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Posterior cortical atrophy (PCA) is most frequently an atypical variant of Alzheimer’s 
disease that primarily manifests through visual symptoms of cortical origin. 
This review provides a comprehensive overview of neuroimaging in PCA, 
addressing key anatomical and clinical aspects as well as characteristic findings 
across different imaging modalities. It is intended for non-radiologist clinicians 
and radiologists who may encounter cognitive dysfunction less frequently, aiming 
to enhance early recognition and accurate interpretation of imaging studies.
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Highlights

 • Posterior cortical atrophy is most often a visual variant of Alzheimer’s 
disease, with predominant involvement of occipitoparietal and occipitotemporal  
cortices.

 • Neuroimaging evaluation, including MRI and PET, is fundamental for early detection 
and diagnosis.

 • Dorsal and ventral visual streams explain the clinical heterogeneity in PCA presentations.
 • Visual rating scales (such as the Koedam scale) and automated volumetry assist in 

quantifying regional atrophy.
 • FDG and Tau PET imaging provide the closest correlation with clinical symptoms. 

Amyloid PET does not reflect clinical localization.
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1 Introduction

The first description of a focal, visuospatial predominant form 
of Alzheimer’s disease (AD) was made by Cogan (1). Three years 
later, Benson et al. (2) proposed posterior cortical atrophy (PCA) 
as a clinico-radiological syndrome characterized by relatively 
isolated, progressive dysfunction of posterior cortical regions (2). 
Clinically, PCA manifests with features of Bálint’s syndrome 
(simultanagnosia, optic ataxia, ocular apraxia), Gerstmann’s 
syndrome (acalculia, agraphia, right–left disorientation, finger 
agnosia), as well as alexia, visual agnosia, and transcortical sensory 
aphasia, accompanied by imaging evidence of occipitoparietal and 
occipitotemporal atrophy (3).

Although episodic memory, executive function, and language 
abilities are relatively preserved in the early stages, they 
progressively deteriorate as the disease advances, converging toward 
the clinical profile of typical Alzheimer’s dementia (2, 4). AD is 
indeed the most common underlying pathology in PCA, accounting 
for 62 to 100% of autopsy-confirmed cases (5–8), with an atypical 
distribution of lesions: PCA patients exhibit a higher burden of 
amyloid plaques and, more notably, neurofibrillary tangles in 
posterior cortical regions (9), and most particularly in parietal 
cortex (10).

The strong pathological association between PCA and AD — even 
stronger than that seen in the amnestic presentations — has led PCA 
to be recognized as a canonical atypical (visual) variant of AD (11). 
PCA accounts for approximately 5% of AD cases in memory clinics 
(12, 13), although diagnosis is often delayed and misdiagnosis is not 
rare (14).

Over the past two decades, the phenotype of PCA has been 
better characterized. Visual field defects, which were thought to 
be  rare, are now recognized as relatively common (8, 15, 16). 
Furthermore, a consensus classification has been proposed to 
distinguish between “pure PCA” and “PCA-plus” phenotypes, 
aiding in the estimation of the likelihood of non-AD 
pathology (15).

Given the advent of disease-modifying therapies for AD — 
although at the time of writing not explicitly approved for PCA — 
accurate and early diagnosis of this syndrome is crucial (17). The 
diagnosis of PCA involves a two-step process: clinical characterization 
followed by neuroimaging assessment. Neuroimaging remains 
challenging in clinical practice, as general neurologists may not always 
recognize subtle changes in visual regions of the brain, and general 
radiologists may be unfamiliar with complex visual syndromes.

This paper introduces a fresh perspective through the 
integration of functional neuroanatomy with radiological 
interpretation and structured visual neuroimaging analysis for 
practical use. The article establishes detailed connections between 
dorsal and ventral visual stream dysfunction and particular 
neuroimaging results while highlighting essential anatomical 
markers which standard clinical practice tends to miss. The 
authors support the use of validated grading scales (Koedam and 
GCA scales) together with volumetric methods for structured 
visual inspection to improve both early and accurate diagnosis. 
The review targets general neurologists and radiologists by 
providing practical diagnostic guidance for atypical AD cases, 
which becomes crucial during the time of emerging disease-
modifying therapies.

2 Anatomy and functional 
organization of the visual cortex

The human visual system can be defined as the apparatus that 
enables the psychological experience of visual perception. Visual 
perception results from a complex sequence of processes, including 
the reception, processing, and interpretation of visual information. 
The visual cortex is organized hierarchically, allowing basic visual 
features to be  processed in early visual areas, progressing toward 
complex object, face, and visuo-spatial discrimination in higher-order 
cortical regions (18–20).

The primary visual cortex (V1) surrounds the calcarine sulcus on 
the medial surface of the occipital lobe. It is the first cortical area to 
receive visual input from the geniculocalcarine tract, which originates 
in the lateral geniculate nucleus. V1 is organized in a retinotopic 
manner and has a complex structure made up of vertical 
“hypercolumns” each of which receives input from a specific region of 
the retina of, predominantly, one eye. The neurons making up these 
columns are specialized in analyzing the orientation of luminance 
contrast defined borders, and also color and motion. From V1, 
information is transmitted along subcortical white matter to 
secondary visual areas (V2, V3, V4 and V5), which integrate visual 
signals and process the perception of motion, depth, color and 
contours (18, 19, 21). Damage to early visual areas, such as V1, results 
in cortical blindness although residual vision may be present as a 
result of parallel projections to subcortical and cortical regions. Of 
particular interest to PCA are the direct projections to the motion area 
(V5) which are likely to be the basis of the Riddoch phenomenon 
(preserved detection of motion) commonly seen in PCA (22)1.

Two major pathways emerge from the occipital lobe: the dorsal 
and ventral streams.

2.1 Dorsal stream–“where” pathway

The dorsal stream projects superiorly from the occipital cortex 
toward the posterior parietal lobe, particularly the parieto-occipital 
junction and intraparietal sulcus. This pathway is specialized in 
processing spatial location, movement direction, visuospatial 
attention, and visuomotor coordination, including eye movements 
(18, 19), whereas damage to more posterior parietal regions can lead 
to Bálint syndrome (23).

In PCA, dorsal stream impairment is associated with symptoms 
such as spatial disorientation, simultanagnosia, navigation difficulties, 
and optic ataxia (24).

2.2 Ventral stream–“what” pathway

The ventral stream also originates in occipital areas but 
extends anteriorly toward the inferior temporal lobe, involving 
structures including the fusiform gyrus (lateral occipitotemporal 
gyrus). This pathway is responsible for the recognition of shapes, 
colors, faces, and objects and plays a central role in visual 
recognition (18, 19).

1 Maia da Silva MN, James-Galton M, Green C, Plant GT. Homonymous 

Hemianopia in Posterior Cortical Atrophy: right-left Asymmetry, Progression over 

Time and Relationship to the Classical Neuropsychological Deficits. (In submission).
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In PCA, ventral stream degeneration may leads to 
clinical manifestations such as prosopagnosia, alexia, and visual 
agnosia (25). Recognizing the clinical-anatomical correlation between 
symptoms and ventral pathway degeneration is essential to differentiate 
PCA from other neurodegenerative syndromes.

3 Neuroimaging of the visuospatial 
system

3.1 Occipital lobe anatomy: complexity and 
clinical implications

The occipital lobe is the smallest and most posterior lobe of the 
cerebral hemispheres (excluding the insular lobe) (26, 27). Situated 
posterior to the temporal and parietal lobes, anterior to the occipital 
bone, and superior to the cerebellar tentorium, its most notable 
functional components are the primary and secondary visual 
cortices. Its anatomical boundaries include the parieto-occipital 
sulcus medially, and an imaginary vertical line extending from the 
pre-occipital notch to the parieto-occipital sulcus laterally (28). On 
the medial surface, it is bordered by the longitudinal fissure 
separating the two cerebral hemispheres (29). The lateral surface of 
the occipital lobe shows significant variability, marked by a complex 
sulcal and gyral pattern, complicating systematic identification in 
clinical practice (28, 30, 31). In contrast, major sulci such as the 
calcarine sulcus, parieto-occipital sulcus, occipitotemporal sulcus, 
and collateral sulcus are more consistently identifiable.

Koutsarnakis et  al. (31) studied the variability of these 
structures in human brains, identifying the lateral occipital sulcus 
and intra-occipital sulcus in 100% of specimens (31). The 
transverse occipital sulcus was present in 88% of cases, while the 
inferior occipital sulcus appeared in only 15%. Based on these 
findings, the authors proposed a standardized anatomical 
nomenclature for clinical and educational use. These results were 
corroborated by Alves et al. (30), who emphasized the importance 
of the transverse occipital sulcus and intra-occipital sulcus as 
landmarks in the analysis of the lateral occipital convexity (30).

3.2 Key neuroimaging features in 
visuospatial system evaluation

Magnetic resonance imaging (MRI) plays a critical role in 
detecting regional atrophy patterns suggestive of visuospatial 
dysfunction syndromes, such as PCA, most frequently caused by AD 
(3, 18, 19). Identifying anatomical landmarks on neuroimaging is 
essential for correlating lesion topography with clinical symptoms 
(Figure 1).

The primary visual cortex (V1), corresponding to Brodmann 
area 17, lies along the calcarine sulcus within the lingual and cuneus 
gyri, forming a well-defined band of gray matter (19, 32). The 
“calcarine” name refers to the “stria of Gennari,” a distinct 
histological band of white matter fibers visible to the naked eye (33). 
This is cortical layer IV, which identifies the major white matter 
input to cortex. The input comprises such a large number of fibers in 
V1 that, uniquely, the layer is visible with the naked eye and on 
imaging (34).

Secondary visual areas (V2 and V3), corresponding to 
Brodmann areas 18 and 19, surround V1 within the occipital 
lobe and are involved in higher-order visual processing, although 
they lack a clear anatomical boundary identifiable on MRI 
(28, 32).

4 Patterns of atrophy in posterior 
cortical atrophy

PCA can exhibit diverse clinical-anatomical patterns, including 
dorsal (occipitoparietal), ventral (occipitotemporal), and polar 
(predominantly occipital) presentations (3, 35). Early identification 
of atrophy and asymmetry (36) in these regions is critical 
for diagnosis.

On MRI, key anatomical landmarks for analysis include:

 • Medial surface: parieto-occipital sulcus, calcarine sulcus; cuneus 
and lingual gyri.

 • Inferior surface: lateral occipitotemporal sulcus, collateral sulcus; 
fusiform and parahippocampal gyri.

 • Lateral surface: intra-occipital sulcus, lateral occipital sulcus, 
transverse occipital sulcus; superior, middle, and inferior 
occipital gyri.

For regions without established specific atrophy scales, it is 
recommended to refer to the Global Cortical Atrophy (GCA) 
scale (37, 38). We recommend using the GCA scale landmarks to 
systematically assess the main sulci and gyri of the occipital 
lobe, aiming to detect subtle atrophy and asymmetries. 
Applying a validated scale enhances the early detection of 
structural changes.

4.1 Definitions of key occipital sulci

Understanding the anatomy of occipital sulci is crucial for 
accurate structural MRI analysis in PCA:

 • Intra-occipital sulcus: Continuation of the intraparietal sulcus 
beyond the parieto-occipital sulcus, easily identified on the brain 
convexity. It separates the superior and middle occipital gyri 
(30, 31).

 • Lateral occipital sulcus (Middle Occipital Sulcus): A transverse 
sulcus located posterior to the parieto-occipital sulcus, emerging 
near the occipitotemporal junction on the superolateral cerebral 
surface (28, 30, 31, 39).

 • Transverse occipital sulcus: Crosses the lateral occipital surface 
and assists in separating the superior occipital gyrus from the 
middle occipital gyrus (31).

5 Neuroimaging assessment using 
visual scales and volumetry

Advanced imaging techniques, including subjective visual rating 
and automated volumetry, have been increasingly utilized to localize 
and quantify atrophy patterns in PCA.
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On visual inspection, marked volume reductions in the occipital 
and parietal lobes are typically observed, sometimes extending to 
specific temporal regions. Studies demonstrate predominant atrophy 
in parietal, parieto-occipital, and temporo-occipital areas, often 
asymmetrically favoring the right hemisphere, and involving the 
posterior cingulate gyrus, precuneus, and inferior parietal lobule (23, 
35) (Figures 2A–F).

5.1 Visual rating scales

Visual rating scales offer an efficient and cost-effective 
approach to support clinical diagnosis (37). The Koedam Posterior 
Atrophy Scale evaluates atrophy across sagittal (posterior 
cingulate sulcus, parieto-occipital sulcus, precuneus), coronal 
(posterior cingulate sulcus, parietal lobe), and axial planes 

(posterior cingulate sulcus, parietal gyri), with scores ranging 
from 0 (no atrophy) to 3 (severe atrophy) (40). A modified visual 
scale emphasizing parieto-occipital sulcus widening has shown 
good reproducibility in differentiating PCA from typical AD (41). 
Careful evaluation of the parieto-occipital sulcus width is crucial 
for the early detection of occipital atrophy on MRI.

In addition to the Koedam posterior atrophy scale, the GCA scale 
can be  used to assess diffuse or regional cortical atrophy in a 
systematic manner. The GCA is a semi-quantitative visual rating tool 
applied to axial T1-weighted MRI images, scoring cortical atrophy in 
frontal, temporal, parietal, and occipital lobes. Each region is graded 
from 0 (no atrophy) to 3 (severe atrophy), allowing a global 
assessment that is especially useful when specific rating scales for 
posterior regions are not available. This approach improves diagnostic 
sensitivity and reproducibility in clinical settings and has shown good 
interrater reliability (37, 38).

FIGURE 1

Main anatomical landmarks in the posterior region. Images were acquired using a GE scanner with a magnetic field strength of 1.5 Tesla. A pre-contrast 
T1-weighted sequence was used to highlight the alterations in A,C,D, while a T2-weighted sequence was used to highlight the alteration in B. 
(A) Supramarginal gyrus and angular gyrus; (B) Intra-occipital sulcus separating the superior occipital gyrus from the middle occipital gyrus, and lateral 
occipital sulcus separating the middle occipital gyrus from the inferior occipital gyrus; Precuneus (parietal lobe); cuneus and lingual gyrus (occipital 
lobe); (D) Marginal sulcus of the cingulate anterior to the precuneus, parieto-occipital sulcus separating the parietal lobe from the occipital lobe, and 
calcarine sulcus separating the cuneus from the lingual gyrus.
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5.2 Automated MRI Volumetry

Automated volumetric analysis enables precise quantification of 
regional brain volumes, identifying characteristic PCA patterns such as 
predominant right parietal superior and occipital lobe atrophy (4, 42). 
Techniques like voxel-based morphometry (VBM) and cortical 
thickness analysis reveal significant gray matter reductions and assist in 
differential diagnosis. Combining automated methods and visual rating 
scales notably improved the explained variance in diagnostic predictions 
of cognitive impairment, especially regarding measures of posterior 
atrophy (43). Despite its advantages in objectivity and reproducibility, 
volumetric analysis remains less accessible due to higher costs and 
technical requirements compared to visual rating scales (Figure 2G).

6 PET imaging findings in PCA

Functional imaging with PET modalities reveals specific patterns 
of metabolism and pathology in PCA.

6.1 Fluorodeoxyglucose PET

FDG-PET typically shows hypometabolism in the parieto-
occipital regions, mirroring structural degeneration and tau 
deposition, but not strongly correlated with amyloid pathology. 
This metabolic pattern corresponds to visuospatial deficits 
characteristic of PCA (44–46) (Figure 2H).

While primary visual cortex hypometabolism is more 
typical of Lewy body dementia (LBD) than it is of “typical” AD 
(47, 48), PCA also exhibits hypometabolism which is 
however, more asymmetric and extends into parietotemporo-
occipital regions, with relative preservation of medial 
occipital metabolism. This creates the so-called ‘occipital tunnel 
sign’ on sagittal FDG-PET images, which occurs in both 
conditions (49).

Another distinguishing feature is the “cingulate island sign,” 
reflecting relative preservation of posterior cingulate 
metabolism, more commonly associated with Lewy body 
dementia (50).

FIGURE 2

Main anatomical changes in posterior cortical atrophy. Images were acquired using a GE scanner with a magnetic field strength of 1.5 Tesla. A pre-
contrast volumetric T1-weighted sequence was used to highlight the alterations from (A) to (F), as well as for volumetric analysis. (A) Atrophy of the 
posterior parietal region; (B) Enlarged parieto-occipital sulcus and calcarine sulcus; (C) Right intra-occipital sulcus wider than the left; (D) Cuneus 
atrophy; (E) Precuneus atrophy; (F) Right lateral occipital sulcus wider than the left; (G) Volumetry; (H) FDG PET: Bilateral posterior parietal 
hypometabolism in a case of mild cognitive impairment due to synucleinopathy, with visuospatial deficits.
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6.2 Amyloid PET

Amyloid deposition appears diffusely across the neocortex, 
showing poor correlation with clinical symptoms or hypometabolic 
patterns, reinforcing the concept of amyloid as a disease marker rather 
than a clinical phenotype determinant (51, 52). Therefore, it does not 
distinguish PCA from amnestic AD.

6.3 Tau PET

Tau PET imaging shows selective retention predominantly in 
occipitoparietal areas — regions directly implicated in PCA clinical 
manifestations. Tau distribution correlates well with both 
hypometabolism and symptom severity, serving as a more accurate 
marker of clinical phenotype. High tau load consistently localizes to 
posterior brain regions in PCA (44, 51–53).

6.4 Advanced imaging techniques not 
incorporated into clinical practice

Diffusion tensor imaging (DTI) and functional magnetic 
resonance imaging (fMRI) methods have also been applied to PCA 
to investigate structural and functional connectivity, respectively. 
Although they are not routinely used in clinical practice, they have 
so far helped to better understand the neural correlates of PCA and 
suggest some distinctive features in regard to related conditions. For 
instance, as compared with amnestic AD patients, patients with 
PCA have different patterns of white matter connectivity change 
within the spectrum of AD, with the more significant differences in 
the right posterior regions in PCA patients (54). White matter 
connectivity may also distinguish PCA patients from LBD patients, 
in whom no significant white matter degeneration is seen (55). On 
the other hand, functional connectivity studies show considerable 
overlap between PCA and LBD patients, although some distinctive 
features may be seen, notably reduced within-network connectivity 
in the dorsal and ventral default-mode network in PCA 
patients (56).

7 Conclusion

PCA represents a critical but often underdiagnosed variant of 
AD. A structured and anatomically informed approach to 
neuroimaging interpretation is essential for early and accurate 

diagnosis. Knowledge of the visual system’s organization and 
careful evaluation of atrophy patterns, metabolic changes, and 
molecular imaging findings enable differentiation of PCA from 
other dementias and appropriate management planning.

As emerging disease-modifying treatments become more widely 
available, the early identification of atypical presentations like PCA 
will play an increasingly vital role in clinical practice.
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