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Ferroptosis is a distinctive form of regulated cell death that is closely associated 
with various neurodegenerative disorders. In recent years, an increasing number 
of studies have demonstrated the crucial role of ferroptosis in the development 
and progression of epilepsy. Firstly, this article will review the existing research 
on the specific biological mechanism of ferroptosis in nerve injury, particularly in 
epilepsy, encompassing iron metabolism disorders and alterations in the expression 
of ferroptosis-related proteins. Secondly, with regards to treatment, this article 
will explore the application of ferroptosis inhibitors in antiepileptic therapy and 
their potential therapeutic effects. Additionally, it will focus on investigating the 
interaction between ferroptosis and existing antiepileptic drugs as well as the 
potential impact of strategies regulating ferroptosis on epilepsy treatment. Finally, 
we will evaluate both the progress made and limitations encountered in current 
research while proposing possible future directions for further exploration at the 
intersection of ferroptosis and epilepsy fields. These studies not only contribute 
to a better understanding of epileptic pathological mechanisms but also hold 
promise for providing novel insights and strategies for treating epilepsy.
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1 Introduction

Epilepsy is a chronic neurological disorder characterized by recurrent seizures, which arise 
from aberrant and generalized electrical activity in the brain (1). Globally, epilepsy affects 
approximately 50 million individuals and has a prevalence of 0.5 to 1% among children, 
significantly impairing their quality of life. Epilepsy remains insufficiently understood by 
many, with certain social contexts stigmatizing it as “abnormal” or “defective.” Moreover, apart 
from the individual level impact, the resource-intensive nature of epilepsy treatment and 
necessary support services during rehabilitation substantially contribute to the social and 
economic burden (2). The etiology of epilepsy is intricate and diverse, encompassing genetic 
factors, brain injury, infection, and structural abnormalities of the central nervous system. 
However, despite significant advancements in the diagnosis and treatment of epilepsy, 
approximately 30–40% of patients remain unresponsive to existing antiepileptic drugs (3). 
Consequently, there exists an urgent imperative to explore novel therapeutic targets 
and strategies.

Ferroptosis, characterized as an iron-dependent form of programmed cell death, represents 
a regulated mechanism of cellular demise triggered by iron-catalyzed lethal lipid damage. It 
significantly diverges from conventional pathways of cell death (such as apoptosis and 
autophagy) and was initially reported and elucidated by Dixon et al. (4, 5). The regulation of 
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ferroptosis signaling pathways encompasses the control of iron 
homeostasis, RAS pathway, and cystine transport pathway. 
Dysregulation in these pathways can contribute to the occurrence of 
ferroptosis. Although the underlying mechanism remains elusive, 
ferroptosis exhibits several distinctive features: ① Alterations in cell 
morphology are prominent during ferroptosis, characterized by 
reduced mitochondrial size, increased membrane density, diminished 
or absent mitochondrial cristae, and potential disruption of the outer 
membrane. However, discernible changes in nuclear morphology are 
not observed (6). ② Metabolic perturbations: Enhanced lipid 
peroxidation leading to excessive reactive oxygen species (ROS) 
accumulation represents a hallmark feature of ferroptosis. 
Concurrently, intracellular levels of ferric ions also accumulate (7). ③ 
Impaired glutathione peroxidase function: Deficiency in the membrane 
lipid repair enzyme glutathione peroxidase (GPX4) results in ROS 
buildup on membrane lipids (8). Although the specific regulatory 
networks governing these features remain elusive, ferroptosis primarily 
encompasses three factors: aberrant iron ion metabolism, depletion of 
REDOX glutathione (GSH)/ GPX4/ cystine-glutamate transporter 
system (System Xc−), and dysregulated lipid peroxidation (9, 10). In 
recent years, the involvement of ferroptosis in the pathogenesis of 
various neurological disorders has garnered significant attention, 
encompassing traumatic brain injury, stroke, Alzheimer’s disease, 
Parkinson’s disease, Huntington’s disease, and brain tumors (11–16). 
Ferroptosis has also been implicated in epilepsy (17); however, its 
precise role and underlying mechanisms in epileptogenesis remain 
elusive. Elucidating the regulatory mechanisms governing iron-
induced cell death in epilepsy could offer novel avenues for prevention 
and treatment strategies. This review article aims to comprehensively 
explore the mechanistic aspects of ferroptosis and its implications in 
epilepsy to provide valuable insights into potential therapeutic targets.

2 Biochemical features of ferroptosis

Ferroptosis is characterized by three core pathological processes: 
iron dysregulation, glutathione depletion, and lipid peroxidation.

2.1 Iron metabolism dyshomeostasis

Cellular iron homeostasis is maintained through transferrin 
(Tf)-mediated transport. Fe3+ binds to Tf forming holo-Tf, which 
undergoes endocytosis via TfR1 on brain microvascular endothelial 
cells (BMECs). After reduction to Fe2+ by STEAP3/DCYTB, iron 
enters the cytoplasm via DMT1, forming the labile iron pool (LIP). 
Excess Fe2+ catalyzes hydroxyl radical (•OH) generation through 
Fenton reactions, driving peroxidation of polyunsaturated fatty acids 
(PUFAs). Iron chelators (e.g., deferoxamine) and suppression of iron-
regulatory genes (IREB2, TFRC) inhibit ferroptosis by reducing iron 
availability (18–25). The signaling mechanism is illustrated in Figure 1.

2.2 System xc−-GPX4 axis failure and lipid 
peroxidation

The System Xc−-GPX4 axis plays a crucial role in maintaining 
cellular redox homeostasis (26). System Xc− is responsible for 

importing cystine, which is subsequently reduced to cysteine, 
facilitating the synthesis of GSH. This GSH serves as a critical cofactor 
for GPX4, an enzyme that converts toxic lipid hydroperoxides, such 
as polyunsaturated fatty acid hydroperoxides (PUFA-OOH), into 
benign alcohols. When GPX4 is inhibited (for example, by RSL3) or 
when System Xc− becomes dysfunctional, GSH levels are depleted (27, 
28) (Figure 2). This depletion leads to the accumulation of lipid ROS 
through Fe2+-catalyzed peroxidation reactions (29). Additionally, it 
causes mitochondrial damage, characterized by the loss of cristae and 
membrane rupture, ultimately resulting in the collapse of membrane 
integrity through alkoxyl radical chain reactions (30). Notably, PUFAs 
in neuronal membranes are primary targets for lipid peroxidation, 
with ROS derived from mitochondrial metabolism and NADPH 
oxidases further amplifying oxidative stress (28) (Figure 3).

2.3 Mevalonate pathway: a metabolic 
gatekeeper of ferroptosis

The mevalonate (MVA) pathway—best known for cholesterol 
synthesis—is also a pivotal brake on ferroptosis. HMG-CoA reductase 
generates isopentenyl pyrophosphate that fuels two anti-ferroptotic 
arms: ① synthesis of coenzyme Q10, whose reduced form, recycled by 
FSP1 at the plasma membrane, scavenges lipid-peroxyl radicals 
independently of GPX4; inhibition of HMG-CoA reductase depletes 
CoQ10, weakens FSP1 activity and markedly increases ferroptotic 
sensitivity (31, 32); ② isopentenylation of tRNA^Sec, a modification 
required for efficient GPX4 translation, so limiting MVA flux lowers 
GPX4 and elevates lipid-ROS (33). In addition, geranylgeranyl 
pyrophosphate prenylates small GTPases that regulate iron uptake and 
phospholipid remodeling; loss of prenylation disrupts iron 
homeostasis and further primes cells for ferroptosis (34). Hence, intact 
MVA metabolism sustains both the FSP1-CoQ10 shield and GPX4 
abundance, acting as a central metabolic checkpoint that dictates 
ferroptosis sensitivity.

3 Association between ferroptosis and 
epilepsy

Epilepsy is a chronic, recurrent disorder of brief transient 
dysfunction of brain function, which seriously affects the quality of 
life of patients and has the risk of causing unexpected death and 
sudden death (35, 36). Since current anti-epileptic drugs are mainly 
used for the control of seizures, there is still a great urgency for basic 
pathophysiological research (37, 38). Studies have shown that 
epileptiform seizures may initially originate from ion channel 
dysfunction caused by various stress events such as central nervous 
system injury, and that astrocyte proliferation and inflammatory 
responses play important roles in the pathological process of neuronal 
network excitation and inhibition imbalance, which is a self-
perpetuating process. Regularly occurring excessive synchronized 
abnormal discharges of cortical neurons indicate the formation of 
epilepsy. Repetitive abnormal neuronal discharges can further lead to 
various pathological changes at the cellular level, including excessive 
oxidation. This process forms a “hypoxia, oxidative stress and 
inflammation” triad, which is a vicious cycle of neuronal activation, 
leading to systemic brain dysfunction (39, 40).
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3.1 Potential involvement of ferroptosis 
mechanisms in the pathogenesis of 
epilepsy

Iron is an indispensable trace element for human growth and 
development, playing crucial roles in various REDOX reactions such 
as oxygen transportation, cellular oxidative respiratory chain, 
tricarboxylic acid cycle, and DNA biosynthesis (41, 42). Additionally, 
iron closely associates with myelin formation and catecholamine 
neurotransmitter metabolism in the nervous system (43, 44). 
Henceforth, meticulous regulation of iron metabolism is imperative 
within the human body. The most prevalent neurological disorders 
associated with abnormal iron metabolism are hemorrhagic stroke 
and post-traumatic epilepsy (PTE) (45, 46), which also exhibit the 
highest incidence of secondary epilepsy among neurological 
diseases. Ferroptosis, a newly recognized form of regulated cell 
death characterized by excessive lipid peroxidation and ROS 
production due to iron overload, has been observed in various 
neurological disorders including epilepsy (47). Therefore, based on 
chronological extrapolation, ferroptosis can be  considered a 
significant pathological link leading to iron overload-
induced epilepsy.

Iron overload is frequently implicated when conducting a 
comprehensive patient history of epilepsy and examining the impact 
of stressful brain events, such as PTE, which is characterized by 
vascular extravasation of red blood cells and elevated hemoglobin 
levels within the central nervous system. The breakdown of 
hemoglobin releases a substantial quantity of iron ions, leading to 
significant reduction in cell viability, superoxide dismutase and 
glutathione levels, increased generation of reactive oxygen species, 
lipid peroxidation and malondialdehyde levels, as well as upregulation 
in the expression of ferroptosis-related proteins that induce 
mitochondrial ultrastructural changes. Ultimately, this cascade 
culminates in the exacerbation of ferroptosis process (48–50).

Animal studies suggest that iron overload may underlie the 
pathophysiology of epilepsy and correlate with seizure onset and 
severity. For instance, cortical injection of hemoglobin or iron salts 
(FeCl3) into rats can induce chronic seizures, effectively replicating 
the characteristics of PTE in humans (51). On one hand, iron 
accumulation can upregulate the expression of Nav1.1 and Nav1.6 in 
the cortex and hippocampus, thereby modulating neuronal 
excitability (52, 53). On the other hand, excessive iron levels within 
cells after FeCl3 injection in the rat cerebral cortex can aberrantly 
activate the mitochondrial oxidative phosphorylation pathway. 

FIGURE 1

Iron metabolism: The efficient delivery of Fe3+ to various organs is facilitated by the binding of plasma transporter TF. Upon binding to TFR1, TF 
facilitates the smooth transfer of iron ions into the cell interior and subsequent release of Fe3+. Subsequently, STEAP3 reduces Fe3+ and converts it to 
accessible Fe2+ within the cytoplasm. Through the DMT1 channel, Fe2+ can enter the cytoplasm and form a stable iron pool (LIP). Excess unbound Fe3+ 
can be exported outside the cell via FPN and subsequently oxidized back to Fe3+. As a crucial substrate for generating hydroxyl radical (OH) and 
hydroxide ion (OH-) through Fenton reaction, Fe2+ plays a pivotal role.
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Excess Fe2+ can donate electrons to H2O2 and O2, resulting in 
substantial production of O2 − and OH free radicals which may cause 
lipid peroxidation of neuronal membranes as well as accelerated 
generation of guanidine compounds in the brain, ultimately leading 
to epileptic conditions (51). Injection of nanoscale iron into the 
cerebral cortex can induce chronic epilepsy in mice and replicate 
brain damage caused by microbleeds, resulting in varying degrees of 
spontaneous epileptiform events (51). The severity of epileptiform 
events is correlated with the reduction of gamma-aminobutyric acid 
(GABA) neurons and impairment of cerebral blood flow 
autoregulation in the hemisphere injected with iron (54). In the 
human study, researchers analyzed transferrin saturation in 130 
patients with epilepsy compared to 128 sex- and age-matched control 
subjects without epilepsy to investigate whether iron overload is a 
predisposing factor for epilepsy. The results revealed that the mean 
transferrin saturation of the epilepsy group was significantly higher 
than that of the control group (55). Zimmer’s study also identified 
overexpression of iron regulatory genes in TSC patients, FCD IIb 
patients, and Tsc1GFAP − / − mice, suggesting that early and 
persistent activation of antioxidant signaling and disruption in iron 
metabolism are pathological markers for FCDIIb and TSC (56). A 
retrospective study found significantly elevated levels of transferrin 
in epileptic children with a history of encephalitis compared to 

normal controls, indicating that ferroptosis plays a crucial role in 
oxidative stress-induced epileptiform activity during infantile brain 
inflammation due to high oxygen consumption, low antioxidant 
capacity, increased brain iron content, and abundant PUFAs in 
neuronal membranes (55). Kobrinsky et  al. (57) through a case–
control study, demonstrated that anemia can raise the threshold for 
first febrile seizures (FS), while iron deficiency may prevent 
their onset.

The MVA pathway provides a basis for exploring the potential 
involvement of ferroptosis in the development of epilepsy. Children 
with hereditary mevalonate kinase deficiency frequently exhibit febrile 
or afebrile seizures, underscoring the in  vivo relevance of this 
metabolic pathway (34). Clinical studies on patients with drug-
resistant epilepsy have demonstrated a significant negative correlation 
between serum CoQ10 levels and seizure frequency. Notably, the 
administration of either mevalonate or coenzyme Q10 has been 
shown to mitigate simvastatin-induced exacerbation of epileptic 
seizures and associated neuronal damage (58).

In this article, we  review disorders of iron metabolism may 
underlie the mechanisms linking ferroptosis and seizures. However, 
how would ferroptosis function as a repeated seizure event of 
abnormal nervous system stress? Or, how might ferroptosis affect 
epilepsy progression?

FIGURE 2

The System Xc- and GPX4 pathway: The conversion of cytoplasmic cysteine to glutathione (GSH) for tripeptide synthesis primarily occurs through the 
process ocess of glutamate-cysteine exchange, which involves a two-step enzymatic reaction: (1) Glutamic acid cysteine transaminase (GCL), also 
known as y-glutamyl cysteine synthetase (y-GCS); (2) Glutathione synthetase (GS). The major regulators of iron ptosis include GPX4, GSH, and System 
Xc-.
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3.2 The exacerbation of disease 
deterioration and adverse outcomes is 
facilitated by the progression of ferroptosis 
induced by epilepsy

It is crucial to clarify that iron overload does not solely manifest 
prior to the onset of epilepsy, and seizures often exacerbate the 
disruption of iron metabolism. Research has demonstrated that the 
ferroptosis inhibitor Fer-1 exhibits potential in ameliorating 
epileptiform seizures in rats with PTE, while also significantly 
safeguarding against seizure-induced cognitive impairment. These 
findings provide support for the pivotal role of ferroptosis in epilepsy 
pathology (59).

Firstly, seizure-induced chronic neuronal iron uptake may 
contribute to neuronal loss in temporal lobe epilepsy and hippocampal 
sclerosis (TLE-HS). Several studies have reported that seizures can 
activate the hif-1a/HO-1 pathway, leading to abnormal iron 
metabolism and increased Fe2+ accumulation in hippocampal 
neurons. Excessive Fe2+ accumulation can induce oxidative stress and 
cell damage, thereby triggering ferroptosis of hippocampal neurons 
and further promoting seizures (60). Secondly, sensitivity weighted 
imaging was employed to investigate alterations in whole-brain iron 
levels in patients with mesial temporal lobe epilepsy (MTLE) from 
central China. The findings revealed a redistribution of iron between 
subcortical and cortical structures, influenced by the progression of 
seizures (61). Microinjection of Fe3+ into the brain of an animal model 
for epilepsy resulted in glutamate release, which is known to be a 

systemic Xc− inhibitor (62). However, it is well-established that 
elevated extracellular glutamate levels during seizures contribute to 
relapse and facilitate seizure onset as well as status epilepticus 
(SE) (63).

Furthermore, seizures induce an excessive production of ROS and 
promote ferroptosis, thereby exacerbating oxidative stress. This 
oxidative stress is particularly pronounced in brain tissues during 
epilepsy due to their high oxygen consumption, leading to increased 
generation of free radicals compared to other tissues and consequently 
aggravating neuronal cell death in various brain regions. It is closely 
associated with the development of comorbidities in epilepsy (64). For 
instance, researchers have observed activation of the ferroptosis 
process in a mouse model of Epilepsy-associated cognitive disorder 
(ECD), and inhibition of ferroptosis through pharmacological 
intervention or genetic manipulation targeting Lox can ameliorate 
ECD-related damage.

The alarming aspect is that Ferroptosis, which is believed to 
be  exacerbated by seizures, is associated with sudden unexpected 
death in epilepsy (SUDEP) (65). Seizures are accompanied by elevated 
levels of intracellular free Fe2+ ions and deposition of hemosiderin. 
Existing reports suggest significant iron buildup in the brain and heart 
that is connected to epilepsy (66). Generalized tonic–clonic seizures 
(GTCS) present a considerable risk for SUDEP, affecting not only the 
brain but also causing cardiogenic dysfunction characterized by 
excessive iron accumulation and cardiomyopathy (IOC), along with 
electrical and mechanical abnormalities referred to as ‘epileptic heart,’ 
which carries a high likelihood of malignant bradycardia (67). 

FIGURE 3

The lipid peroxidation: PUFAs are esterified to membrane phospholipids and subsequently react with ROS, thereby promoting cell ferroptosis. GPX4 
uses GSH as a cofactor to enzymically reduce the lipid peroxides of polyunsaturated fatty acids to non-toxic lipid alcohols. Loss or inactivation of GPX4 
results in the accumulation of lipid peroxides above normal levels, and in the presence of Fe2+ these lipid peroxides generate highly oxidized alkoxy 
groups. These alkoxy groups have the ability to directly damage adjacent PUFAs through free radical-mediated chain reactions, resulting in severe 
membrane damage.
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Researchers induced SE in rats using pilocarpine and observed 
substantial accumulation of hemosiderin within cardiomyocytes, 
which was also correlated with an increase in spontaneous mortality 
(66). Therefore, hypoxia-ischemia–reperfusion secondary to status 
epilepticus can not only induce up-regulation of P-glycoprotein (P-gp) 
and down-regulation of Kir channels, but also impact cardiac 
repolarization associated with epileptic heart and iron accumulation 
as well as ptosis associated with ischemic optic neuropathy (ION). 
These two mechanisms, triggered by the same convulsive stress, can 
simultaneously lead to severe cardiac dysfunction. Furthermore, 
ferroptosis is a common consequence of both brain and cardiac 
hypoxia. This dual effect induces neurodegeneration and 
epileptogenesis in heart failure (epileptic heart) while increasing the 
high risk of SUDEP (68, 69).

As mentioned earlier, our discussion highlights an important 
point: it is not advisable to overemphasize the direct causal relationship 
between epilepsy and ferroptosis. The reason is that ferroptosis may 
act as an auxiliary factor in the pathogenesis of epilepsy, potentially 
promoting the occurrence of epilepsy; at the same time, the repeated 
attacks of epilepsy may exacerbate the ferroptosis process, thus 
forming a vicious cycle of mutual causation, which may further 
worsen the clinical outcomes of the disease. Figure 4 illustrates the 
bidirectional pathological interaction between ferroptosis and 

epilepsy. This discovery actually reveals the huge potential and 
feasibility of ferroptosis process in epilepsy as a diagnostic biomarker 
and therapeutic target.

3.3 Clinical evidence of ferroptosis in 
human epilepsy

Emerging clinical studies have begun to reveal potential 
ferroptosis signatures in patients with epilepsy, though evidence 
remains preliminary. For instance, SWI has identified abnormal iron 
accumulation in the hippocampus and cortex of patients with MTLE, 
correlating with seizure frequency and disease duration (70, 71). 
Victoria Martella et al. further demonstrated visual biomarkers of iron 
deposition within the pulvinar region of the thalamus in epilepsy 
patients using SWI (72). Metabolomic analyses of cerebrospinal fluid 
(CSF) from drug-resistant epilepsy patients show alterations in 
oxidative stress markers (e.g., lipid peroxidation products), suggesting 
possible ferroptotic activity (73, 74). Additionally, hematological 
studies in pediatric epilepsy patients report GSH depletion and GPX4 
inactivation (75).

However, critical limitations must be  acknowledged: ① 
Spatiotemporal Gaps: Current imaging detects iron accumulation but 

FIGURE 4

Bidirectional pathogenic loop between ferroptosis and epilepsy. This schematic illustrates the self-reinforcing cycle linking ferroptosis and epilepsy 
through two interconnected axes: I. Epilepsy. Ferroptosis Pathway (Red Arrows) Seizure activity triggers glutamate excitotoxicity, inhibiting the cystine/
glutamate antiporter (System Xc-). This depletes glutathione (GSH), inactivating GPX4 and enabling iron-dependent lipid peroxidation. Subsequent 
membrane rupture and neuronal death further potentiate epileptogenesis. II. Ferroptosis Epilepsy Pathway (Blue Arrows) Iron overload (e.g., post-
hemorrhagic or metabolic) generates hydroxyl radicals (OH) via Fenton reactions. Reactive oxygen species (ROS) hyperexcite neurons through Nav 
channel dysregulation and mitochondrial dysfunction, establishing hyper-synchronous networks that lower seizure thresholds. Therapeutic 
Intervention Points (Yellow Stars): (1) Iron chelators (e.g., DFO): Block Fe2−-mediated ROS production. (2) GPX4 activators (e.g., Selenium): Restore lipid 
peroxide detoxification. (3) Radical-trapping antioxidants (e.g. Fer-1): Terminate lipid peroxidation chain reactions. The vicious cycle highlights 
ferroptosis as both cause and consequence of epilepsy, providing mechanistic targets for clinical intervention.

https://doi.org/10.3389/fneur.2025.1635441
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al. 10.3389/fneur.2025.1635441

Frontiers in Neurology 07 frontiersin.org

cannot confirm dynamic ferroptosis progression. The causal 
relationship between iron deposition and epileptogenesis requires 
longitudinal studies. ② Biomarker Specificity: Altered oxidative 
markers in CSF/blood may reflect general neurodegeneration rather 
than ferroptosis specifically. Validation with direct ferroptosis 
indicators (e.g., ACSL4, PUFA-OOH) is needed. ③ Therapeutic 
Translation: No clinical trials have yet tested ferroptosis inhibitors in 
epilepsy patients, leaving human efficacy unproven despite promising 
preclinical data.

Despite these challenges, existing evidence provides crucial 
foundations. Iron deposition patterns observed on SWI may serve as 
non-invasive prognostic tools for epilepsy progression. Additionally, 
deficits in GSH and GPX4 highlight testable hypotheses for the 
personalization of antioxidant therapy. Furthermore, multi-omics 
approaches that integrate iron-metabolomics, lipidomics, and 
epigenomics could uncover definitive ferroptosis signatures. Future 
studies should prioritize brain tissue biopsies, obtained from epilepsy 
surgery, to map the molecular drivers of ferroptosis and launch phase 
I/II trials of repurposed iron chelators, such as deferiprone, in drug-
resistant cohorts.

4 Potential role of ferroptosis 
mechanism in the treatment of 
epilepsy

4.1 Application of ferroptosis inhibitors and 
associated agents in the treatment of 
epilepsy

Firstly, the exploration of the application of ferroptosis inhibitors 
in the treatment of epilepsy can be traced back to some fundamental 
research. Deferoxamine (DFO), which is an iron chelator capable of 
effectively scavenging iron, has been found that its treatment of 
epilepsy induced by ferric chloride can reduce local transferrin and 
significantly inhibit epilepsy (76). Secondly, considering the 
inseparable relationship between ferroptosis and ROS, the use of 
antioxidants (e.g., vitamin E, melatonin, etc.) (77–79), ferroptosis 
inhibitors such as ferrostain-1 (Fer − 1), and/or iron chelators can 
prevent brain iron accumulation and the neuroprotective role of ROS, 
thereby blocking the pathological process of epilepsy to a certain 
extent (80).

For instance, in a mouse model of PTZ-induced seizures and 
pilocarpine-induced seizures, the administration of Fer-1 
significantly mitigated seizure severity and frequency while 
reducing iron accumulation in the hippocampus (81). In another 
experimental model of post-traumatic epilepsy induced by 
stereotactic injection of 50 mM FeCl3 into the somatosensory 
cortical area, Fer-1 exhibited a notable protective effect against 
acute seizures and memory decline (59). Moreover, in a previously 
described rat model of pilocarpine-induced TLE, Klotho 
overexpression was induced in the hippocampus using an adeno-
associated viral vector delivery system. This approach not only 
inhibited ferroptosis and iron overload but also regulated the 
expression of divalent metal transporter 1 and ferrotransporter, 
both associated with iron accumulation in the hippocampus. 
Consequently, it effectively ameliorated cognitive deficits and 
demonstrated neuroprotective effects. Importantly, Klotho 

significantly elevated GPX4 and GSH levels while suppressing ROS 
levels. In summary, this protein alleviates cognitive deficits and 
exerts neuroprotective effects by inhibiting ferroptosis in a rat 
model of TLE (82, 83). Coenzyme Q10 (CQ 10) is a compound 
renowned for its anti-inflammatory and antioxidant properties. 
Studies have demonstrated that appropriate CQ 10 supplementation 
also exhibits an inhibitory effect on ferroptosis (84). Furthermore, 
a separate study confirmed the involvement of ferroptosis in the 
pathogenesis of epilepsy associated with mitochondrial disease and 
revealed that alpha-tocotrienol quinone (EPI-743) effectively 
ameliorated ferroptosis in cells derived from patients with five 
distinct childhood epilepsy syndromes in a dose-dependent 
manner by reducing lipid peroxidation (LPO) and 
15-hydroxyditetraenoic acid (15-HETE) levels (17).

Furthermore, it is crucial to consider the interaction between 
ferroptosis inhibitors and traditional antiepileptic drugs. The 
mechanism of action of traditional antiepileptic drugs is intricate, 
encompassing enhancement of GABA-mediated inhibitory 
neurotransmission, inhibition of excitatory amino acid release or 
function, blockade of voltage-dependent sodium channels, and 
regulation of calcium channels. However, emerging evidence 
suggests that apart from these conventional mechanisms, iron 
metabolism imbalance and ferroptosis may significantly impact the 
efficacy of antiepileptic drugs. For instance, certain antiepileptic 
drugs like sodium valproate (VPA) exhibit notable antioxidant 
activity which effectively reduces free radical generation and 
consequently inhibits ferroptosis. In a mouse model with kainic 
acid-induced epilepsy, VPA not only markedly decreased lipid 
peroxide levels but also suppressed Ptgs2 mRNA expression. 
Importantly, the positive correlation observed between VPA’s 
inhibitory effect on ferroptosis and its antiepileptic effect strongly 
indicates that modulation of ferroptosis might be an important 
avenue for harnessing the therapeutic potential of antiepileptic 
drugs (85). Conversely, the occurrence of ferroptosis could impair 
the effectiveness of certain antiepileptic drugs as well. Specifically, 
excessive iron accumulation and subsequent induction of 
ferroptosis can trigger lipid peroxidation in neuronal membranes 
leading to alterations in their physical and chemical properties. 
Such changes undoubtedly influence drug penetration and 
targeting within cells thereby posing a potential threat to 
therapeutic efficacy (86).

Furthermore, numerous studies have revealed that specific 
antiepileptic drugs may exert their unique pharmacological effects by 
directly or indirectly interfering with the signaling pathway of 
ferroptosis. For instance, topiramate, a widely recognized broad-
spectrum antiepileptic drug, not only possesses significant antioxidant 
and anti-inflammatory properties but also effectively mitigates cellular 
oxidative stress, which is one of the key triggers of ferroptosis (87). 
Additionally, lamotrigine not only inhibits excitatory synaptic 
transmission but also fine-tunes intracellular iron ion concentration 
to potentially reduce the occurrence of ferroptosis events (88). Table 1 
provides a comprehensive summary of drugs that have the potential 
to enhance epilepsy treatment through their impact on ferroptosis.

In conclusion, there exists an intricate and interconnected 
network between ferroptosis and antiepileptic drugs. A comprehensive 
exploration into the role of the ferroptosis mechanism within this 
network in epilepsy treatment will undoubtedly unveil novel strategies 
and targets while promoting more efficient and precise therapeutic 
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approaches. Therefore, future research should focus on elucidating the 
specific molecular mechanisms underlying the interaction between 
ferroptosis and antiepileptic drugs to provide a robust scientific 
foundation and practical guidance for enhancing treatment efficacy 
and improving quality of life among epilepsy patients.

4.2 Implications of AMD research for 
ferroptosis-targeted epilepsy treatment

When exploring the potential role of ferroptosis mechanisms in 
epilepsy treatment, valuable insights can be gained from the study of 

TABLE 1 Antiferroptotic mechanisms may exert an antiepileptic effect.

Drugs Mechanisms of intervention Categories References

Valproic acid (VPA) VPA contributes to iron metabolism in epilepsy, leading to the 

generation of non-transferrin-bound iron (NTBI) and an elevation in 

oxidative stress levels. Additionally, there was an observed 

upregulation of SLC7A11 protein expression within hippocampal 

neurons.

Antiepileptic drug/System Xc− modulator

(With antioxidant and ferroptosis-regulating 

properties)

(87)

Topiramate Topiramate has antioxidant and anti-inflammatory properties and 

can reduce the effects of oxidative stress in cells

Broad-spectrum antiepileptic drug

(Free radical scavenger and inflammation 

modulator)

(90)

Anticonvulsant Antioxidant effects of lamotrigine on pilocarpine-induced status 

epilepticus in mice

Sodium channel-blocking antiepileptic drug

(Oxidative stress mitigator)

(91)

Selenium Reinforced upregulation of the antioxidant GPX4 Essential trace element supplement

(GPX4 activator)

(33)

Ferrostatin-1 (Iron-1) Ferstatin-1 effectively mitigates hippocampal hypertrophy in KA-

treated rats by downregulating GPX4 expression, restoring GSH 

levels, and attenuating lipid peroxidation and iron accumulation. 

Furthermore, in TLE rats, iron-statin-1 prevented KA-induced 

hippocampal neuronal loss and restored cognitive function

Ferroptosis-specific inhibitor

(Radical-trapping antioxidant)

(62, 84)

Edaravone It plays an anti- ferroptosis role by scavenging lipid peroxides Clinically approved antioxidant

(Lipid peroxide scavenger)

(81)

Deferoxamine (DFO) It can reduce the iron deposition in the mitochondria of cerebral 

cortical neurons in epileptic rats

Iron chelator

(High-affinity ferric iron binder)

(79)

Dehydroepiandrosterone 

(DHEA)

The administration of DHEA has been demonstrated to exert 

inhibitory effects on lipid peroxidation, protein oxidation, and 

Na+/K + -ATPase activity in individuals with epilepsy. Furthermore, 

DHEA demonstrates the ability to alleviate oxidative stress and 

cellular damage associated with iron-induced epilepsy through the 

activation of the NRF2/ARE signaling pathway leading to apoptosis.

Neurosteroid hormone

(Multi-pathway antioxidant and anti-apoptotic 

agent)

(55)

Vitamins E and C, 

melatonin, vanillin

Exhibiting antioxidant properties, effectively scavenging free radicals 

and mitigating the production of ROS

Dietary antioxidant supplements

(Chain-breaking radical scavengers)

(80–82)

α-phenyltert-

butylnitroone (PBN)

Reduce the oxidative damage of epileptic nerve cells induced by iron Nitrone-based radical trapping agent

(Reactive nitrogen species scavenger)

(83)

EPC-K1 Hydroxyl radical scavengers protect nerve cell membrane from 

oxidation and prevent epileptic discharge caused by iron ions

Vitamin-derived compound

(Membrane-targeted antioxidant)

(68)

Adenosine chloride 

(Cl-Ado) or adenosine 

(Ado)

The administration of Cl-Ado or Ado effectively attenuated or 

delayed the initiation of FeCl3-induced epileptic discharges through 

scavenging hydroxyl radicals, thereby exhibiting its anticonvulsant 

properties.

Endogenous purine nucleoside

(Anticonvulsant and radical scavenger)

(69)

Fisetin Non-oxetine exhibits the potential to attenuate lipid peroxidation and 

preserve the activities of Na + and K + -ATpase in patients suffering 

from post-traumatic epilepsy. Simultaneously, fisetin demonstrates its 

anti-epileptic efficacy in an iron-induced epilepsy rat model by 

inhibiting oxidative stress.

Flavonoid polyphenol

(Dual inhibitor of ferroptosis and oxidative 

stress)

(52)

Coenzyme Q10 (CoQ10) Studies have demonstrated that appropriate supplementation of 

coenzyme Q10 also exhibits an inhibitory effect on ferroptosis. Cases 

of epilepsy caused by CoQ10 deficiency have been reported

Mitochondrial electron transporter

(Lipid-soluble antioxidant and membrane 

stabilizer)

(87)
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ferroptosis in other neurodegenerative diseases. Age-related macular 
degeneration (AMD), a neurodegenerative condition, is closely 
associated with ferroptosis and provides important references for 
epilepsy treatment (89) (Shared ferroptotic pathways are illustrated in 
Figure  5). The pathological features of AMD, including iron 
accumulation in the retina, lipid peroxidation, and decreased GPX4 
activity, are highly consistent with the mechanisms of ferroptosis (89). 
Interventions used in AMD research, such as iron chelators, 
ferroptosis inhibitors, and activation of the Nrf2 pathway, offer 
potential strategies for epilepsy treatmen.

Moreover, the experience gained from AMD research also 
provides important references for developing epilepsy treatments 
targeting ferroptosis. In terms of diagnosis, a hippocampal iron 
quantification MRI standard could be  developed, for example, 
setting an iron concentration threshold of >1.2 mg/g to identify 
high-risk epilepsy patients. Regarding drug delivery strategies, a 
cranial sustained-release system loaded with ferroptosis inhibitors 
(such as Ferrostatin-1) could be  developed, mimicking the 
intravitreal injections used in AMD, to achieve localized drug 
release and enhance therapeutic efficacy (90). In clinical trial 
design, a composite endpoint approach used in AMD research 
could be  adopted to evaluate both seizure frequency (primary 
endpoint) and changes in SWI iron signals (secondary endpoint), 
providing more comprehensive evidence for the study of 
ferroptosis mechanisms. Although these measures have not yet 
been validated in epilepsy, these translational concepts have the 
potential to offer new ideas and methods for epilepsy treatment 
targeting ferroptosis, from diagnostic assessment to therapeutic 
strategies, and to promote the clinical application of relevant 
treatment approaches.

5 Research status and challenges

Although there has been some progress in exploring the role of 
ferroptosis in the pathogenesis of epilepsy in recent years, the current 
research still faces many limitations, which greatly limit our depth and 
breadth of our comprehensive cognition and practice application in 
this area. The first problem is that a large number of studies focus on 
external and animal models, and the direct clinical evidence of 
epilepsy patients is inadequate. It is true that the experiment and 
animal model of vitro provides us with valuable mechanism 
exploration and drug screening platform, but these results often face 
many uncertainties in the transformation of the complex human 
physiological environment. Especially in the context of epilepsy, a 

multi-factor disease, the exploration of a single mechanism is difficult 
to fully reveal its intricate pathological process. Second, existing 
research tends to focus on a specific link or signaling pathway of iron 
death, and the interaction between it and its disease mechanism is not 
enough. For example, iron death, inflammatory response, oxidative 
stress and mitochondrial dysfunction may be synergistic in the onset 
of epilepsy, but the correlation and impact of these factors have not 
been systematically studied. The fragmentation of this study 
undoubtedly prevents our understanding of the comprehensive and 
systematic understanding of iron deaths in the mechanism of epilepsy.

In addition, the complexity of the protein and signaling pathways 
of iron deaths increased the difficulty of the study. Currently, the study 
focuses on several major proteins and molecular markers, such as 
GPX4, Ferritin and ROS, but do not explore other potential key 
molecules. Because iron death is a process of multi-step, multi-signal 
channel participation, the neglect of any link can lead to 
misunderstanding of the overall mechanism. Moreover, the study of 
iron death in epilepsy treatment is still in the preliminary exploration 
phase, and there is a lack of systematic clinical trial data. Although 
some iron death inhibitors show certain therapeutic potential in 
animal models, the applicability, side effects and long-term effects of 
different types of epilepsy are not fully verified. Moreover, most 
studies have focused on a particular drug or treatment strategy, but 
failed to provide multiple strategies for comparison and combined 
application research data.

5.1 Prospects for future research directions

Although ferroptosis research has demonstrated promising 
prospects in the field of epilepsy, scientists still need to overcome 
current limitations and adopt diversified and interdisciplinary 
comprehensive research methods. These include integrating in vitro 
and in vivo experiments, conducting extensive clinical research, and 
fostering collaboration among multidisciplinary teams. By doing so, 
we  can gradually unravel the intricate mechanisms underlying 
ferroptosis in the pathogenesis of epilepsy, thereby establishing a more 
robust theoretical foundation for its diagnosis and treatment. Future 
investigations should prioritize several core directions:

 (1) To investigate the distinct role of ferroptosis in various types of 
epilepsy: Given the substantial heterogeneity observed in 
epilepsy, different types may exhibit diverse pathogenic 
mechanisms (91, 92). Therefore, it is imperative to 
comprehensively explore whether discrepancies exist in the 

FIGURE 5

Iron-mediated ferroptosis core pathways in epilepsy (hippocampal neurons) and AMD (retinal pigment epithelium). Therapeutic targets (red stars): ① 
Iron chelation, ② GPX4 activation, ③ Antioxidant delivery.
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involvement of ferroptosis across different types of epilepsy, 
aiming to unveil the universal principles governing ferroptosis 
action and its specific efficacy for particular epileptic conditions.

 (2) Investigating the combined effect of ferroptosis inhibitors and 
existing antiepileptic drugs aims to explore the potential 
benefits of comprehensive treatment in terms of improving 
drug efficacy and reducing side effects. This research not only 
contributes to optimizing clinical treatment plans but also 
sheds light on the underlying role of ferroptosis in 
epilepsy therapy.

 (3) Discovery and application of biomarkers: Future studies should 
aim to identify biomarkers associated with ferroptosis for early 
diagnosis, disease progression monitoring, and evaluation of 
treatment efficacy in epilepsy (93). This will provide valuable 
insights for personalized treatment strategies and may also 
unveil novel therapeutic targets.

 (4) Clinical trials and translational research: Despite significant 
progress in animal models regarding ferroptosis-related 
studies, further validation is required before clinical application 
can be  realized. Large-scale clinical trials are essential to 
generate robust evidence that can determine the actual 
effectiveness and safety profile of ferroptosis inhibitors in 
patients with epilepsy.

Through comprehensive exploration and meticulous research in 
the aforementioned fields, we  aim to unveil the fundamental 
mechanisms underlying ferroptosis throughout the entire trajectory 
of epilepsy onset, progression, and treatment. Moreover, our 
endeavors will pave the way for unprecedented therapeutic 
perspectives for individuals with epilepsy while fostering the 
development of more efficient and targeted treatment protocols.
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Glossary

ROS - Reactive Oxygen Species

Tf - Transferrin

TfR1 - Transferrin Receptor 1

BMECs - Brain Microvascular Endothelial Cells

DCYTB - Duodenal Cytochrome B

STEAP3 - Six-Transmembrane Epithelial Antigen of Prostate 3

DMT1 - Divalent Metal Transporter 1

LIP - Labile Iron Pool

FPN - Ferroportin

GSH - Glutathione

GPX4 - Glutathione Peroxidase 4

PUFAs - Polyunsaturated Fatty Acids

NADPH - Nicotinamide Adenine Dinucleotide Phosphate

GSSG - Oxidized Glutathione

RSL3 - RAS-Selective Lethal compound 3

PTE - Post-Traumatic Epilepsy

GABA - Gamma-Aminobutyric Acid

TSC - Tuberous Sclerosis Complex

FCD - Focal Cortical Dysplasia

TLE - Temporal Lobe Epilepsy

HS - Hippocampal Sclerosis

LPCAT3 - Lysophosphatidylcholine Acyltransferase 3

MTLE - Mesial Temporal Lobe Epilepsy

SE - Status Epilepticus

SUDEP - Sudden Unexpected Death in Epilepsy

GTCS - Generalized Tonic-Clonic Seizures

IOC - Iron Overload Cardiomyopathy

P-gp - P-glycoprotein

ION - Ischemic Optic Neuropathy

DFO - Deferoxamine

VPA - Valproic Acid

NTBI - Non-Transferrin Bound Iron

Fer-1 - Ferrostatin-1

CQ10 - Coenzyme Q10

LPO - Lipid Peroxidation

15-HETE - 15-Hydroxyeicosatetraenoic Acid

AEDs - Antiepileptic Drugs

SWI - Susceptibility Weighted Imaging

AMD - Age-related Macular Degeneration

RPE - Retinal Pigment Epithelium

OCT - Optical Coherence Tomography

CoQ10 - Coenzyme Q10

ACSL4 - Acyl-CoA Synthetase Long Chain Family Member 4

MVA - mevalonate
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