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Exercise-mediated IL-6 
downstream effects modulate 
brain pathology–can exercise 
training protocols influence the 
downstream effects?
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The dual role of interleukin-6 (IL-6) as beneficial in physiological conditions and 
detrimental in pathological conditions has been a subject of research interest 
since its discovery. This has surpassed the traditional view of IL-6 as a pro-
inflammatory cytokine, primarily due to its multifunctionality. To coordinate this 
multiple effect, several downstream signaling pathways are involved. Physical 
exercise mediates these downstream signals and accentuates the pleiotropic 
effects of IL-6 by enabling cross-talk between various organs, including muscles 
and the brain. In addition, IL-6 itself is a crucial signaling molecule that enhances 
exercise performance by maintaining muscle energy homeostasis. However, the 
specific mechanisms by which this molecule modulates overall brain physiology 
under different exercise conditions remain unclear. For example, chronic exercise 
with different exercise protocols could increase chronic plasma levels of IL-6, 
which could have an impact on brain health. Most studies in the literature have 
established the beneficial effects of exercise-mediated IL-6, but the impact of 
chronic elevation of IL-6 by exercise remains unclear. Additionally, the level of 
IL-6 determines the nature of molecular signaling that underlies all IL-6-mediated 
functions. This can be achieved by understanding both classic and IL-6 trans-
signaling in different physio-pathological conditions. However, the mechanism 
by which exercise activates these two different classic and IL-6 trans-signaling 
pathways is less understood. Therefore, this review presents a comprehensive 
overview of how different exercises mediate IL-6-mediated benefits by discussing 
the full array of molecular signaling pathways.
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Introduction

The pleiotropic effects of cytokines arise from cross-reactivity and shared molecular 
signaling pathways, which may complicate the untangling of the molecular mechanisms of 
cytokines. Additionally, the perception of cytokines involved in disease progression as merely 
pro-inflammatory has shifted, as they play a crucial role in regulating metabolism, 
inflammation, and the immune response (1). However, the mechanisms by which cytokines 
execute these functions remain elusive in the realm of cytokine biology. Interleukin-6 (IL-6) 
is a crucial cytokine with multiple pleiotropic effects, enabling it to carry out a wide range of 
complex physiological functions. However, the activity of IL-6 may depend on the nature of 
IL-6 signaling (2). Mainly, three different signaling mechanisms, at least these conditions, are 
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used to induce IL-6 response by the cells, termed classical IL-6R 
signaling that activates signaling pathways like Janus kinase/Signal 
transducer and activator of transcription 3 (JAK/STAT3) and 
phosphoinositide 3-kinases/protein kinase B (PI3K/AKT), IL-6 trans 
signaling, which induces a more sustained response of IL-6, and IL-6 
trans presentation, which involves a cell–cell interaction (3). The 
discovery of IL-6 began in the late 1960s with the involvement of 
T-cells in antibody production (4, 5). In 1986, this T-cell-derived 
soluble factor, later renamed as B-cell stimulatory factor-2, became 
known as IL-6 (6, 7). Since then, this pleiotropic cytokine has 
maintained strong research interest due to its diverse biological roles 
(Table 1). Conversely, it has redundancy effects through its receptor-
specific systems, called receptor-specific for IL-6 and gp130 (8).

Following the discovery of IL-6, its role in brain cells, including 
astrocytes and glial cells, has been demonstrated in several studies 
involving various signaling pathways, such as the JAK/STAT, 
mitogen-activated protein kinase (MAPK), nuclear factor kappa-
light-chain-enhancer of activated B cells (NFκB), PKC, Ca2+/
calmodulin-dependent kinases, and the Prostaglandin E1 pathways 
(3, 9). However, all these signaling pathways act in both physiological 
and pathological conditions. Therefore, understanding their 
involvement in activating or deactivating IL-6 expression could 
provide a potential therapeutic target for treating brain diseases. 
Although pharmaceutical agents, such as antibodies and engineered 
fusion proteins, have been reported to block IL-6 in various models, 
including genetic knock-in strains and Drosophila (3, 9, 10), the 
mechanistic involvement of IL-6 signaling in diverse health and 
disease states remains poorly understood, especially in the brain. 
Therefore, elucidating the downstream targets of IL-6 could help to 
frame the contribution of IL-6 to brain health and diseases. Studies 
have reported that IL-6-mediated activation of STAT1 and STAT3 
plays various pathological roles by triggering brain inflammation, 
which can promote brain apoptosis and lead to brain damage (11, 
12). Nevertheless, it has also been implicated in neuronal survival 
(13). Therefore, designing a drug that simply targets the downstream 
signaling of IL-6 could also have deleterious effects in sensitive cells, 
such as those in the brain. In this context, physical exercise is one of 
the non-invasive remedies that can help sustained release of IL-6 via 
targeting its upstream signals like c-jun gene (14, 15). Additionally, 
chronic exercise may help regulate the IL-6 downstream targets 
without exaggerating the action of IL-6 (16); otherwise, it can also 
activate other downstream signaling pathways, such as PI3K/AKT, to 
induce neurodegeneration (17). This condition can be elucidated 
through resistance exercise, which modifies STAT3 signaling in the 

brain by regulating IL-6 levels to facilitate neuroprotection (16). This 
may be the mechanism through which exercise mediates the binding 
of STAT3 to brain-derived neurotrophic factor (BDNF) and protein 
Interacting with C Kinase - 1 (PICK1), thereby enhancing neural 
plasticity via the IL-6 response (18). However, high-intensity exercise 
disrupts the IL-6 response and the redox balance, which adversely 
affects insulin signaling in the brain via the PI3K/AKT pathway (19–
21). Other signaling molecules, such as protein kinase C (PKC), are 
known to be increased by exercise in response to interleukin-6 (IL-6), 
which induces neuroinflammation, oxidative stress, and apoptosis 
(22). Conversely, PKC regulates neuronal activity and survival by 
activating prostaglandin E2 (PGE2) through the EP4 receptor (23); 
exercise is also known to regulate PGE2 (24). However, the 
mechanisms by which different exercise protocols mediate this effect 
via IL-6 in improving neuronal survival are unknown. Exercise types, 
such as aerobic exercise, may also inhibit the IL-6-mediated STAT3 
signaling pathway by blocking the JAK2/STAT3 pathway, thereby 
enhancing cognitive function and neuroprotection (25). However, it 
is important to elucidate the involvement of other antiinflammatory 
cytokines to ensure the IL-6-mediated benefits. Additionally, the 
effect of exercise protocols, such as intensity, duration, and type, on 
the IL-6 response to activate IL-6-mediated downstream targets is 
poorly understood. Therefore, this review aims to discuss the 
potential downstream targets of IL-6 for maintaining brain health 
during exercise.

How do the downstream effects of 
IL-6 signaling mediate the brain 
physiopathology- role of exercise

Depending on the stress response employed by the cells, IL-6 can 
be defined as an adipokine, myokine, monokine, or neurotrophic 
factor (26). This response may be  triggered by exercise, infection, 
trauma, or specific disease conditions, such as cancer or autoimmunity. 
As mentioned, exercise regulates the IL-6 signaling mechanisms to 
elicit the controlled response of IL-6 within the muscle and to other 
organs (26). For example, exercise primarily utilizes the classical IL-6R 
signaling pathway to activate IL-6-mediated downstream signaling, 
thereby enhancing performance by maintaining energy homeostasis 
and providing anti-inflammatory benefits associated with exercise (26, 
27). Mainly, the exercise-induced local effects of IL-6 lead to the 
systemic effects via mbIL-6R in skeletal muscle, mediated by 5’ 
AMP-activated protein kinase (AMPK) activation, as evidenced by the 

TABLE 1 A complete chronological sequence of IL-6 response to exercise from its discovery to exercise-mediated targeted therapies.

Year of study IL-6 response in biological 
samples

Exercise types References

1991 IL-6 in blood Bicycle exercise for 60 min (75% VO2max) (120)

1999 IL-6 in blood Endurance exercise with neuromuscular disease (121)

1999 IL-6 Exercise on neuroendocrine response (122)

2002 IL-6 in brain Acute exercise on IL-6 release from brain (16)

2004 IL-6 in knockout mice Exercise mediated molecular signaling like AMPK mediate the IL-6 response (123)

2005 IL-6 receptor Acute bout of knee extensor exercise (28)

2019 Tocilizumab with exercise Exercise with tocilizumab effect on adipose tissue of obese (124)
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increased expression of mbIL-6R in the myocytes of resistance-trained 
individuals (27, 28). Thus, exercise-mediated IL-6 classical signaling 
may induce systemic effects in the brain by facilitating the interaction 
of IL-6/gp130 to target its downstream signaling, such as JAK/STAT 
(27, 28) (Figure 1).

The increase in IL-6 levels is associated with age-related 
pathological consequences. For instance, a study found that IL-6 
concentration increased from 1.4 pg./mL in the 65–74 year age group 
to 3.5 pg./mL in those aged 85 years among men (29). Similarly, 
women showed an increase in IL-6 levels from 1.1 to 2.1 pg./mL over 
the same age range (29). Importantly, this rise in IL-6 is independent 
of residual confounding factors that influence the development of 
age-related neurodegenerative diseases (30). One possible explanation 
for this increase is that elevated reactive oxygen species (ROS) 
production or reduced clearance of ROS may stimulate IL-6 

production (29). This, in turn, can worsen IL-6-mediated pathological 
effects through the IL-6/JAK/STAT3 signaling pathway, which is a 
significant driver of glioblastoma. While IL-6 activates STAT3 and can 
offer neuroprotective effects, both the neuroprotective and oncogenic 
impacts of IL-6 depend on the dosage and duration of its presence. For 
example, low levels of IL-6 are beneficial for neuronal survival, while 
elevated or prolonged IL-6 exposure can promote tumor growth by 
activating STAT3 signaling (31). Moreover, the activation of the IL-6/
STAT3 pathway influences downstream targets that can either induce 
neuroprotection or contribute to oncogenic effects. For example, IL-6/
STAT3 triggers the activation of BDNF and TrkB, which in turn 
enhances STAT3 activation, thereby improving BDNF expression 
through a positive feedback loop mechanism that promotes 
neuroprotection (32). Whereas IL-6/STAT3 promotes the Bcl-XL, 
Mcl-1, and VEGF, to inhibit apoptosis and promote cell survival by 

FIGURE 1

Effect of physical exercise on IL-6 signaling in brain. (A) Physical exercise increases the sgp130 to decrease IL-6 trans-signaling, thereby inducing 
sustained release of IL-6 in the brain to activate JAK/STAT3, which in turn triggers BDNF and PICK1 to increase neural plasticity, neuronal survival, and 
neurogenesis. Additionally, exercise targets the c-Jun protein to regulate the IL-6 response in the brain. (B) Exercise-induced classical signaling of IL-6 
activates its downstream targets, such as JAK/STAT3, to improve neurogenesis. (C) Exercise-induced IL-6 inhibits GSK-3β through the PI3K/AKT/mTOR 
pathways to decrease neural apoptosis via the GRPR. Additionally, exercise-mediated IL-6 triggers FOXO1 signaling, which in turn activates TLR4 to 
increase IL-6 production. However, overexpression of this may induce ischemia and inflammation in the brain, and the role of shutting down these 
molecules under exercised conditions in preventing ischemia and neuroinflammation is unknown. (D) Exercise-induced OSM enhances mitochondrial 
respiration, thereby improving energy homeostasis in the brain. (E) PI3/AKT/FOXO3-induced oxidative damage in the brain is prevented by the 
exercise-mediated IL-6 response by CDKN2A/REDD1, which targets mTORC1 and FOXOs. (F) Exercise influences the expression of heat-shock protein 
90 (HSP-90) and caveolin-1, thereby activating the STATs pathways, which is mediated by exercise-triggered IL-6.
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increasing angiogenesis and blood supply to the tumor (33). 
Additionally, the tumor microenvironment plays a crucial role in 
triggering the pro-tumorigenic effects of IL-6 and STAT3 (34).

Exercise can also influence the upregulation of sgp130, leading to 
the inhibition of IL-6 trans-signaling (27). This can decrease the 
sickness behavior induced by LPS, improve brain recovery from 
injury, cognitive functions, and reduce anxiety by inhibiting IL-6 
trans-signaling in the murine microglia cell line and mouse model (35, 
36). Downstream targets of IL-6, mainly JAK/STAT, regulate 
neuroinflammation and affect the survival of neuronal and glial cells, 
as evidenced by the dysregulation of JAK/STAT pathway in brain 
disorders, such as brain cancers, ischemia, and Alzheimer’s disease 
(AD). Exercise mitigates this condition by targeting the membrane-
proximal region of the receptors to interrupt the interaction of IL-6-
mediated JAK/STAT activation (37). For example, resistance exercise 
for 12 weeks transiently increases IL-6 and STAT3, facilitating 
adaptive responses to high-intensity exercise (37). However, no studies 
in the literature have discussed how exercise affects this highly 
conserved membrane-proximal region of the receptors, thereby 
interrupting the IL-6-mediated JAK/STAT signaling in brain diseases.

Additionally, IL-6 trans-signaling alters the toll-like receptor 4 
(TLR4)-dependent signaling in the gp130 (F/F) knock-in mutant mice 
to modulate the inflammatory response through STAT3 signaling (38). 
Treadmill exercise reduces TLR4 overexpression in cerebral ischemia, 
thereby lowering IL-6 secretion through the HMGB1/TLR4-mediated 
mechanism (39, 40). Additionally, exercise influences the expression 
of heat-shock protein 90 (HSP-90) and caveolin-1, thereby activating 
the STATs pathways, which is mediated by exercise-triggered IL-6 (41, 
42). For instance, treadmill exercise for 28 days increases the 
caveolin-1 and vascular endothelial growth factor (VEGF) signaling 
to promote neurogenesis in the ischemic rats, possibly through an 
exercise-mediated IL-6 mechanism (41, 42). However, caveolin-1 
upregulation inhibits the STAT3 signaling in brain metastasis (43), 
and further research is required to determine whether IL-6 shuts off 
STAT3 signaling to activate caveolin-1-mediated benefits in the brain 
upon exercise. It is known that IL-6 activates HSP90 to suppress 
protein aggregation and facilitate Aβ clearance in AD conditions (44). 
Additionally, an acute bout of exercise activates HSP90 by upregulating 
IL-6 (45). Oncostatin M (OSM) is associated with muscle atrophy, and 
the muscle-specific deletion of OSMR may prevent muscle atrophy via 
the IL-6-mediated JAK/STAT3 pathway (46). In the context of brain 
physiology, OSM disrupts the blood–brain barrier function by 
activating the JAK/STAT3 signaling pathway in vitro (47). Conversely, 
OSMR regulates the brain tumor stem cells’ proliferation via 
interacting with NADH ubiquinone, NADH ubiquinone 
oxidoreductase 1/2 (NDUFS1/2) of complex I  to promote 
mitochondrial respiration, suggesting the dual role of this OSMR (48). 
However, the involvement of IL-6  in this context upon exercise 
requires further exploration. IL-6 activates other signaling pathways, 
such as the PI3K/AKT/the mammalian target of rapamycin (mTOR) 
glycogen synthase kinase-3 beta (GSK-3β) and gastrin-releasing 
peptide (GRP) receptor (GRPR) pathways, in hippocampal neurons 
of mice with autism spectrum disorder (49). It has been reported that 
exercise regulates these signaling to improve brain health. For 
example, the PI3K/AKT signaling pathway is crucial for brain function 
by activating its downstream targets, including GSK-3β, mTORc, 
FOXOs, and CREB (50). Treadmill exercise for 30 min increased the 
expression of PI3K/AKT proteins in the rat’s brain by inhibiting 

GSK-3β, thereby improving depression (51). However, this study did 
not investigate whether IL-6 mediated this response to improve 
depression symptoms. Studies have reported that the elevation of 
GSK-3β is associated with the loss of dopaminergic neurons, an 
increase in amyloid beta production, and the formation of 
neurofibrillary tangles (52, 53). The inhibition of GSK-3β via targeting 
the IL-6-mediated PI3/AKT/mTOR pathway decreases neural 
apoptosis and affects autism spectrum disorder via GRPR (52, 53). 
Exercise-induced mTOR activation improved cognition and emotional 
behavior in mice models with IL-6 overexpression (26, 54, 55). Studies 
have reported that mTOR regulates protein synthesis and degradation 
in the context of Alzheimer’s disease (AD) pathogenesis (56).

Moreover, activation of the PI3K/AKT pathway via IL-6 triggers 
FOXO1 signaling, which can further activate TLR4, thereby increasing 
the expression of IL-6; this vicious cycle may be involved in regulating 
the inflammatory process in the brain (57). For instance, aerobic 
exercise downregulates FOXO1 to reduce neural apoptosis in the 
hippocampus region through the CDKN2A/REDD1 pathway, and this 
may occur via exercise-mediated activation of death-associated 
protein kinase 1 (58). In addition, exercise-induced IL-6 activates 
CREB via the PI3K/AKT pathway to decrease depressive disorder, 
primarily by activating BDNF signaling in the hippocampus (59). This 
entire downstream target is manipulated by exercise-activated IL-6, 
without the release of other proinflammatory cytokines; however, it 
may be linked to lactate formation during exercise (60). Conversely, 
exercise-induced IL-6 mediates the PI3K/AKT pathway, which may 
activate an anti-inflammatory response to reduce oxidative stress and 
neuronal damage by targeting FOXO3 and NF-κB (61). Additionally, 
this condition enhances insulin sensitivity, facilitating increased 
glucose uptake by neurons and glycogen synthesis to maintain energy 
homeostasis in brain cells (62). The 2IL-6, ROS, and NF-κB play a 
crucial role in neurodegeneration by creating a positive feedback loop 
that triggers inflammation and neuronal damage. For instance, 
reduced levels of IL-6 and NF-κB have been shown to decrease 
neuroinflammation induced by LPS in BV2 cells (63). Additionally, a 
study indicated that sulforaphane, known for its antioxidant properties 
and ability to reduce ROS, lowers IL-6 and NF-κB levels in a rat model 
of AD, suggesting that IL-6-induced ROS activation triggers the 
NF-κB and vice versa (64). Furthermore, chronic treadmill exercise 
for 12 weeks, five days a week, mitigated IL-6 and NF-κB levels in an 
AD mouse model, likely by reducing ROS formation through the 
modulation of IL-6 and NF-κB (65). Therefore, targeting this pathway 
may provide therapeutic value for neurodegenerative diseases.

The role of IL-6 in targeting BDNF responses for neuroregeneration 
and the treatment of depressive disorders is critical, particularly as 
exercise is associated with elevated BDNF levels (66). For instance, 
unaccustomed exercise has been observed to reduce BDNF responses, 
with this decrease persisting for at least 24 h following the 
unaccustomed stretch-shortening activity (67). Notably, these changes 
do not correlate with IL-6 levels, indicating that specific exercise 
modalities may regulate BDNF responses independently of IL-6 
activation (67). Moreover, the activation of CREB by CRTC1 has been 
linked to improvements in mood disorders (68), with evidence that 
CREB can bind to the promoter region of the IL-6 gene, thus 
influencing IL-6 transcription. While exercise is known to enhance 
CREB activation, physiological hypertrophy resulting from exercise 
may also impact this activation (69), potentially affecting IL-6 levels 
and reversing inflammatory responses in neurodegenerative 
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conditions. Stress-induced proteins, such as Regulated in Development 
and DNA Damage-Response 1 (REDD1), are associated with metabolic 
disorders and neurodegeneration, while also contributing to oxidative 
stress and autophagy (70). This may be dependent or independent of 
mTORC1, but IL-6 may be crucial for activating REDD1 by carrying 
out mTOR-dependent or its other downstream target STAT3 to 
regulate REDD1 (70, 71). In this case, exercise-mediated hypoxia could 
activate REDD1, either triggering IL-6 or hypoxia induced by exercise, 
to increase REDD1 without IL-6 response in the brain (72). Treadmill 
exercise increased the expression of REDD1 via decreasing mTORC1 in 
the rats (72). Receptor-interacting protein kinase 1 (RIPK1) regulates 
neural apoptosis (73). Treadmill exercise modulates RIPK1 to regulate 
the IL-6-mediated response via MAP3K5/JNK and NF-κB, thereby 
decreasing neuroinflammation in the hippocampus of aged mice (73).

How exercise triggers the of IL-6 
response for altering brain functions?

The prompt synthesis of IL-6 could carry pleiotropic effects by 
modulating various cytokines and growth factors. Physical exercise can 
accelerate this process. For example, prolonged exercise induces the 
release of IL-6 from skeletal muscle, which is then released into 
circulation to modify the secretion of other proteins, such as TLR-4, 
thereby regulating physiological processes in the brain, including 
neurogenesis (74). However, these two molecules can also play a role in 
inducing an inflammatory response that leads to neuronal damage, and 
the role of physical exercise in this condition is ambiguous. 
Transforming growth factor-β (TGF-β) contributes to AD pathogenesis 
during brain injury, in combination with IL-6, by promoting the 
expression of ROR-γt to regulate IL-17 (75). This elicits anxiety and 
affects social behavior (76). However, exercise can reverse this condition 
by increasing adaptive signaling, including PGC-1α, mTOR, and 
AMPK, without altering the IL-6-mediated benefits (27). For example, 
recreationally active individuals have reduced levels of sIL-6R, which 
favors adaptive signaling to exercise, resulting in a balance shift toward 
higher classical signaling and less trans-signaling, thereby avoiding a 
pro-inflammatory response to the exercise program (27). In addition, 
combined training decreased the expression of IL-17 in the plasma of 
multiple sclerosis patients (77), which could reciprocally decrease the 
expression of TGF-β without triggering IL-6 (78). In addition, elevated 
levels of IL-6 are linked to increased levels of Th17/Treg ratio, which 
disrupts the immune tolerance in the brain cells and causes neurological 
disorders (79) (Figure 2). The Th17/Treg ratio imbalance exacerbates 
cognitive impairment by modulating STAT3 activation in mice, 
potentially illustrating the immune regulatory effects of STAT3 through 
IL-6-mediated Th17/Treg levels (80). Treadmill exercise for 4 weeks 
(5 days/week) in adult ischemic rats regulates the ratio of Th17/Treg by 
decreasing neuronal apoptosis via inhibition of the IL-6-mediated 
signaling pathway, such as JAK2/STAT3 (81).

Next, IL-6 contributes to the development of T follicular helper 
cells (Tfh), which can be linked to the pathophysiology of neuromyelitis 
optica spectrum disorders (82). Karnowski et al. reported that Tfh cells 
were reduced in IL-6 knockout mice with the absence of IL-21, which 
is linked to the driving of neuroinflammation and fat accumulation in 
microglia (83). However, specific condition for exercise-mediated IL-6-
induced Tfh development need to be  reported, along with the 
corresponding mechanisms. IL-6 induced recruitment of gp130 triggers 

the yes-associated protein 1 (YAP) signaling and neurogenic locus 
notch homolog protein (NOTCH) signaling to promote glioblastoma 
growth in the human brain (84, 85). Exercise has been reported to 
regulate the YAP, especially in energy-deprived conditions, via AMPK, 
which phosphorylates the YAP (86). Additionally, various types of 
exercise activate the NOTCH signaling pathway, thereby decreasing 
brain aging by promoting autophagy and hippocampal neurogenesis, 
which in turn improves spatial learning and memory in rats (87). 
Nevertheless, the role of the IL-6 mechanism in this condition needs to 
be  established. IL-6 also has metabolic controls in the brain by 
regulating glucose concentration in HFD mice (88). Mainly, IL-6 trans-
signaling regulates systemic glucose homeostasis in hypothalamic 
neurons (89). IL-6 regulates energy expenditure in the hypothalamic 
region, as evidenced by the modulation of fat metabolism in obese 
conditions (90). Studies have shown that schizophrenia disorder is 
linked to altered glucose and fat metabolism, and the infusion of IL-6 in 
IL-6 knock-out mice failed to induce schizophrenia disorder (91, 92), 
indicating that IL-6 elevation could be  a general feature of major 
depressive disorders like schizophrenia. However, the precise 
mechanism by which IL-6 is linked to these disorders remains elusive. 
Due to its diverse roles as both pro-inflammatory and anti-
inflammatory mediator in the brain, IL-6 can contribute to a range of 
outcomes from neuroprotection to neurodegeneration. These effects 
likely stem from complex molecular interactions within the central 
nervous system, as well as the actively working skeletal muscle, which 
is primarily influenced by the cellular environment, blood–brain barrier 
permeability, and the specific IL-6 signaling pathways that are activated 
during exercise. Exercise elevates the circulating IL-6, indicating that 
working skeletal muscle is the predominant source of IL-6. However, 
astrocytes are another major source of IL-6, especially in conditions 
such as brain injury, hypoxia, and inflammation. This suggests that 
muscle-derived IL-6 is generally considered beneficial during exercise, 
while brain-derived IL-6 has both beneficial and detrimental effects, 
which can potentially contribute to increased neurodegeneration (93). 
Moreover, the IL-6-mediated metabolic boost can be utilized by the 
exercised brain to enhance energy homeostasis (16), while also ensuring 
a constant supply of glucose and fats to the working muscles (94). 
Moreover, IL-6 plays a crucial role in brain iron metabolism, as 
evidenced by the decrease in serum iron and the increase in IL-6 levels 
in the serum (95). Sterling et  al. showed that IL-6 induces iron 
sequestration in neurons in response to pathological alpha-synuclein in 
both humans and mice with PD (96). Regular running exercise 
triggered the redistribution of iron in altered brain iron metabolism by 
decreasing cortical hepcidin levels, coupled with increased IL-6 levels 
in the cortex and plasma, in an AD mouse model, possibly through an 
IL-6/STAT3/JAK1 pathway-mediated mechanism (97).

Therapeutic possibilities of IL-6- role 
of exercise

The level of IL-6 obviously contributes to the pathogenesis of 
brain diseases. Regular physical exercise can decrease IL-6, while also 
helping to block downstream signalings of IL-6. For example, the 
increase in IL-6 in cerebrospinal fluid affects neuroplasticity in MS 
patients, and physical exercise can inhibit this condition by regulating 
IL-6 (98–100). Next, targeting IL-6 signaling, such as STAT3, could 
alleviate memory impairment and glucose intolerance in AD, and 
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exercise may serve as a STAT3 inhibitor to improve this condition 
(20). A study has shown that exercise, such as resistance training, 
decreases the STAT3 signaling in muscle atrophy (20). Whereas 
running exercise improves STAT3 signaling by targeting GPC6 to 
elicit neuroprotection in a mouse model of cerebral artery occlusion 
(101), indicating that each exercise protocol elicits different effects to 
target the IL-6-mediated signaling. Designing an exercise strategy that 
targets gp130-mediated signaling could have therapeutic application 
in brain tumors like glioblastoma by influencing endothelial-mediated 
actions (102), and decreasing neuronal loss and hyperinflammation 
(103), evidenced by the increase of gp130 by running exercise, which 
suppresses the STAT3 signaling to improve mitochondrial quality 
(104). Moreover, finding the association between exercise training and 
different protocols on single-nucleotide polymorphisms (SNPs), such 
as rs2228145 SNP, could modify the expression of sIl-6R, which might 
extend the half-life of IL-6 from minutes to hours; thus, it can 
transiently increase its effects from its production site to distant 
regions of the brain to produce systemic effects to target 
neurodegenerative diseases (27).

Engaging in 30 min of aerobic treadmill exercise per day, starting 
at an initial running speed of 2 m/min and gradually increasing to 
8 m/min for 20 min, can activate the PI3K/AKT pathway. This 
activity may inhibit GSK-3β through a potential increase in IL-6, 
which in turn can decrease neurofibrillary tangles by 

hyperphosphorylating tau protein (55, 105). Additionally, treadmill 
exercise influences the IL-6-induced inhibition of mTOR via AMPK 
without activating STAT signaling (55). This mechanism is crucial in 
driving the pathogenesis of AD (105). In contrast, 12 weeks of 
resistance training—conducted 3 days a week with a 48-h rest interval 
between sessions—was shown to increase IL-6 levels with aging, 
thereby exacerbating the pro-inflammatory response (106). However, 
this response can be reversed with regular exercise training (106). 
Studies have indicated that both aerobic and resistance exercises 
affect the circulation of IL-6 by increasing levels of irisin (107, 108). 
For instance, cycling exercise performed three times a week for 
55 min at 70% VO2 max enhanced the irisin response (108), while 
running three times a week for 60 min also increased irisin levels 
(107). Furthermore, resistance training for 12 weeks, twice a week for 
55 min, resulted in an increased irisin response (107). Although these 
studies did not specifically assess IL-6, a study demonstrated that the 
release of irisin reduces IL-6 in astrocytes, decreases the expression 
of COX-2, and inhibits the phosphorylation of AKT by blocking 
NFκB activation (109). This process helps to protect neurons from 
Aβ toxicity in AD (109), suggesting that the exercise-induced 
hormone irisin plays a crucial role in regulating the IL-6-mediated 
response in neurodegenerative diseases. Activities such as walking, 
running, cycling, or swimming can increase the release of IL-6 and 
other anti-inflammatory cytokines, thereby improving insulin 

FIGURE 2

Effect of exercise on mediating pleiotrophic functions of IL-6 in the brain. (A) Physical exercise induces TGF-beta, which in turn stimulates IL-6, thereby 
regulating the ratio of TH17 to Treg cells, while also increasing IL-17 to enhance brain function. (B) Exercise-mediated IL-6 response alters the iron 
metabolism via targeting hepcidin. (C) Energy demand under exercised conditions activates the AMPK and YAP to induce the positive effect of NOTCH, 
which can induce neurogenesis in the brain by activating autophagy and preventing brain aging.

https://doi.org/10.3389/fneur.2025.1639427
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li and Thirupathi 10.3389/fneur.2025.1639427

Frontiers in Neurology 07 frontiersin.org

sensitivity (137). Insulin resistance is a hallmark of various 
neurodegenerative diseases, such as AD and PD. Additionally, 
resistance training enhances muscle strength, contributing to overall 
health and mobility in individuals with different neurodegenerative 
conditions. Therefore, performing both aerobic exercise (3 to 5 days 
per week, 30–40 min at 60–80% intensity) and resistance training 
(2–3 days per week) can improve outcomes for individuals with 
neurodegenerative conditions (110) (Table 2). However, personalized 
interventions should be tailored to individual circumstances.

Does exercise duration and intensity 
influence the IL-6 response?

Although exercise is strongly associated with IL-6 response, 
the duration and intensity of exercise as contributing factors in 
determining the IL-6 response, especially in brain physiology, are 
unknown. Some studies have shown that a longer duration with 
moderate intensity significantly increases the IL-6 response 
within skeletal muscle and its surrounding interstitial fluid, 

TABLE 2 Aerobic versus resistance training protocols and their effects on IL-6 response in neurodegenerative conditions.

Aerobic exercise Molecular target for 
IL-6 mediated 
pathophysiological 
in brain

References Resistance 
exercise

Molecular target for 
IL-6 mediated 
pathophysiological 
action in brain

References

Voluntary running wheel 

exercise (mice)

Aerobic training decrease 

hippocampal inflammation 

and neurodegeneration by 

reducing IL-6

(125) Resistance exercise 

program is followed 

three sets of four 

lower limb exercises, 

(1) leg press, (2) leg 

curl, (3) leg extension, 

and (4) calf raises for 

12 weeks

IL-6 level was increased in mild 

cognitive impairment condition.

(126)

Walking exercise for 5 min over 

ground on 15 feet long in MS 

people

Faster walking speed increases 

the BDNF/IL-6 ratio for 

triggering repair phenotype

(99) Resistance training 

was followed in aged 

rats with a maximal 

load test

IL-6 was decreased when 

compared to aerobic training in 

the cortical and hippocampal 

region.

(127)

Motor treadmill at a speed of 

10 m/min for 90 min for 

2 weeks in mice

Physical exercise decrease the 

IL-6 expression via irisin to 

elicit neuroprotection

(128) Resistance exercise as 

climbing ladder 

exercise intervention 

was followed for 

8 weeks

IL-6, iNOS and STAT3/STAT3 

levels were increased for 

improving spatial learning and 

memory and decrease the 

neuronal damage, 

neuroinflammation by promoting 

polarization of M2 microglia in 

the hippocampus.

(129)

7 days of treadmill exercise 

adaptation program is followed, 

then; 15 min of exercise at the 

speed of 5 m/min on day 1 and 

2 then 8 m/min on 3 and 4 and 

12 m/min on 5 to 7 days. Then 

formal exercise protocol is 

followed for 5/week for 30 min 

in mice

Exercise decreased the IL-6 for 

reducing neuroinflammation 

in mice with AD, by affecting 

the SUMO1 and IGF1R

(87) Resistance exercise 

was performed 5 

times/week for 

10 weeks in mice

IL-6 was increased to enhance the 

COX2 expression in the cortex 

and hippocampus, which is 

independent of systemic 

inflammatory process.

(130)

Animals spent 3 h in running 

wheels in AD mouse model.

Improves the neurogenesis via 

promoting the levels of IL-6/

BDNF via FNDC5.

(131) Resistance training 

was performed for 5 

times/week over 

4 weeks. RE protocol 

is consisted of 

climbing a ladder with 

a progressive load.

Resistance training restored the 

IL-6 level to decrease amyloid 

load, and. Inflammation in AD 

model.

(132)

treadmill running exercise for 

3 days

IL-6 is decreased, which in 

turn to switch microglia 

polarization, thus improving 

motor function after stroke via 

MMP12

(129)
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thereby eliciting its pleiotropic effects on the brain (16, 111). This 
is evidenced by a greater increase in IL-6, approximately 8,000-
fold, after a foot race of up to 246 km (111). In addition, 
prolonged exercise induces the release of IL-6 from the brain, 
evidenced by the no release of IL-6 from brain after 15 min of 
exercise, while 60 min the same exercise induced the small 
release of IL-6 and this was increased upto fivefold after the 
second bout of exercise in the brain (16). Moreover, exercise 
intensity is another factor that greatly elevates the IL-6 response 
(112). For example, cycling exercise at low intensity for 35 min 
increased the IL-6 response by up to 1.4-fold, whereas the same 
exercise at high intensity elevated the IL-6 response by up to 
2.7-fold (27). However, all these studies are used aerobic training 
and the role of resistance exercise with higher intensity on IL-6 
response is limited when compared to aerobic exercise, and 
exploring future research on resistance training on the brain 
functions, especially with neurodegenerative populations such as 
AD, PD and dementia could effectively integrate the types of 
exercise, which improve the functional outcomes of those people. 
Other factors, such as glycogen availability and the training status 
of the individuals, as well as the mode of exercise in relation to 
intensity and duration, also influence the IL-6 response. The 
possible mechanism that involves increasing the IL-6 response 
using these factors may be  mediated by AMPK signaling that 
elevates IL-6 under a low-energy state and vice versa. Another 
mechanism involves increasing calcium signaling through 
exercise, particularly chronic exercise that can induce the IL-6 
response, thereby regulating iron efflux (113, 114). This 
mechanism also decreases exercise-induced fatigue by 
astrocytes (115).

Why do exercise protocols matter for 
IL-6 signaling in AD/PD?

Exercise protocols play a crucial role in maintaining IL-6 
signaling in AD and PD by modifying the inflammatory process 
(133–135). These protocols affect various signaling pathways, 
which can help slow disease progression. For instance, acute 
exercise increases the IL-6 response and elevates anti-
inflammatory factors such as IL-1RA and IL-10. These factors, in 
turn, downregulate pro-inflammatory cytokines, including TNF-α 
and IL-1β, in individuals with AD (116). On the other hand, 
chronic exercise reduces the elevated levels of IL-6, TNF-α, iNOS, 
and COX-2, thereby alleviating neuroinflammation in AD (65). 
Regular exercise is also beneficial for maintaining brain volume 
in the elderly, which can help prevent AD and dementia (136). 
The intensity and frequency of exercise can significantly influence 
both the magnitude and duration of IL-6 release. Additionally, the 
type of exercise performed can affect the release of IL-6 and help 
mitigate the pro-inflammatory response. For example, resistance-
type exercise has been shown to decrease the activation of NF-kB 
in mice with PD by lowering IL-6 levels (117). This reduction can 
improve short-term memory, and the effects of resistance exercise 
are comparable to levodopa treatment in PD (117). Moreover, an 
increase in IL-6 is correlated with poor physical functioning, 
weakness, and fatigue in PD patients, likely due to heightened 

muscle catabolism that contributes to sarcopenia (118). 
Additionally, a single bout of resistance exercise performed three 
times a week for 12 weeks can enhance the IL-6 response, 
activating downstream targets such as STAT3, c-MYC, c-FOS, and 
SOCS3 (37, 119), which are associated with the aging process. 
Therefore, carefully selecting and tailoring exercise protocols may 
help minimize the detrimental effects of IL-6 signaling while 
harnessing its beneficial effects to enhance outcomes for 
individuals with AD and PD.

Limitations

Prescribing exercise to individuals with specific 
neurodegenerative conditions presents several limitations and 
challenges. For example, in conditions like PD, the progressive 
loss of motor function can make it difficult for individuals to 
perform even basic exercises as the disease advances. Additionally, 
cognitive impairments in individuals with AD can hinder their 
ability to understand and follow exercise programs. The benefits 
of exercise and the tolerance for it can vary widely among 
individuals with different neurodegenerative conditions. 
Furthermore, there is a lack of established exercise protocols that 
have been proven safe and effective in alleviating symptoms of 
neurodegenerative diseases. The feasibility of patients engaging in 
exercise often depends on the specific disease condition, its 
severity, and the individual’s overall health status. Comorbidities 
associated with neurodegenerative diseases, such as hypertension 
and osteoarthritis, can also significantly impact exercise 
performance. Individuals with these comorbidities may have 
decreased exercise tolerance. Moreover, genetic factors like IL-6 
polymorphisms (for instance, rs2228145) can influence an 
individual’s response to exercise by altering the risk of disease 
progression through changes in IL-6 signaling. Therefore, 
understanding the relationship between IL-6 and rs2228145 could 
greatly assist clinicians and exercise professionals in personalizing 
exercise programs for individuals with neurodegenerative 
diseases. A multidisciplinary approach that includes physical 
therapy, neuropsychological rehabilitation, or occupational 
therapy can further optimize exercise programs and improve 
patient outcomes.

Conclusion

The pleiotropic effects of IL-6 impede the development of 
strategies that can target the IL-6 response in brain diseases. 
Evidence suggests that inhibiting the downstream targets of IL-6, 
such as JAK/STAT3 and PI3K/AKT, may mitigate the normal 
physiological functions of the brain, as these pathways also play 
roles in enhancing physiological functions. Therefore, careful 
attention is necessary before designing potential therapeutic 
targets. Although pharmaceutical agents have been successfully 
used to block IL-6 in various models, the mechanistic involvement 
of IL-6 signaling is poorly understood. Utilizing physical exercise 
as a therapeutic tool could mitigate the deleterious effects of 
these downstream targets of IL-6 without exacerbating IL-6 
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levels. However, exercise protocols, such as intensity and 
duration, are linked to the direct elevation of IL-6 in the muscle 
and circulation. This may shift the effects of IL-6 toward 
pathological signaling in the brain, indicating a need for a more 
comprehensive understanding of exercise protocols related to 
IL-6 signaling, which could present additional therapeutic 
opportunities for treating neurological disorders.
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