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Introduction: The prediction of postherpetic neuralgia (PHN) is of great
clinical significance. PHN prediction based on machine learning have received
extensive attention in recent years. This study aims to conduct a comprehensive
evaluation of machine learning in PHN prediction and provide guidance for the
future models.

Method: The system retrieved the relevant literatures published in the PubMed,
Web of Science, Embase and Cochrane Library databases from the establishment
of the database to May 2025. Literature screening and data extraction were
conducted in accordance with the PRISMA guidelines. According to the
heterogeneity, the fixed-effect or the random-effect model was selected for
data synthesis. The potential sources of heterogeneity were further explored
through subgroup analysis, sensitivity tests and meta-regression. Funnel plots
and Deeks' tests were used to evaluate the possible publication biases.

Result: The main meta-analysis included 41 models from 14 studies. The
results showed that machine learning demonstrated excellent performance
in predicting PHN (sensitivity: 0.81, 95% confidence interval (Cl): 0.74-0.86;
specificity: 0.84, 95% Cl: 0.79-0.88; area under the curve: 0.90, 95% CI:
0.87-0.92). Meta-regression analysis indicates that the source of the data set,
model selection, and the choice of predictors are the main reasons leading
to heterogeneity. Subgroup analysis showed that the training set model
outperformed the validation set model. Logistic regression and other machine
learning had varying strengths and weaknesses. Serum data or omics analysis
did not significantly enhance model performance.

Conclusion: Machine learning represents a promising approach for the prediction
of PHN. However, most of the existing models face issues like lack of external
validation, overfitting, and insufficient reporting standardization. This has raised
doubts about whether the current PHN prediction models can still maintain a
high prediction accuracy when extended to external data. To improve future
models, we recommend conducting strict external validation, clearly reporting
cutoff values (balanced, positive, and negative), and adhering to international
predictive model reporting standards. When applicable, ensemble learning and
pain trajectory analyses should also be considered.

Systematic review registration: This study was registered in the Prospective
Register of Systematic Reviews (PROSPERO; CRD420251054364).
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1 Introduction

Herpes zoster (HZ) is caused by the reactivation of the varicella-
zoster virus (VZV), the lifetime prevalence rate of HZ worldwide is
25-50% (1). Postherpetic neuralgia (PHN) is the most common
complication of HZ, usually defined as pain that persists for more than
90 days after the HZ rash heals (2). The incidence of PHN varies from
5 to 20% among different age groups (3). PHN has a significant impact
on both the quality of life and the economy of patients (4).

The adjuvanted herpes zoster subunit vaccine has been proven to
have good safety and efficacy and is suitable for the prevention of HZ
and PHN (5). However, the actual vaccination rate situation is deeply
worrying. A meta-analysis shows that less than half of the people
indicated their willingness to get vaccinated against shingles. The
main reasons for the low willingness to be vaccinated include: lack of
trust in the effectiveness and safety of the shingles vaccine, economic
burden issues, and lack of understanding of vaccine information (6).
In this situation, a large number of people are at risk of PHN, which
makes accurate prediction of PHN remain an important goal that
needs to be achieved in clinical practice.

In recent years, the application of machine learning (ML) in the field
of medicine has become increasingly widespread (7). In the field of
predicting PHN, most ML prediction models take whether PHN occurs
as the binary classification result and are constructed using the predictors
collected by patients at their first visit. From the perspective of clinical
application, compared with traditional statistical methods, the results
output by ML have more practical application value because they can
provide direct support for clinical decision-making. For instance, for
patients whose ML predicts they may suffer from PHN, doctors can
implement more effective pain intervention measures to reduce the
probability of PHN occurrence, thereby achieving the goal of
Pprecise treatment.

A large number of studies have reported PHN ML prediction models
constructed based on their own datasets. However, due to the high
sensitivity of machine learning models to data, the current models may
have problems such as overfitting and limited generalization ability. At
present, there is a lack of systematic reviews on the effectiveness of ML in
predicting PHN. Therefore, in this study, we used meta-analysis to
conduct a comprehensive evaluation of the predictive value of ML for
PHN. The aim is to evaluate the advantages and limitations of current ML
models in predicting PHN, systematically summarize the types of models
and predictors used, and provide research directions and improvement
suggestions for the development of future models.

2 Methods
2.1 Research design

This study was conducted in accordance with the Preferred
Reporting Item for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (8). The PRISMA checklist can be seen from

Supplementary Table 1. This study was registered in the
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Prospective Register of Systematic Reviews (PROSPERO;
CRD420251054364).

2.2 Search strategy

Articles published between the establishment of the databases and
May 2025 were retrieved in PubMed, Web of Science, Embase and the
Cochrane Library databases. We constructed the retrieval strategy
based on the PICO principle (population, intervention, control, and
outcomes). Population: patients with HZ. Intervention: establish ML
model for predicting PHN. Control: the gold standard for diagnosing
PHN. Outcomes: The predicted result, including true positive (TP),
false positive (FP), true negative (TN) and false negative (FN). The
research on search strategies is summarized in Supplementary Table 2.

2.3 PICOS framework

The parameters of this systematic review, as defined by the PICOS
framework, were as follows:

Participants: Patients clinically diagnosed with HZ or those with
a disease code of HZ.

Index: Utilizing ML to analyze data of patients with HZ for the
prediction of PHN.

Comparator: Prognostic factor (occurrence of PHN vs.
non-occurrence of PHN after HZ).

Outcome: The accuracy of predicting the occurrence of PHN in
HZ patients based on their clinical characteristics.

Study design: Studies with cohort, case-control, and cross-
sectional designs.

2.4 Eligibility criteria

Inclusion criteria: 1. All the included literatures were published in
English. 2. The included study adopted the clear definitions of HZ and
PHN. The population was patients diagnosed with HZ, and the model
endpoint was set as the onset of PHN. 3. Modeling was carried out
using at least one ML method. 4. Reporting data that can infer TP, FP,
TN and FN of the model.

Exclusion criteria: 1. Duplicate studies, non-English publications,
and studies with missing or non-convertible data were excluded. 2.
Studies that only reported the corresponding risk factors of PHN
using logistic regression (LR) but did not model for prediction
were excluded.

Titles and abstracts of potentially eligible studies were screened by
two independent researchers (Zheng Lin and Hongfei Wang), and the
disagreement were resolved by the third independent researcher
(ChenXi Ma). Subsequently, the full text of these studies was
systematically assessed to further confirm whether they met the
inclusion criteria.
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2.5 Data collection

For the publications included in the analysis, two independent
researchers (Zheng Lin and Wang Hongfei) systematically collected
the following information: 1. basic information about the study,
including authors, publication year, country, study design, sample size,
and diagnostic criteria for HZ and PHN. 2. Information related to the
models, including the dataset, model type, and predictors. 3. The
performance indicators of the model, including the area under the
curve (AUC), sensitivity, specificity, TP, FP, TN and FN.

2.6 Assessment of risk of bias

The Prediction Model Risk of Bias Assessment Tool (PROBAST)
is suitable for evaluating the risk of bias and applicability of the
original studies for the development or validation of multivariate
diagnostic/prognostic models (9). Two independent researchers
(Zheng Lin and Wang Hongfei) used the PROBAST to evaluate each
included study, and the disagreement were resolved by the third
independent researcher (ChenXi Ma).

2.7 Statistical analysis

All analyses in this study were done based on Stata 14.0 (Stata
Corporation, Texas, United States) and R 4.4.2 (R Foundation for
Statistical Computing, Vienna, Austria).

The main statistical measures used in meta-analysis were
sensitivity and specificity. Draw the Summary Receiver Operating
Characteristic (SROC) curve summarized by the sensitivity and
specificity of each study. The diagnostic value of the ML is reflected
through the Fagan diagram and the distribution scatter diagram and
evaluated by positive likelihood ratio (PLR) and negative likelihood
ratio (NLR).

IA2 was used to evaluate the heterogeneity level of the included
studies. When the 12 is less than 50%, the fixed-effect model is
selected. When IA2 was greater than or equal to 50%, the random
effects model is selected. If the heterogeneity among studies is
significant, potential sources of heterogeneity are explored through
sensitivity analysis and meta-regression. Further subgroup analyses
were conducted on studies that adopted different dataset types, model
types, and types of predictors. Publication bias was evaluated using
funnel plots and Deeks’ test.

3 Results

3.1 Study selection and study
characterization

According to our search strategy, a total of 5,183 relevant
literatures were retrieved. After eliminating 829 duplicate literatures,
a preliminary screening was conducted on the remaining 4,354
literatures. By reviewing the titles and abstracts, 4,279 literatures that
did not meet the inclusion criteria were excluded. Subsequently, a full-
text search and evaluation were further conducted on the remaining
75 literatures. Among them, 47 articles were excluded because the
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research results were not applicable to the topic of this study, 10
articles were excluded because ML methods were not used for
modeling, 3 articles were excluded because the research subjects did
not meet the requirements, and another 1 article was excluded because
the data was unavailable. Ultimately, 14 literatures were included in
the meta-analysis (10-23). The process of literature retrieval is shown
in Figure 1.

Among the 14 included studies, 6 were prospective cohort studies,
and the remaining 8 were retrospective cohort studies or cross-
sectional studies. These studies involve four countries: Germany,
Japan, South Korea and China. Among them, only one study was
published in 1998, while the rest were all published after 2019. The
total sample size included 16,514 patients with HZ and 2,726 patients
with PHN. Regarding the definition of PHN, two studies defined it as
pain that persisted for 1 month after the rash healed, 11 studies
defined it as pain that persisted for 3 months after the rash healed,
while one study did not clarify the definition of PHN it used. The basic
information of this research can be found in Supplementary Table 3.

A total of 41 model performance metrics were generated in 14
studies. Among them, 24 were developed based on the training set, 16
were verified through the internal validation set, and only 1 model
completed the external validation. In terms of the frequency of use of
ML methods, LR (11 times) is the most common, followed by random
forest (7 times), linear regression (5 times), support vector machine (5
times), gradient boosting (4 times), artificial neural network (3 times),
K-nearest neighbor (2 times), and Bayesian layering (2 times). The top
three in terms of the frequency of use of predictors were age (34
times), tumor (21 times), and NRS/VAS score (19 times). The
summary of the characteristics of these models is presented intuitively
in Figure 2.

3.2 Risk of bias and suitability assessment

After PROBAST’s assessment (Supplementary Table 4), all 14
studies had a certain degree of risk of bias, but most of the studies
showed good applicability. Furthermore, all the studies have certain
deficiencies in statistical analysis. Among them, 12 studies did not
report the calculation process of the required sample size, 4 studies did
not report the handling method of missing data, 7 studies did not
evaluate the model according to the PROBAST standard, and 11
studies did not consider the risk of model overfitting. Besides, three
studies also show obvious bias tendencies in the selection of predictors.

3.3 Meta-analysis of model performance

We synthesized the performance of 41 models using the random
effects model. The results (Figure 3) showed that the sensitivity of ML
in predicting PHN was 0.81 (95% confidence interval (CI): 0.74-0.86),
and the IA2 was 98.74% (p < 0.001). The specificity was 0.84 (95% CI:
0.79-0.88), and the 112 was 99.63% (p < 0.001). Furthermore, the
SROC curve (Figure 4) showed that the AUC value of ML for
predicting PHN was 0.90 (95% CI: 0.87-0.92).

The Fagan plot (Figure 5) shows that HZ patients determined as
positive by the ML model have an 80% probability of developing PHN,
while the probability of HZ patients determined as negative by the
model developing PHN is only 20%.
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FIGURE 1

PRISMA flow chart.

The distribution scatter diagram (Figure 6) shows that the PLR of
ML for predicting PHN is 5.17 [95%CI: 3.94-6.76], with a NLR of 0.22
[95%CL: 0.17-0.30].

3.4 Subgroup analysis

We conducted a detailed subgroup analysis, the subgroups
included the comparison between the training set and the validation
set, the comparison between LR and other ML methods, the
comparison between clinical indicators and clinical indicators with
serum indicators and omics analysis, the comparison between
prospective cohort and retrospective cohort. Additionally, a subgroup
was defined where PHN was defined as postherpetic pain lasting more
than 3 months after HZ (Table 1).

The results of subgroup analysis showed that on the training set,
the predictive performance of the ML model for PHN was sensitive
(0.81 [95% CI: 0.70-0.89]), specific (0.88 [95% CI: 0.81-0.92]), and
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AUC (0.92 [95% CI: 0.89-0.94]; Supplementary Figure 1). On the
validation set, the predictive performance of the ML model for PHN
was sensitivity (0.81 [95% CI: 0.75-0.86]), specificity (0.78 [95% CI:
0.71-0.84]), and AUC (0.87 [95% CI  0.83-0.89];
Supplementary Figure 2).

The results of subgroup analysis showed that the predictive
performance of the LR model for PHN was sensitive (0.84 [95% CI: 0.78-
0.88]), specific (0.73 [95% CI: 0.65-0.80]), and AUC (0.86 [95% CI: 0.83~
0.89]; Supplementary Figure 3). The predictive performance of the other
ML model for PHN was sensitivity (0.78 [95% CI: 0.66-0.87]), specificity
(0.90 [95% CL 0.86-0.93]), and AUC (0.93 [95% CL 0.90-0.95];
Supplementary Figure 4).

The results of subgroup analysis showed that the predictive
performance of the model constructed using clinical indicators for PHN
was sensitive (0.82 [95% CI: 0.72-0.89]), specific (0.82 [95% CI: 0.70-
0.90]), and AUC (0.89 [95% CI: 0.86-0.91]; Supplementary Figure 5). The
predictive performance of the model constructed by comprehensively
using clinical indicators, serum indicators, and omics analysis for PHN
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FIGURE 2
The model category, the dataset utilized, and the predictors included.

20 30
Value

was sensitivity (0.81 [95% CI: 0.72-0.87]), specificity (0.85 [95% CI: 0.80-
0.89]), and AUC (0.90 [95% CI: 0.87-0.92]; Supplementary Figure 6).

The results of subgroup analysis showed that the predictive
performance of the model constructed using prospective cohort for PHN
was sensitive (0.87 [95% CI: 0.82-0.90]), specific (0.69 [95% CI: 0.61-
0.76]), and AUC (0.88 [95% CI: 0.84-0.90]; Supplementary Figure 7). The
predictive performance of the model constructed by comprehensively
using retrospective cohort for PHN was sensitivity (0.78 [95% CI: 0.68—
0.85]), specificity (0.88 [95% CI: 0.83-0.91]), and AUC (0.90 [95% CI:
0.88-0.93]; Supplementary Figure 8).

The results of subgroup analysis showed that the predictive
performance for PHN of the model constructed using studies which is
defined PHN as pain persisting for more than 3 months after HZ was
sensitive (0.81 [95% CI: 0.73-0.87]), specific (0.85 [95% CI: 0.80-0.89]),
and AUC (0.90 [95% CI: 0.87-0.93]; Supplementary Figure 9).

3.5 Sensitivity test and meta-regression

The sensitivity test (Supplementary Figure 10) indicated that even
after re-meta-analysis after removing any one study, the results
remained robust.

Meta-regression analysis (Figure 7) indicates that model type, dataset
type and predictor types are the main sources leading to heterogeneity.

3.6 Publication bias

The results of the Deeks’ test showed that there was a certain
publication bias in this study (p < 0.01). Funnel plot analysis further
indicates that there is asymmetry in the literature distribution on both
sides of the regression line (Figure 8).
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4 Discussion
4.1 Summary of meta-analysis evidence

This meta-analysis integrates the existing evidence and covers 41
models generated from 14 studies. The results show that the use of ML
to predict PHN has high efficiency. The comprehensive sensitivity and
specificity of ML are both greater than 0.8, which is more effective
than single indicators such as age and pain score or the neuropathic
pain scale (24, 25). This indicates that the precision medicine strategy
based on ML has potential value in managing PHN.

4.2 Discussion on the selection of
predictors

Among the studies included in the meta-analysis, age, pain score
and tumor history were the most commonly used indicators. These
three indicators have been repeatedly verified as key factors closely
related to PHN (26, 27). Therefore, when developing PHN prediction
models in the future, we suggest that at least these three indicators
should be included in the initial screening indicator library.

Furthermore, the currently developed PHN models generally
regard the pain score of patients at their first visit as an important
predictor. However, the pain trajectory of HZ patients may also be of
great significance for the prediction of PHN. The results of a
prospective study based on the community population verified the
potential value of pain trajectories in the prediction of PHN (28). The
latent category trajectory model, as a method of ML, can divide
heterogeneous populations into several homogeneous patterns or
categories, thereby effectively describing the pain trajectories in the HZ
patient group and further being used for the risk prediction of PHN
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Forest plot - The sensitivity and specificity of machine learning in predicting postherpetic neuralgia

Author (year) T FP FN TN y S y (95%Cl) ifi P y (95%CI) Model Data set Predictors

Meister Wetal. 1998 122 292 9 212 t+1 0.93 [0.87, 0.97] Il 042038, 047) LR Internal validation set Clinical factors

Wang XXetal 2020 117 11 8 366 = 0.94 [0.88, 0.97] M 097095099 RF Training set Clinical factors

Wang XXetal 2020 111 23 14 354 F=1 0.89[0.82, 0.94] N 094[091,09] LR Training set Clinical factors

Wang XXetal 2020 17 § 2 3 H 0.89[0.67, 0.99] =1 088(0.74,096] RF Extemal validation set Clinical factors

Li T et al. 2020 94 37 40 88 HH 0.7 [0.62, 0.78] HH 0.7 [0.62. 0.78] RF Internal validation set Clinical factors, serological indicators
Yang X et al. 2021 2.1 1+ 2 +0.96[0.8, 1] = 059[043,073) LR Training set Clinical factors

Yang X et al. 2021 23 u 2 32 =1 0.92 [0.74, 0.99] - 07[054,082] LR Training set Clinical factors, serological indicators
Kinouchi Metal. 2021 27 23 19 433 H 0.59[0.43,0.73] M 095[093,097] BHM Training set Clinical factors

Kinouchi M et al. 2021 16 18 24 201 = 04025 057] 4 0.92[0.87, 095] BHM Internal validation set Clinical factors

ZhangJetal. 2022 119 71 23 519 =i 0.84(0.77, 0.89] M 088[0.8509] SW Internal validation set Clinical factors

Zhang J et al. 2022 119 130 23 460 k=i 0.84[0.77, 0.89] lo 078074, 081] LR Internal validation set Clinical factors

Zhou R et al. 2022 A% | SR —=10.95[0.75, 1] l—)—’—l 0.8[0.56, 0.94] SWw Training set Metabolomics

ZhouRetal 2022 16 4 4 16 - 08056, 094] - 08[056,0.34] LR Training set Metabolomics

Zhou R et al. 2022 18 4 2 16 0.9(0.68, 0.99] HP—i 0.8 [0.56. 0.94] RF Training set Metabolomics

LuL et al. 2023 24 9 4 23 (—=- 0.86 [0.67, 0.96] —p—  0.72[0.53, 0.86] LR Training set Metabolomics

LuLetal 2023 13 4 1 122 }—'I 0.93[0.66, 1] I—'H 075[048,093] LR Internal validation set Metabolomics

Lin Z et al. 2024 156 38 24 201 I« 0.87[081, 091] o 0.84[0.79, 0.88) LR Training set Clinical factors, serological indicators
Lin Z et al. 2024 153 34 27 205 t= 0.85[0.79, 0.9) o 086[0.81,09] KNN Training set Clinical factors, serological indicators
Lin Z et al. 2024 149 4 31 195 k= 0.83[0.76, 0.88] = 0.82[0.76, 0.86] SVM Training set Clinical factors, serological indicators
Lin Z et al. 2024 169 3 1 236 f+ 0.94 [0.89, 0.97] #099[0.96, 1] GBOT  Training set Clinical factors, serological indicators
Lin Z et al. 2024 156 38 24 201 = 0.87[0.81,091] 4 084079, 088] NN Training set Clinical factors, serological indicators
Lin Z et al. 2024 m 7 T 22 #099(0.97, 1] H097[094,099 RF Training set Clinical factors, serological indicators
Lin Z et al. 2024 4 1" 5 45 =4 09[0.78,0.97] =< 08[068 09] LR Internal validation set Clinical factors, serological indicators
Lin Z et al. 2024 40 9 s & F.-I 0.82(0.68, 0.91] H 084[072,092]  KNN Internal validation set Clinical factors, serological indicators
Lin Z et al. 2024 37 12 12 4 H*1 0.76 [0.61. 0.87] =1 0.79[0.66, 0.88] SVM Internal validation set Clinical factors, serological indicators
Lin Z et al. 2024 A 8 82 F'-i 0.84(0.7,0.93] ++1093[083,098] GBOT Internal validation set Clinical factors, serological indicators
Lin Z et al. 2024 42 9 4 47 =4 0.86[0.73, 0.94] |-+ 084072 092 NN Internal validation set Clinical factors, serological indicators
Lin Z et al. 2024 42 10 7 46 =1 0.86[0.73, 0.94] 0382[0.7.0.91] RF Internal validation set Clinical factors, serological indicators
Cai M et al. 2024 56 65 6 82 =4 0.9 (0.8, 0.96] a4 0.56 [0.47, 0.64] LR Training set Clinical factors, serological indicators
CaiMet al. 2024 51 11 11 76 F'-I 0.82([0.7,091] las) 052[043,06) LR Internal validation set Clinical factors, serological indicators
WangCetal. 2024 279 791 114 1236 M 0.71[0.66,075] W 061[059,063] LM Training set Clinical factors

WangCetal 2024 275 750 118 1277 |“| 0.7 [0.65, 0.74] Ll 063[061,065 LM Internal validation set Clinical factors

HuHMetal 2024 40 43 12 79 He4 077063, 087 ol 065[056,073] LM Training set Clinical factors

JangYetal 205 42 28 10 %4 i 081[067,09] [ 077[063.084 M Training set Intestinal flora

Jiang Y et al. 2025 4 n 8 92 |-=1 0.85[0.72, 0.93] t~  0.75[0.66, 0.82] M Internal validation set Intestinal flora

Park SJetal 2025 324 638 477 7439 Ll 04037, 044] 4 092[091,093] LR Training set Clinical factors, serological indicators
Park SJetal 2025 450 1518 351 6559 L] 0.56 [0.53, 0.6] { 08108 082 SVM Training set Clinical factors, serological indicators
Park SJetal 2025 250 339 551 7738 L} 0.31(0.28, 0.35) #096[09509)] GBOT  Training set Clinical factors, serological indicators
Park SJ et al. 2025 70 105 731 7972 MW 0.09 [0.07, 0.11] 0.99 [0.98, 0.99] NN Training set Clinical factors, serological indicators
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(29). Therefore, we suggest that more attention be paid to the pain
trajectory of patients with HZ in future research and clinical practice.
In the subgroup analysis, no significant performance differences
were observed between the models constructed based on clinical
indicators and those constructed in combination with clinical
indicators, serum indicators or omics analysis (AUC 0.89 [95% CI:
0.86-0.91] vs. 0.90 [95% CI: 0.87-0.92]). Some indicators, although
they may improve the performance of the model to a certain extent, are
rarely adopted in clinical practice. This prompts us to further explore
how to achieve an effective balance between model performance
optimization and the complexity of predictors. The achievement of this
goal requires more high-quality research for in-depth exploration.

4.3 Discussion on the selection of ML
methods

Among the included literature, LR is widely used as the main ML
method. This might be attributed to its relatively simple structure,
which is easy to understand and more acceptable to medical
professionals (30). A meta-analysis summarized the differences in
predictive efficacy between LR and other ML methods, and pointed
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out that LR has similar predictive performance to other ML methods
(31). In this study, we found that in the field of predicting PHN, the
predictive efficacy of the LR model was generally comparable to that
of other ML methods. Among them, the LR model shows higher
sensitivity (0.84 [95% CI: 0.78-0.88] vs. 0.78 [95% CI: 0.66-0.87]),
while other ML models demonstrate better specificity (0.90 [95% CI:
0.86-0.93] vs. 0.73 [95% CI: 0.65-0.80]). Therefore, on the premise
of fully explaining the model, the performance advantages of other
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FIGURE 5
Fagan nomogram the meta-analysis of predicting postherpetic
neuralgia using machine learning.
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ML models over LR models in the field of predicting PHN remain a
highly controversial topic.

Ensemble techniques typically integrate multiple ML algorithms
through methods such as bagging, boosting, stacking, and voting,
thereby balancing the strengths and weaknesses of ML (32).
We suggest that if the constructed PHN ML models have their own
advantages and disadvantages in terms of performance indicators, the
ensemble learning method can be attempted to be adopted to integrate
the advantages of different ML algorithms, thereby further improving
the overall performance of the models.

4.4 Discussion on model overfitting and
the balance between sensitivity and
specificity

In the subgroup analysis of the meta-analysis, we observed that
the performance of the ML model on the training set was significantly
higher than that on the test set (AUC 0.92 [95% CI: 0.89-0.94] vs. 0.87
[95% CI: 0.83-0.89]). This result indicates that the currently published
PHN prediction models may have a certain degree of overfitting risk.
Meanwhile, in the validation set, the specificity of predicting PHN
decreased significantly (0.88 [95% CI: 0.81-0.92] vs. 0.78 [95% CI:
0.71-0.84]). This means that when applied to external datasets, the
PHN prediction model has a certain false positive rate. Furthermore,
most studies do not adopt external validation methods, which leads
to considerable uncertainty in the performance evaluation of these
models on external data. Therefore, in the future development process
of PHN models, we suggest comprehensively applying strategies such
as external validation, cross-validation, and resampling. These
methods have been widely proven to significantly enhance the
generalization ability of the model (33).

Besides, we observed that the models constructed based on
prospective cohorts performed worse than those based on
retrospective cohorts (AUC 0.88 [95% CI: 0.84-0.90] vs. 0.90 [95% CI:
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TABLE 1 Subgroup analysis based on dataset, model, and predictor.

10.3389/fneur.2025.1632682

Subgroup analysis Sensitivity Specificity Area under the curve
Dataset
Training set 0.81 [0.70-0.89] 0.88 [0.81-0.92] 0.92 [0.89-0.94]
Validation set 0.81 [0.75-0.86] 0.78 [0.71-0.84] 0.87 [0.83-0.89]

Model

Logistic regression 0.84 [0.78-0.88]

0.73 [0.65-0.80] 0.86 [0.83-0.89]

Other machine learning 0.78 [0.66-0.87] 0.90 [0.86-0.93] 0.93 [0.90-0.95]
Predictor
Clinical factors 0.82 [0.72-0.89] 0.82 [0.70-0.90] 0.89 [0.86-0.91]

Add serological indicators or omics 0.81 [0.72-0.89]

0.85[0.80-0.89] 0.90 [0.87-0.92]

analysis

Cohort
Prospective cohort 0.87 [0.82-0.90] 0.69 [0.61-0.76] 0.88 [0.84-0.90]
Retrospective cohort 0.78 [0.68-0.85] 0.88 [0.83-0.91] 0.90 [0.88-0.93]

year —| -
**model Yes | ———&—F————
No — —_— -
*dataset Yes —.
No — s
*predictors Yes - —
No — -
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H 0.93
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*p=0.05, **p=0.01, ***p=0.00"

FIGURE 7
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0.88-0.93]). This might be because the risk of bias in retrospective
data is higher, and thus the risk of overfitting in the models built from
retrospective data is also higher. Therefore, we suggest that future
research should, as far as possible, adopt the strategy of prospective
cohort studies.

We have noticed that in the process of model development,
many researchers often face the problem of balancing sensitivity
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and specificity (34). For instance, in the development of the PHN
ML model, a study from South Korea reported that their model
demonstrated low sensitivity (<0.6) and high specificity (>0.9)
(23). In fact, based on the ROC curve drawn in this study,
researchers were fully able to achieve a balance between sensitivity
and specificity by adjusting the cut-off value. To solve this problem,
we suggest that in the future when developing PHN prediction
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1000

models, at least three cutoff values should be reported to meet
different clinical needs. The first one is the balanced cutoff value,
which is used to determine whether PHN occurs. The second one
is called the positive cutoff value. This cutoff value should ensure
that the sensitivity is higher than 90% without overly focusing on
specificity. The third one is called the negative cutoff value. This
cutoff value should ensure that the specificity is higher than 90%
without overly focusing on the sensitivity. By introducing these
three cut-off values, more comprehensive support can be provided
for clinical decision-making.

4.5 Discussion on the clinical application of
machine learning in PHN prediction

In recent years, numerous advanced pain management
techniques, such as spinal cord stimulation and stellate ganglion
block, have demonstrated efficacy in preventing the onset of PHN
(35-37). When integrated with efficient machine learning models,
these interventions can generate synergistic effects. HZ patients
identified by machine learning models as being at high risk for
developing PHN can be prioritized for advanced pain management
strategies to reduce the likelihood of PHN occurrence, whereas
those classified as low-risk can be managed with conventional
treatment approaches. This integrated approach enables optimal
patient care in a cost-effective manner.

However, despite the good performance demonstrated by
current PHN prediction models, their applicability to external
datasets remains uncertain due to the absence of external
validation, non-standardized reporting formats, and limited
sample sizes used in model development. We suggest that future
development of PHN prediction models should involve at least two
independent cohorts and strictly follow the TRIPOD guidelines to
ensure standardized reporting of predictive models (38).

Frontiers in Neurology

4.6 Limitations

Despite rigorous search and systematic evaluation, this meta-
analysis still has several limitations that cannot be completely avoided.
Firstly, the heterogeneity among the included studies was relatively
high. The difference between ML models and traditional diagnostic
tests lies in the different built-in parameters and cutoff values of each
model. ML is more sensitive and more susceptible to the influence of
data quality, which leads to significant heterogeneity among ML
models. The meta-regression indicated that this might stem from
differences in datasets, model selection, and predictor definitions. In
the future, this issue can be addressed by adopting a more rigorous
standardized reporting framework for predictive models and using
larger sample sizes to improve model quality. Secondly, some studies
did not strictly follow the standard norms of the prediction model
reports, and the vast majority of studies lacked external validation
(39). Therefore, a cautious attitude should be maintained when
interpreting the performance of these studies. Finally, the included
studies showed significant publication bias, which might lead to a
certain degree of overestimation of the conclusions regarding ML
performance in this study. More high-quality research is urgently
needed in the future to further verify and supplement the
current findings.

5 Conclusion

ML is a promising tool for predicting PHN. The PHN prediction
model based on ML shows high prediction accuracy and performs
better than a single indicator or traditional scales. However, most
models generally face problems such as the lack of external validation,
the existence of overfitting phenomena, and insufficient reporting
standardization. This has raised concerns regarding the ability of the
PHN prediction model to maintain high accuracy when applied to
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external populations. In the future development of PHN models,
we recommend implementing strict external validation, clearly
reporting balanced cutoff values, positive cutoff values, and negative
cutoff values, and adhering to international norms for predictive model
reporting (such as the TRIPOD guidelines). Meanwhile, when necessary,
introduce ensemble learning methods and pain trajectory analysis. The
aim is to further improve the generalization ability and practical
application value of the model.
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