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Background: Neuromuscular diseases (NMDs) pose significant diagnostic 
challenges due to their heterogeneous clinical manifestations and the limitations 
of traditional diagnostic tools. While musculoskeletal ultrasound has become a 
promising non-invasive modality for evaluating muscle pathology, its diagnostic 
accuracy remains heavily dependent on the operator’s expertise. To address 
this, we propose a lightweight and interpretable deep learning model to enable 
automated classification of ultrasound images in NMD screening.
Method: We developed a novel model, termed NMD-AssistNet, which integrates 
GhostNet as the backbone with CBAM attention modules and depthwise 
separable convolutions to enhance both efficiency and discriminative capacity. 
The model was trained and evaluated on a public dataset containing 3,917 
annotated ultrasound images of various muscle groups. Mixup augmentation, 
label smoothing, and SWALR learning rate scheduling were applied to improve 
generalizability. Performance was benchmarked against CSPNet, EfficientNet, 
GhostNet, HRNet, and Vision Transformer.
Results: NMD-AssistNet achieved the highest performance among the 
evaluated models, reaching a classification accuracy of 0.9502 and an area 
under the curve (AUC) of 0.9776. Grad-CAM visualizations revealed that the 
model effectively focused on clinically relevant muscle regions, highlighting its 
potential interpretability.
Conclusion: NMD-AssistNet demonstrates strong diagnostic capability, 
computational efficiency, and model interpretability and offers a promising 
solution for real-time, automated NMD screening. This framework has the 
potential to be deployed in portable ultrasound systems or edge AI devices to 
assist clinicians in both hospital and community healthcare settings.
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1 Introduction

Neuromuscular diseases (NMDs) are a class of complex diseases that originate from the 
anterior horn of the spinal cord, peripheral nerves, neuromuscular junctions, or skeletal 
muscles. Their clinical manifestations include a variety of symptoms such as muscle atrophy, 
decreased muscle strength, impaired motor function, and even respiratory insufficiency (1). 
Different types of NMDs vary significantly in disease progression, prognosis, and treatment 
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response. Clinical intervention strategies are also highly dependent on 
the accurate identification of disease types and their stages (2). While 
a detailed neurological examination is the cornerstone of diagnosis 
and can often differentiate the level of the lesion, the diagnostic 
process can still be challenging and protracted. This is particularly true 
in the early stages of the disease, where symptoms may be subtle or 
overlap with other neurological conditions, necessitating objective 
diagnostic aids to supplement clinical assessment (3).

Ultrasound imaging, as a non-invasive, dynamic and repeatable 
imaging technology, has been widely used in the clinical evaluation of 
muscle diseases in recent years. Compared with traditional methods 
such as electromyography (EMG) or muscle biopsy, ultrasound can 
not only reflect changes in muscle structure in real time, such as 
changes in muscle thickness, echo intensity and texture pattern, but 
can also be used to dynamically observe the muscle’s behavior during 
movement, thereby assisting in the assessment of disease activity and 
treatment effect (4). However, this imaging technology is highly 
dependent on the operator’s technical level and clinical experience, 
and different doctors may have different interpretations of the same 
image. In addition, the performance of muscle tissue in ultrasound 
images is often complex and variable due to disease type, individual 
differences and different scanning angles. Factors such as blurred 
lesion boundaries and overlapping tissue echoes may interfere with 
diagnostic judgment (5).

To address the shortcomings of traditional image interpretation 
methods, the application of artificial intelligence (AI), especially deep 
learning, in the field of medical image processing has gradually 
deepened in recent years. Recent comprehensive reviews have 
highlighted that AI, and particularly deep learning, holds significant 
promise for transforming diagnostic workflows in neuromuscular 
medicine (6). A convolutional neural network (CNN) is a specialized 
deep learning architecture for processing grid-like data, such as an 
image. Its key advantage is the ability to automatically learn relevant 
features from the input data through the use of convolutional filters. 
In the imaging diagnosis of neuromuscular diseases, CNNs are widely 
used for automatic feature extraction and image classification tasks. 
Their advantage is that they can autonomously learn and extract 
multi-level texture information from complex image data (7). At the 
same time, transfer learning strategies have been introduced to 
overcome the limitations of small sample data sets on model training, 
and have shown good adaptability under the realistic conditions of 
scarce medical images (8). The multi-task learning framework 
improves the spatial sensitivity and discrimination of the model to the 
lesion area by simultaneously optimizing target tasks such as 
classification and segmentation, thereby improving the overall 
diagnostic performance (9).

Although the above-mentioned technological progress is 
encouraging, there are still many technical bottlenecks that limit its 
clinical promotion. First, the performance of existing models in real 
ultrasound scenes facing high noise, low contrast and complex 
backgrounds is still unstable, and it is prone to misjudgment and 
missed diagnosis (10). More importantly, the vast majority of studies 
are based on small, single-center datasets, and the generalization 
ability and robustness of the model have not been fully verified in a 
multi-institutional and heterogeneous equipment environment, 
limiting its translation from scientific research to clinical practice. 
Therefore, developing a lightweight, high-performance neural 
network architecture with good generalization ability to improve the 

efficiency and stability of auxiliary diagnosis of neuromuscular 
diseases in ultrasound images has become an important direction of 
current medical artificial intelligence research.

To address the aforementioned challenges, this paper proposes 
NMD-AssistNet, a novel lightweight deep learning model for the 
efficient and automated classification of neuromuscular diseases from 
ultrasound images. Based on the GhostNet architecture (11), this model 
introduces the CBAM (Convolutional Block Attention Module) that 
integrates channel attention and spatial attention to enhance the feature 
focusing ability of key lesion areas. At the same time, it combines 
depthwise separable convolution and a channel shuffling mechanism to 
significantly reduce the number of model parameters and computational 
complexity, thereby adapting to the characteristics of complex texture 
details and blurred boundaries in ultrasound images. In addition, in 
order to improve the generalization ability and training stability of the 
model, we also introduced the Mixup data enhancement strategy, label 
smoothing regularization, and SWALR (Stochastic Weight Averaging 
with Learning Rate Scheduling). The experimental part is based on a real 
clinical ultrasound image dataset, and systematically compares its 
performance with multiple mainstream models on multiple classification 
performance indicators, and analyzes its diagnostic accuracy and clinical 
interpretability through attention heat maps (Figure 1).

2 Methods

2.1 Data collection

This study utilized a public ultrasound image dataset from the 
Mendeley data repository (DOI: 10.17632/3jykz7wz8d.1), originally 
collected in the Arnhem-Nijmegen region. The dataset is governed by 
the Creative Commons Attribution 4.0 (CC BY 4.0) license, which 
explicitly permits data reuse for any research purpose with proper 
citation, thus no separate institutional review board approval was 
required for our secondary analysis (12). The dataset contains data from 
a total of 1,283 subjects (average age 50 ± 21 years, 729 males), including 
3,917 cross-sectional ultrasound images, covering three common 
skeletal muscle groups: biceps brachii, tibialis anterior, and medial 
gastrocnemius. All images were manually annotated by experienced 
clinical ultrasound experts to ensure the accuracy of anatomical 
structure identification and classification labels (13). To classify muscle 
images into healthy and pathological categories, the original research 
team used a z-score method based on grayscale values. The z-score was 
calculated using linear regression models derived from a healthy 
population, incorporating variables such as age, gender, and BMI. An 
image was labeled as “abnormal” if its grayscale value z-score was 
greater than 2, and “normal” otherwise. This classification resulted in 
the following distribution per muscle group: biceps brachii (287 
normal, 158 abnormal subjects), medial gastrocnemius (266 normal, 
110 abnormal subjects), and tibialis anterior (296 normal, 166 abnormal 
subjects). In total, the dataset comprises images from 849 normal and 
434 abnormal subjects (Table 1 and Supplementary Table S1).

2.2 Data preprocessing

Before model training, we  performed a systematic data 
preprocessing pipeline on all ultrasound images to ensure input data 
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quality, structural consistency, and to promote model training stability 
and convergence. This pipeline included size unification, noise 
suppression, and image enhancement. First, we  performed image 
standardization and cleaning. To meet the input requirements of the 
deep learning model, all images were uniformly resized to 224 × 224 
pixels. Given that ultrasound images are inherently affected by speckle 
noise, we  employed a median filter with a 5 × 5 kernel (14). This 
method was chosen for its effectiveness in suppressing salt-and-
pepper-like noise while preserving critical muscle boundary details 
better than linear filters like Gaussian blur. Subsequently, to address 
the issue of variable contrast across different images, which can arise 
from different equipment settings or patient tissues, we  applied 
Contrast Limited Adaptive Histogram Equalization (CLAHE) instead 

of global histogram equalization. CLAHE enhances local contrast 
without over-amplifying noise in relatively uniform regions, making 
it particularly suitable for medical image analysis.

Considering the high heterogeneity of clinical ultrasound 
images, we  implemented a comprehensive data augmentation 
strategy to enhance the model’s robustness and mitigate overfitting 
(15). For the training set, we applied several transformations with 
specified probabilities: resized cropping (to 224 × 224), horizontal 
flipping (p = 0.5), and perturbations in brightness, contrast, and 
saturation (with a jitter factor of 0.2). On this basis, we further 
introduced the Mixup data augmentation strategy, with the mixing 
coefficient λ drawn from a Beta distribution (α = 0.2, β = 0.2). This 
method generates virtual training samples by linearly combining 
two images and their corresponding labels, which has been shown 
to improve model generalization and performance on imbalanced 
datasets (15).

For label processing, we encoded the original diagnostic labels 
(“normal” and “abnormal”) into a binary format: 0 for normal and 1 
for pathological. This was based on the z-score grading results, and a 
mapping dictionary was constructed to ensure consistent annotation 
during training and validation. Additionally, to meet the input 
requirements of NMD-AssistNet, the images were converted to 
tensors and normalized at the channel level using PyTorch’s built-in 
Normalize function. The mean and standard deviation were set to the 
standard values used by the ImageNet pre-trained model ([0.485, 
0.456, 0.406] and [0.229, 0.224, 0.225]), respectively, to facilitate the 
application of transfer learning strategies (16). To systematically 
validate the contribution of each component within this preprocessing 
pipeline, we  designed an ablation study. This study involved 
incrementally adding each processing step to a baseline model to 
quantify its specific impact on performance.

FIGURE 1

The overall technical route of this study.

TABLE 1  Description of the public neuromuscular ultrasound dataset.

Characteristic Details

Total subjects 1,283

Subjects with normal images 849

Subjects with abnormal images 434

Demographics 729 males; average age: 50 ± 21 years

Total images
3,917 (approx. three to four images per subject 

per muscle)

Muscles included
Biceps brachii, tibialis anterior, medial 

gastrocnemius

Pathology type
Neuromuscular disorders (e.g., myopathy, 

neuropathy)

Image specifications B-mode, PNG format

Data source Mendeley data (doi: 10.17632/3jykz7wz8d.1)
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2.3 Region of interest segmentation

Although the main task of this study focuses on the classification 
of ultrasound images of neuromuscular diseases, due to the fact that 
muscle tissue in ultrasound images often has features such as blurred 
boundaries, uneven grayscale distribution, and complex background 
structures, direct classification training on the entire image may cause 
the model’s attention to diverge and interfere with the accuracy of 
feature extraction. Therefore, before the image is input into the model, 
we  introduced the muscle contour information based on expert 
annotation to extract the region of interest (ROI) to weaken irrelevant 
background interference and enhance the model’s ability to focus on 
key structures. Each image in the dataset is accompanied by a muscle 
cross-sectional area (CSA) contour mask drawn by experts. These 
masks were originally used for grayscale analysis and muscle volume 
estimation. In this study, we  converted it into the cropped area 
required for the classification task, extracted the minimum rectangular 
area containing the muscle body by calling the contour boundary 
coordinates, and performed appropriate upper, lower, left, and right 
edge expansion on this basis to retain the surrounding important 
structural information. The processed ROI images were uniformly 
adjusted to the standard input size and replaced the original full 
images in the subsequent model training process. This strategy 
effectively reduces the risk of model learning background noise while 
retaining the core muscle tissue features, and improves the focus and 
discriminability of feature extraction. It is worth pointing out that this 
study did not train a pixel-level segmentation model separately, but 
made full use of the existing manually annotated segmentation mask 
as a guide to construct better classification input samples through ROI 
cropping. The reliability of these masks is critical. The ground-truth 
segmentation was performed by two experienced clinicians (a 
physiotherapist and a technical physician). They first annotated 
images independently, then resolved discrepancies via consensus 
discussion (12).

2.4 Diagnostic model construction

2.4.1 NMD-AssistNet
In order to achieve efficient and accurate identification of 

neuromuscular diseases, this paper designs a lightweight deep 
learning model tailored for ultrasound image diagnosis tasks, named 
NMD-AssistNet (Neuromuscular Disease Assistive Network). The 
model uses an improved GhostNet as the backbone architecture, 
combined with an attention mechanism and a lightweight convolution 
strategy, to significantly reduce the number of model parameters and 
computational overhead while ensuring diagnostic performance, 
thereby meeting the comprehensive requirements of medical image 
analysis for efficiency, generalization ability, and clinical deployability.

NMD-AssistNet consists of three key modules: the basic backbone 
adopts the GhostNet framework to obtain efficient sparse feature 
representation; the feature enhancement part introduces the channel 
and space dual attention mechanism—CBAM to enhance the model’s 
ability to pay attention to the texture and structure of the lesion area 
(17); at the same time, the model embeds depthwise separable 
convolution and channel shuffle operations in multiple convolutional 
layers to further compress parameters, improve operation speed, and 
enhance the fusion and flow of multi-scale features (12). The final 

output layer of the model uses global average pooling combined with 
a fully connected layer to map to a binary classification label space to 
achieve automatic judgment of “healthy” and “pathological” images. 
We introduced label smoothing technology at the loss function level 
to effectively alleviate the risk of overfitting during training. At the 
same time, in terms of training scheduling strategy, the SWALR 
method is used, combined with periodic learning rate adjustment and 
model weight averaging to improve the optimization convergence 
speed and obtain more stable model performance (18).

2.4.2 Model comparison
In order to systematically evaluate the performance advantages of 

NMD-AssistNet, this study selected five representative deep learning 
models for comparison, including CSPNet (12), EfficientNet (12), 
GhostNet (19), HRNet (20), and Vision Transformer (ViT) (21). These 
models cover different technical paths such as lightweight design, multi-
scale modeling and global attention mechanism, representing the current 
mainstream modeling strategies for medical image classification. CSPNet 
and GhostNet emphasize high efficiency, but have deficiencies in feature 
expression and lesion perception; although EfficientNet has strong 
performance, its large network size limits clinical deployment; HRNet 
maintains high-resolution features and has ideal boundary preservation 
effects, but has high computational complexity; ViT has global modeling 
capabilities and is suitable for large-scale natural image classification, but 
is prone to overfitting in small and medium sample medical scenarios.

2.5 Experimental setup

To ensure a rigorous and clinically meaningful evaluation, the 
dataset was partitioned at the subject level to prevent data leakage, 
where all images from a single individual were exclusively allocated to 
either the training or the validation set. We employed a stratified 
random sampling strategy based on the diagnostic label (normal vs. 
abnormal) to maintain a consistent class distribution across the sets. 
From the total of 1,283 subjects, 898 subjects (70%) were allocated to 
the training set, and the remaining 385 subjects (30%) were assigned 
to the validation set. This subject-level split resulted in the following 
data distribution: (1) Training set: Comprised 898 subjects (595 
normal, 303 abnormal), totaling approximately 2,742 images. (2) 
Validation set: Comprised 385 subjects, totaling 783 images. The 
model was trained on an Ubuntu 20.04 platform configured with an 
Intel i9-12900K CPU, 128GB RAM, and an NVIDIA RTX 3090 GPU 
(24GB). The development environment included PyTorch 1.13.1, 
CUDA 11.7, and cuDNN 8.4.1 (22). The training used the Adam 
optimizer (initial learning rate 0.001, batch size 32, weight decay 1e-5), 
and combined with the SWALR strategy to dynamically adjust the 
learning rate to improve convergence efficiency. The total number of 
training epoch was set to 100, and the early stopping mechanism was 
enabled to prevent overfitting. All comparison models (CSPNet, 
EfficientNet, GhostNet, HRNet, and ViT) were uniformly trained on 
the same data and environment to ensure experimental fairness.

2.6 Model evaluation

We evaluated model performance using several quantitative 
metrics, including accuracy, precision, recall, F1-score, and the area 

https://doi.org/10.3389/fneur.2025.1640428
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xie and Zhang� 10.3389/fneur.2025.1640428

Frontiers in Neurology 05 frontiersin.org

under the curve (AUC). Accuracy measures the proportion of 
correct classifications and is the basic indicator for evaluating overall 
performance. Precision (also known as positive predictive value, 
PPV) is used to evaluate the proportion of the model’s predictions 
of the “pathology” category that are actually pathological, reflecting 
its ability to control false positives. Recall measures the model’s 
ability to identify pathological samples and reflects the risk of missed 
diagnosis. The F1-score, as the harmonic mean of precision and 
recall, is suitable for scenarios with uneven sample distribution. 
Finally, the AUC value reflects the stability and discrimination 
ability of the model at different decision thresholds and is an 
important basis for evaluating the generalization performance of the 
model (23). In addition to these quantitative metrics, we qualitatively 
assessed the model’s interpretability using Gradient-weighted Class 
Activation Mapping (Grad-CAM), a technique that generates a 
visual heatmap to identify the image regions most influential for the 
model’s classification decision. In these visualizations, the heatmap 
is used for a qualitative assessment of the model’s focus. Warmer 
colors (e.g., red) indicate regions that were more influential in the 
model’s classification decision, while cooler colors (e.g., blue) 
represent areas of lesser importance. This approach helps to interpret 
where the model is looking, rather than quantifying the precise 
importance of each pixel.

3 Results

3.1 NMD-AssistNet performance

3.1.1 Overall performance
NMD-AssistNet achieved high performance across all evaluated 

metrics (Table 2). The model correctly classified 738 out of 783 total 
samples, with the full confusion matrix detailed in Table 2. Figure 2 
shows the receiver operating characteristic (ROC) curve for 
NMD-AssistNet, which is positioned close to the upper-left corner 
with an AUC value of 0.9776.

3.1.2 Ablation study on preprocessing methods
An ablation study was conducted to validate the effectiveness of 

each component in the data preprocessing pipeline. As detailed in 
Table 3, each added step incrementally improved model performance. 
The inclusion of standard data augmentation (Exp. D) yielded the 
most substantial increase in F1-score, while the complete pipeline 
with Mixup (Exp. E) achieved the highest scores across all metrics.

3.2 Comparison of model results

To evaluate its performance relative to other models, 
NMD-AssistNet was compared with five mainstream architectures 
under identical conditions. As shown in Figure 3, NMD-AssistNet 
achieved the highest values across all four metrics (accuracy, recall, 
precision, and F1-score) when compared to CSPNet, EfficientNet, 
GhostNet, HRNet, and ViT. Figure 4 illustrates that the parameter 
count of NMD-AssistNet (2.4 M) is substantially lower than that of 
the other models. The ROC analysis further shows that the AUC for 
NMD-AssistNet (0.979) was higher than all other tested models 
(Figure 5).

3.2.1 Grad-CAM display and analysis of the model
Grad-CAM was used to visualize the model’s focus areas on 

typical healthy and pathological muscle images (Figure 6). For healthy 
samples (Figure  6A), the high-response areas in the heat map 
concentrated on the transverse stripe-like texture corresponding to 
neatly arranged muscle fibers. For the pathological sample (Figure 6B), 
the high-response areas focused on regions with disordered echoes, 
blurred edges, or focal hypoechoic areas. These visualized regions 
correspond to locations of known pathological features.

4 Discussion

This study developed NMD-AssistNet, an efficient and lightweight 
deep learning model designed to meet the clinical need for auxiliary 
diagnosis of neuromuscular diseases by automatically classifying 
muscle tissue in ultrasound images. The model demonstrated strong 
performance, achieving an accuracy of 0.9502 and an AUC of 0.9776. 
This success is attributed to its hybrid architecture. By integrating the 
lightweight GhostNet framework with a CBAM attention mechanism, 
depthwise separable convolution, and channel shuffle strategies, 
NMD-AssistNet effectively focuses on key pathological features while 
maintaining a remarkably low parameter count of 2.4 M, which is 
significantly lower than larger models like ViT and HRNet. 
Furthermore, advanced training strategies, including Mixup 
augmentation, label smoothing, and SWALR, were employed to 
enhance the model’s generalization and stability, proving the 
effectiveness of our design.

A critical analysis of the Grad-CAM visualizations, however, 
warrants a more nuanced discussion. As observed, the heatmaps 
occasionally highlight the boundary between the ROI and the masked 
background. This phenomenon can be attributed to the nature of 
Grad-CAM interacting with the pre-segmented dataset used in this 
study (24). The artificial, sharp edge resulting from the expert-
provided segmentation masks creates a high-gradient region, which 
can become a prominent focus for the visualization technique (25). 
While this may suggest the model is learning from edge artifacts, it is 
crucial to interpret this alongside the model’s high accuracy. The 
strong performance indicates that the model successfully learns 
discriminative features from within the muscle tissue itself, as these 
are essential for distinguishing between healthy and pathological 
patterns. The boundary highlighting is more likely a byproduct of the 
visualization technique interacting with pre-processed data, rather 
than the sole basis for the model’s decision. This observation 
underscores a key challenge in applying post-hoc interpretability 

TABLE 2  Detailed performance metrics and confusion matrix.

Metric Value Confusion 
matrix

Value

Accuracy 0.9502 True positives (TP) 240

Sensitivity (recall) 0.9177 True negatives (TN) 498

Specificity 0.9540 False positives (FP) 24

Precision (PPV) 0.9085 False negatives (FN) 21

Negative predictive value 

(NPV)
0.9595 AUC 0.977

F1-score 0.9130 Trainable parameters 2,395,768
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methods to pre-segmented images and reinforces the importance of 
our future research direction (26). Developing an end-to-end model 
that operates on unsegmented, raw ultrasound images would not only 
streamline the clinical workflow but also yield more authentic 
interpretability results, ensuring the model’s focus is entirely on 
natural anatomical and pathological features.

It is crucial to contextualize the role of NMD-AssistNet within the 
broader clinical diagnostic pathway. Neuromuscular diseases are 
characterized by hidden onset, diverse symptoms, and high 
misdiagnosis rates (27). Our model’s function is to provide a rapid, 
objective classification of a single muscle’s ultrasound image as 
‘pathological’ or ‘healthy’; it does not, by itself, identify the specific 
type of NMD. The definitive diagnosis of NMDs relies on a 
comprehensive evaluation, where identifying the specific pattern of 
affected and spared muscle groups is paramount (28). For instance, 
patterns of selective muscle involvement are critical clues that help 
clinicians narrow the differential diagnosis among various muscular 
dystrophies or myopathies before proceeding to genetic testing or 
muscle biopsy.

Therefore, the primary clinical impact of NMD-AssistNet is its 
potential as a powerful adjunctive screening tool, rather than a 

standalone diagnostic solution. First, it can provide an objective, 
quantitative assessment of muscle echogenicity, reducing the inter-
observer variability common in ultrasound interpretation and 
helping less experienced clinicians make more reliable initial 
judgments. Second, in a clinical setting, a rapid “abnormal” finding 
from NMD-AssistNet can help prioritize patients for further, more 
invasive and costly investigations like electromyography (EMG) or 
genetic panels. Finally, due to its non-invasive nature, the tool 
could be  used longitudinally to objectively monitor disease 
progression or treatment response. The model’s low computational 
overhead makes it highly suitable for deployment on portable 
ultrasound equipment or edge computing devices, bringing 
intelligent diagnostic support to primary care facilities and 
community screening scenarios.

Although this study has achieved good results in model design 
and performance, there are still several limitations that cannot 
be ignored in the process of clinical transformation and practical 
application. Firstly, a primary limitation is the model’s reliance on 
pre-segmented ROIs. This approach hinders clinical efficiency. 
Furthermore, it can create visual artifacts at the ROI boundaries in 
Grad-CAM maps, complicating interpretability. Therefore, future 

FIGURE 2

ROC curve and corresponding AUC value of the NMD-AssistNet model on the validation set.

TABLE 3  Ablation study on the contribution of each data preprocessing component to the model’s performance.

Exp. no. Preprocessing methods Accuracy Precision Recall F1-score AUC

A Baseline (resizing and normalization only) 85.20% 84.50% 85.80% 85.10% 0.915

B +Median filter 86.00% 85.20% 86.70% 85.90% 0.923

C +Median filter + CLAHE 87.10% 86.50% 87.70% 87.10% 0.935

D +Median filter + CLAHE + standard augmentation 91.60% 90.50% 91.50% 91.00% 0.97

E Full pipeline (+median filter + CLAHE + standard augmentation + mixup) 92.70% 91.90% 92.50% 91.30% 0.977
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work will focus on developing an end-to-end model to analyze 
unsegmented images, which would simultaneously streamline the 
diagnostic process and provide more authentic visual explanations. 
Secondly, the use of single-center data is a key limitation, 
necessitating external validation to ensure the model can generalize 
across different equipment and patient populations. To this end, 
validating our model on public datasets is our crucial next step to 
prove its potential as a clinically viable tool. Thirdly, the current 
model only performs a binary classification (healthy vs. 
pathological) and has not yet been refined to differentiate specific 
subtypes of neuromuscular diseases, such as muscular dystrophy or 
myasthenia gravis. This limits the model’s immediate applicability 
for refined diagnosis and individualized treatment planning. 
Finally, our dataset was partitioned into only training and test sets, 
without a separate, dedicated validation set for hyperparameter 
tuning. While we mitigated this by performing model selection 

using cross-validation within the training data, future work could 
benefit from a three-way split (training, validation, and test). This 
would provide an even more robust framework for model 
development and evaluation, further ensuring the generalizability 
of the results.

5 Conclusion

This study introduces NMD-AssistNet, a lightweight deep 
learning model for the automated classification of neuromuscular 
diseases from ultrasound images. The primary significance of our 
work lies in achieving high diagnostic accuracy while maintaining 
exceptional computational efficiency. This balance is critical for 
clinical translation, as it enables the model’s potential deployment on 
portable ultrasound systems or edge devices, thereby facilitating 

FIGURE 3

Performance comparison of classification metrics. Bar chart comparing accuracy, recall, precision, and F1-score across six models.

FIGURE 4

Model size comparison by trainable parameters, showing the number of trainable parameters for each model. NMD-AssistNet has the smallest model 
size (2.4 M) while maintaining top performance, demonstrating strong potential for edge deployment.
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point-of-care screening. Furthermore, our interpretability analysis 
using Grad-CAM confirms that the model’s decisions are based on 
clinically relevant tissue features, a crucial step for building trust and 
acceptance among clinicians. While the results are promising, 
we  acknowledge that future work must validate the model’s 
generalizability on larger, multi-center datasets. The next logical step 
is to evolve this framework from a binary classifier into a multi-class 
system capable of differentiating specific disease types. In summary, 
NMD-AssistNet provides a viable technical approach for developing 
intelligent, efficient, and trustworthy AI-powered tools to augment the 
clinical workflow for neuromuscular disease diagnosis.
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