and recording conditions, 
while the fixed impulse component preserves the capability to detect 
abrupt transitions.

Based on the enhanced function of the waveform attention module, 
the phase-aware fusion module aligns the hidden features of multi-scale 
physiological signals by clearly modeling its phase relationship. The 
fusion process begins by computing their instantaneous phase 
discrepancy. A lightweight neural network estimates the signed phase 
difference at each timestep (see Equation 21):

 
( )( )∆ = ⋅ ⋅ − + +2 1 1 2Tanh iP W W A X b b

 
(21)

with parameters ×∈ /2
1

D DW R , ×∈ /2 1
2

DW R , ∈ /2
1

Db R , ∈2b R. The 
hyperbolic tangent activation ensures smooth gradient flow, while the 
final layer projects the difference onto a scalar phase offset. These 
phase differences are converted into time-varying fusion weights using 
a sigmoid gating mechanism (see Equation 22):

 ( ) × ×∆Γ = ∆ ∈ 1Sigmoid B LP R  (22)

The final fused features adaptively combine the input modalities, 
giving higher weight to the signal with better phase alignment at each 
timestep (see Equation 23):

 ( ) × ×= Γ⊗ + −Γ ⊗ ∈1 B L D
i iF A RX

 (23)

After aligning the features of each scale, the features of each scale 
are fused through the concatenation operation. Finally, the probability 
output feature of whether epilepsy occurs is obtained through an 
output projection (see Equation 24):

 ( )( )= ⋅1 2max , , , i yy Soft Concat F F F W  (24)

3 Experimental analysis

The whole simulation experiment was carried out on a computer 
equipped with NVIDIA GeForce RTX 4060, and the model was 
constructed based on the PyTorch open-source platform.

3.1 Dataset description and evaluation 
metrics

The experimental data utilized in this paper are sourced from the 
CHB-MIT EEG dataset (33). Originating from Boston Children’s 
Hospital, it comprises 24 segments of continuous EEG data from 23 
children with refractory epilepsy, totaling 844 h. There are 182 labeled 
seizure records, collected via multiple bipolar channels at a 16-bit, 
256 Hz sampling rate. Nevertheless, the dataset’s size of 42.6 GB 
presents a considerable hurdle for individual researchers lacking high-
performance computing resources. To circumvent similar constraints, 
the dataset was partitioned into smaller portions, thereby creating two 
subsets. Subset 1 consists of 7,280 samples, with 711 epilepsy seizure 
cases. Subset 2 has 8,186 samples, among which 723 are epilepsy 
seizure cases. Figure 3 shows the visualization of four samples, among 
which the first two are normal and the last two are EEG signals during 
epileptic seizures. In both subsets, the duration of the EEG signal for 
each sample is 1,228 points. Specifically, 80% of the data is used for 
model training, while the remaining 20% is reserved for testing the 
trained model.

The model’s performance is assessed using four metrics: accuracy 
(Acc), which represents the proportion of correct predictions out of 
all cases; sensitivity (Sens), also known as recall, which indicates the 
model’s ability to correctly identify positive instances; and specificity 
(Spec), which reflects the model’s capacity to correctly recognize 
negative instances; F1-score, which harmonizes precision and recall 
into a single metric and is particularly useful for imbalanced datasets. 
The specific calculation methods are as follows Equation 25:

 

+ = + + +
 = +
 =
 +

 − =

+ +
21

2

TP TNAcc
TP FP TN FN

TPSens
TP FN

TNSpec
TN FP

TPF Score
TP FP FN  

(25)

where TP denotes true positives, where positive samples are 
correctly predicted as positive. TN  signifies true negatives, indicating 
negative samples predicted as negative. FP represents false positives, 
where negative samples are incorrectly predicted as positive. FN  
stands for false negatives, meaning positive samples are wrongly 
predicted as negative.

3.2 Comparative experiment

To evaluate the efficacy of the introduced AMS-PAFN model, 
comparative experiments were performed against six state-of-the-art 
baseline models, namely SVM (5), SCNN (21), ResNet (24), 
CAE-BiLSTM (22), LRCN (23), and STFTormer (29). In the 
AMS-PAFN, the parameter settings of each module are as below. The 
input dimension of the DFS module is set to 1,228 by default, with a 
hidden layer dimension of 64 and a temperature parameter temp of 
1.0. For the MCFE module, the preset scale list is [1,228, 614, 307], 
each hidden dimension in the multi-head attention mechanism 
defaults to 64, and the number of multi-head attention heads is 4. In 
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the key waveform attention module, the convolutional kernel size is 
15, and the initial alpha parameter is 0.5. As for the phase-aware 
fusion module, the feature dimension is 64 by default. The specific 
experimental results are shown in Table 1.

Baseline model comparisons reveal the limitations of conventional 
machine learning. For instance, SVMs, reliant on manual time–
frequency feature extraction, achieve only 32.63% Spec on subset 1, 
showing static features’ high sensitivity to EMG artifacts and 
individual differences. SCNN (92.45% Acc) and ResNet (93.41% Acc), 
using single-scale convolutions, capture local temporal patterns via 
deep convolutions. Yet, their fixed-size kernels (16–64 sampling 
points) struggle to model both micro-second spikes and macro-
rhythmic fluctuations in epileptic EEG, resulting in a significantly 
lower Spec (55.32%) than AMS-PAFN (95.21%). DCAE-BiLSTM 
(95.95% Acc) enhances noise robustness through autoencoder-based 
dimensionality reduction. However, BiLSTM’s neglect of cross-
channel phase synchrony raises the false detection rate, yielding just 
75.53% Spec. LRCN (95.74% Acc), combining CNNs and recurrent 
networks to capture spatiotemporal features, lacks dynamic frequency-
domain selection. This causes generalization limitations on subset 2 
due to subject-specific frequency shifts (Spec 66.35%). STFTormer 
(97.39% Acc) extracts time–frequency features via the short-time 
Fourier transform. Still, its fixed window length and wavelet basis 
struggle to adapt to non-stationary EEG’s transient characteristics. 
Moreover, its multi-head attention mechanism does not account for 
the phase alignment of multi-scale features, leading to insufficient 
modeling of cross-frequency waveform synchrony (F1-score 0.9850 
vs. AMS-PAFN’s 0.9941).

In contrast, AMS-PAFN excels by integrating Gumbel-SoftMax 
frequency-domain adaptation in its DFS module, multi-granularity 
temporal modeling (at 1228/614/307 sampling rates) in its MCFE 

module, and phase-aware fusion in its MCPA module. This 
comprehensive optimization, covering frequency-domain selection, 
cross-scale feature extraction, and temporal alignment, gives 
AMS-PAFN significant advantages in dynamic performance (Sens 
99.53%), interference resistance (Spec 95.21%), and generalization 
(cross-dataset Acc 98.84%).

To assess the differences in model evaluation metrics, each model 
underwent 10 cycles of training and testing, with paired t-tests used 
to evaluate the significance of variations in evaluation metrics 
between our designed model and others. The null hypothesis for the 
paired t-test posits that there is no difference between the evaluation 
metrics of our designed model and those of others. Conversely, the 
alternative hypothesis suggests that a significant difference exist. 
Table  2 presents the test results. Given that the p-values are 
substantially less than 0.05, the null hypothesis is rejected. This 
indicates that the superiority of the evaluation metrics is 
statistically significant.

3.3 Generalization experiment

To verify the generalization ability of the AMS-PAFN model, a 
random division strategy of mixed datasets was adopted. All samples 
from the two datasets were merged and globally shuffled 20 times. 
Each time, the training and test sets were divided into a preset ratio of 
8:2 for experiments. This mixed division approach breaks the 
distribution boundaries between the original datasets. It forces the 
model to learn general patterns from a training set with features from 
diverse sources. Meanwhile, it tests the model’s cross-dataset 
adaptation ability on a test set with mixed sources. The detailed results 
are shown in Figure 4.

FIGURE 3

Visualization of normal and epileptic EEG signals.

https://doi.org/10.3389/fneur.2025.1631064
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liang et al. 10.3389/fneur.2025.1631064

Frontiers in Neurology 08 frontiersin.org

As demonstrated in the generalization experiment (Figure 4), 
the AMS-PAFN model exhibits remarkable stability and 
generalization. Across 20 trials with random splits of the mixed 
dataset, it achieved an average test accuracy of 98.72% ± 0.31% 
and maintained an F1-score of 0.992 ± 0.003. These metrics 
indicate that the model can effectively adapt to diverse 
data distributions.

3.4 Ablation experiment

To evaluate the contributions of each component to the 
AMS-PAFN model, an ablation study was implemented. The primary 
objective was 2-fold: first, to reveal the role of each component, and 
second, to illustrate how the AMS-PAFN model leverages the 
synergistic benefits of these modules. By doing so, it achieves a 
higher level of accuracy. The specific ablation models are listed 
as follows:

 (1) Ablation model 1 (AB1) is the original model (ORI) stripped 
of the DFS module. Instead, the raw EEG signal is truncated 
through downsampling to create multi-scale signals for 
feature extraction.

 (2) Ablation model 2 (AB2) omits the MCFE module from the 
original model. After the frequency selection by the DFS 
module, downsampling is skipped. Instead, feature extraction 
is conducted directly via a multi-head attention module on a 
single branch. The subsequent multi-scale fusion part is 
also removed.

 (3) Ablation model 3 (AB3) excludes the MCPA module. After the 
MCFE module extracts features, the subsequent multi-scale 
fusion part is directly carried out.

Ablation studies show that removing any module reduces 
performance, highlighting their importance to the model. Removing 
the DFS module (AB1) lowers specificity (Spec) in subset 1/2 by 
6.87%/6.71%, showing it effectively suppresses noise and strengthens 
epilepsy-related frequency bands. Removing the MCFE module (AB2) 
significantly reduces Acc and F1-score (a 4.24% drop in Subset 1 Acc), 
indicating that multi-scale feature extraction is crucial for capturing 
macroscopic and microscopic rhythms. Removing the MCPA module 
(AB3) decreases Spec by 5.54%/5.09%, reflecting that the phase 
alignment module enhances cross-scale waveform synchrony. The 
original model (ORI) achieves the highest metrics on both datasets 
(Acc 99.87%/98.84%, F1-score 0.9941/0.9934), proving the synergistic 
effect of the three modules: DFS refines frequency-domain 

TABLE 1 Performance comparison of AMS-PAFN and baseline models on subsets 1 and 2.

Dataset Metrics Models

SVM SCNN ResNet DCAE-
BiLSTM

LRCN STFTormer AMS-
PAFN

Subset 1

Acc (%) 90.25 92.45 93.41 95.95 95.74 97.39 98.97

Sens (%) 97.89 98.82 99.05 98.97 98.61 98.11 99.53

Spec (%) 32.63 50.00 55.32 75.53 70.00 92.55 95.21

F1-score 0.9463 0.9579 0.9636 0.9770 0.9760 0.9850 0.9941

Subset 2

Acc (%) 90.59 92.18 92.73 95.17 95.30 96.27 98.84

Sens (%) 99.58 99.23 99.16 99.65 99.51 99.37 99.86

Spec (%) 28.85 43.75 43.75 43.75 66.35 75.00 91.83

F1-score 0.9487 0.9568 0.9597 0.9730 0.9736 0.9790 0.9934

TABLE 2 Statistically significant (α = 0.05) on subsets 1 and 2.

Dataset Metrics Model T-statistic p-value Statistically significant

Subset 1

Acc

STFTormer vs. AMS-PAFN −3.8264 0.0004 Yes

DCAE-BiLSTM vs. AMS-PAFN −8.8724 5.3974e-07 Yes

SCNN vs. AMS-PAFN −22.3651 4.1178e-21 Yes

Sens

STFTormer vs. AMS-PAFN −3.7457 0.0026 Yes

DCAE-BiLSTM vs. AMS-PAFN −4.9811 5.3151e-05 Yes

SCNN vs. AMS-PAFN −15.4624 1.5740e-16 Yes

Subset 2

Acc

STFTormer vs. AMS-PAFN −3.3412 0.0024 Yes

DCAE-BiLSTM vs. AMS-PAFN −7.3154 2.1548e-06 Yes

SCNN vs. AMS-PAFN −22.4884 5.8456e-18 Yes

Sens

STFTormer vs. AMS-PAFN −4.5487 0.0007 Yes

DCAE-BiLSTM vs. AMS-PAFN −12.8795 3.5648e-13 Yes

SCNN vs. AMS-PAFN −18.2287 5.5485e-11 Yes
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representations, MCFE fuses multi-scale spatiotemporal features, and 
MCPA ensures cross-branch phase consistency, collectively boosting 
the robustness and generalization of epilepsy detection.

3.5 Sensitivity analysis of key 
hyperparameters

To verify the model’s robustness to key hyperparameters, four core 
parameters were selected for sensitivity experiments: the temperature 
parameter τ of the DFS module, the preset scale list of MCFE, the 
number of attention heads H, and the initial α parameter of 
MCPA. This study systematically analyzed the sensitivity of four key 
model hyperparameters. These hyperparameters are the temperature 
parameter τ of the DFS module (test range [0.1, 0.5, 1, 2]), the 
granularity configuration of MCFE’s multi-scale decomposition (three 
sets of [coarse[614, 307]/baseline[1,228, 614, 307]/ f ine[1,228, 819, 
614, 409, 307]]), the number of attention heads H [(2, 4, 8)], and the 
template mixing coefficient α of MCPA’s phase alignment ([0.3, 0.5, 
0.7]). Using the control variable method, other module parameters 
were fixed on the Subset1 validation set while each target parameter 
was adjusted in turn. The aim was to evaluate the effects of different 
parameter combinations on accuracy, sensitivity, specificity, and 
F1-score. Figure 5 presents the detailed results.

To test the model’s robustness to key hyperparameters, this study 
systematically evaluated four crucial parameters:

Dynamic frequency selection (DFS module) temperature parameter 
τ: The model performed best on subset 1 when τ = 1 (Acc = 98.97%, 
F1-score = 0.9941). A very low τ (0.1) caused overly sparse frequency-
band selection, dropping Spec by 6.87%. A very high τ (2) weakened 
frequency-band discrimination, increasing artifact interference.

Multi-scale feature extraction (MCFE module) granularity: The 
baseline three-scale configuration [1,228,614,307] was optimal. 
Compared to the coarse two-scale scheme, Spec increased by 8.98%. 
However, when using a fine 5-scale configuration, computational cost 
jumped by 42% for just a 0.85% Acc gain, proving medium-granularity 
features are most efficient.

Number of attention heads (H): H = 4 was best. It achieved 
99.53% Sens by capturing diverse temporal patterns. When H 
increased to 8, the reasoning delay climbed by 37% with no significant 
performance improvement.

Phase-aware fusion (MCPA module) template mixing coefficient 
α: α = 0.5 was optimal, balancing prior waveform knowledge and data-
driven adaptability. Its Spec (95.21%) was much better than that of 
pure learning-driven (α = 0.7, Spec = 92.34%), showing that domain 
knowledge guidance is important in physiological signal processing.

Overall, the model was highly robust when τ ∈ [0.5, 1.5] and H ∈ 
(4, 6), with Acc fluctuating by less than 1.2%. This provides a reliable 
parameter fault-tolerance range for clinical deployment.

4 Conclusion

This study presents the adaptive multi-scale phase-aware fusion 
network (AMS-PAFN), a novel deep learning framework designed to 
address critical challenges in EEG-based seizure recognition. By 
integrating three innovative modules—dynamic frequency selection 
(DFS), multi-scale feature extraction (MCFE), and multi-scale phase-
aware fusion (MCPA)—the proposed model effectively captures the 
spectral, temporal, and phase-aligned features of epileptic EEG signals. 
Experimental validation on the CHB-MIT dataset demonstrates the 
superiority of AMS-PAFN over existing methods, achieving 98.97% 
accuracy, 99.53% sensitivity, and 95.21% specificity. The DFS module 
enhanced frequency adaptability through Gumbel-SoftMax-based 
spectral filtering, while the MCFE module leverages multi-scale 
attention to model both macro-rhythmic fluctuations and micro-
transient spikes. The DFS module’s 6.87% specificity improvement over 
non-adaptive filtering (Table 3) addresses a critical limitation in existing 
frequency-static approaches. The MCPA module further improves 
robustness by aligning phase discrepancies across scales, as evidenced 
by a 5.54% gain in specificity in ablation studies. Cross-dataset 
generalization tests confirm the model’s stability, with an average 
accuracy of 98.72 across randomized splits. These results indicate strong 
potential for AMS-PAFN’s integration into clinical workflows, 
particularly for real-time seizure monitoring and early-warning systems. 
The high specificity and sensitivity rates highlight its capability to reduce 
false alarms while ensuring critical seizure events are not missed.

The model’s 95.21% specificity (Table  1) demonstrates strong 
potential for reducing false alarms in ICU monitoring systems, where 
current clinical thresholds typically require >90% specificity to avoid 
alarm fatigue. The 99.53% sensitivity meets the clinical standard for 
seizure detection systems (≥95% per ILAE guidelines). Phase-aware 

FIGURE 4

Generalization performance across mixed datasets.
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fusion’s 5.54% specificity gain (ablation study) suggests particular 
utility in pediatric cases with muscle artifact interference.

While AMS-PAFN demonstrates promising results, several 
avenues warrant exploration. First, extend the framework to 
multimodal physiological signals to enhance seizure prediction 
reliability. Second, investigate real-time implementation to address 
latency constraints in clinical settings. Third, incorporate explainability 
mechanisms to improve transparency for medical practitioners.
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