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Development of a deep learning
model for automated diagnosis of
neuromuscular diseases using
ultrasound imaging

Jingyi Xie' and Zhenying Zhang?*

!School of Physical Education, Central China Normal University, Wuhan, China, 2Department of
Physical Education and Military Training, Zhejiang Agriculture and Forestry University, Hangzhou,
China

Background: Neuromuscular diseases (NMDs) pose significant diagnostic
challenges due to their heterogeneous clinical manifestations and the limitations
of traditional diagnostic tools. While musculoskeletal ultrasound has become a
promising non-invasive modality for evaluating muscle pathology, its diagnostic
accuracy remains heavily dependent on the operator's expertise. To address
this, we propose a lightweight and interpretable deep learning model to enable
automated classification of ultrasound images in NMD screening.

Method: We developed a novel model, termed NMD-AssistNet, which integrates
GhostNet as the backbone with CBAM attention modules and depthwise
separable convolutions to enhance both efficiency and discriminative capacity.
The model was trained and evaluated on a public dataset containing 3,917
annotated ultrasound images of various muscle groups. Mixup augmentation,
label smoothing, and SWALR learning rate scheduling were applied to improve
generalizability. Performance was benchmarked against CSPNet, EfficientNet,
GhostNet, HRNet, and Vision Transformer.

Results: NMD-AssistNet achieved the highest performance among the
evaluated models, reaching a classification accuracy of 0.9502 and an area
under the curve (AUC) of 0.9776. Grad-CAM visualizations revealed that the
model effectively focused on clinically relevant muscle regions, highlighting its
potential interpretability.

Conclusion: NMD-AssistNet demonstrates strong diagnostic capability,
computational efficiency, and model interpretability and offers a promising
solution for real-time, automated NMD screening. This framework has the
potential to be deployed in portable ultrasound systems or edge Al devices to
assist clinicians in both hospital and community healthcare settings.

KEYWORDS

neuromuscular disease, ultrasound image classification, deep learning, lightweight
neural network, model interpretability

1 Introduction

Neuromuscular diseases (NMDs) are a class of complex diseases that originate from the
anterior horn of the spinal cord, peripheral nerves, neuromuscular junctions, or skeletal
muscles. Their clinical manifestations include a variety of symptoms such as muscle atrophy,
decreased muscle strength, impaired motor function, and even respiratory insufficiency (1).
Different types of NMDs vary significantly in disease progression, prognosis, and treatment
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response. Clinical intervention strategies are also highly dependent on
the accurate identification of disease types and their stages (2). While
a detailed neurological examination is the cornerstone of diagnosis
and can often differentiate the level of the lesion, the diagnostic
process can still be challenging and protracted. This is particularly true
in the early stages of the disease, where symptoms may be subtle or
overlap with other neurological conditions, necessitating objective
diagnostic aids to supplement clinical assessment (3).

Ultrasound imaging, as a non-invasive, dynamic and repeatable
imaging technology, has been widely used in the clinical evaluation of
muscle diseases in recent years. Compared with traditional methods
such as electromyography (EMG) or muscle biopsy, ultrasound can
not only reflect changes in muscle structure in real time, such as
changes in muscle thickness, echo intensity and texture pattern, but
can also be used to dynamically observe the muscle’s behavior during
movement, thereby assisting in the assessment of disease activity and
treatment effect (4). However, this imaging technology is highly
dependent on the operator’s technical level and clinical experience,
and different doctors may have different interpretations of the same
image. In addition, the performance of muscle tissue in ultrasound
images is often complex and variable due to disease type, individual
differences and different scanning angles. Factors such as blurred
lesion boundaries and overlapping tissue echoes may interfere with
diagnostic judgment (5).

To address the shortcomings of traditional image interpretation
methods, the application of artificial intelligence (AI), especially deep
learning, in the field of medical image processing has gradually
deepened in recent years. Recent comprehensive reviews have
highlighted that AI, and particularly deep learning, holds significant
promise for transforming diagnostic workflows in neuromuscular
medicine (6). A convolutional neural network (CNN) is a specialized
deep learning architecture for processing grid-like data, such as an
image. Its key advantage is the ability to automatically learn relevant
features from the input data through the use of convolutional filters.
In the imaging diagnosis of neuromuscular diseases, CNNs are widely
used for automatic feature extraction and image classification tasks.
Their advantage is that they can autonomously learn and extract
multi-level texture information from complex image data (7). At the
same time, transfer learning strategies have been introduced to
overcome the limitations of small sample data sets on model training,
and have shown good adaptability under the realistic conditions of
scarce medical images (8). The multi-task learning framework
improves the spatial sensitivity and discrimination of the model to the
lesion area by simultaneously optimizing target tasks such as
classification and segmentation, thereby improving the overall
diagnostic performance (9).

Although the above-mentioned technological progress is
encouraging, there are still many technical bottlenecks that limit its
clinical promotion. First, the performance of existing models in real
ultrasound scenes facing high noise, low contrast and complex
backgrounds is still unstable, and it is prone to misjudgment and
missed diagnosis (10). More importantly, the vast majority of studies
are based on small, single-center datasets, and the generalization
ability and robustness of the model have not been fully verified in a
multi-institutional and heterogeneous equipment environment,
limiting its translation from scientific research to clinical practice.
Therefore, developing a lightweight, high-performance neural
network architecture with good generalization ability to improve the
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efficiency and stability of auxiliary diagnosis of neuromuscular
diseases in ultrasound images has become an important direction of
current medical artificial intelligence research.

To address the aforementioned challenges, this paper proposes
NMD-AssistNet, a novel lightweight deep learning model for the
efficient and automated classification of neuromuscular diseases from
ultrasound images. Based on the GhostNet architecture (11), this model
introduces the CBAM (Convolutional Block Attention Module) that
integrates channel attention and spatial attention to enhance the feature
focusing ability of key lesion areas. At the same time, it combines
depthwise separable convolution and a channel shuffling mechanism to
significantly reduce the number of model parameters and computational
complexity, thereby adapting to the characteristics of complex texture
details and blurred boundaries in ultrasound images. In addition, in
order to improve the generalization ability and training stability of the
model, we also introduced the Mixup data enhancement strategy, label
smoothing regularization, and SWALR (Stochastic Weight Averaging
with Learning Rate Scheduling). The experimental part is based on a real
clinical ultrasound image dataset, and systematically compares its
performance with multiple mainstream models on multiple classification
performance indicators, and analyzes its diagnostic accuracy and clinical
interpretability through attention heat maps (Figure 1).

2 Methods
2.1 Data collection

This study utilized a public ultrasound image dataset from the
Mendeley data repository (DOI: 10.17632/3jykz7wz8d.1), originally
collected in the Arnhem-Nijmegen region. The dataset is governed by
the Creative Commons Attribution 4.0 (CC BY 4.0) license, which
explicitly permits data reuse for any research purpose with proper
citation, thus no separate institutional review board approval was
required for our secondary analysis (12). The dataset contains data from
a total of 1,283 subjects (average age 50 + 21 years, 729 males), including
3,917 cross-sectional ultrasound images, covering three common
skeletal muscle groups: biceps brachii, tibialis anterior, and medial
gastrocnemius. All images were manually annotated by experienced
clinical ultrasound experts to ensure the accuracy of anatomical
structure identification and classification labels (13). To classify muscle
images into healthy and pathological categories, the original research
team used a z-score method based on grayscale values. The z-score was
calculated using linear regression models derived from a healthy
population, incorporating variables such as age, gender, and BMI. An
image was labeled as “abnormal” if its grayscale value z-score was
greater than 2, and “normal” otherwise. This classification resulted in
the following distribution per muscle group: biceps brachii (287
normal, 158 abnormal subjects), medial gastrocnemius (266 normal,
110 abnormal subjects), and tibialis anterior (296 normal, 166 abnormal
subjects). In total, the dataset comprises images from 849 normal and
434 abnormal subjects (Table 1 and Supplementary Table S1).

2.2 Data preprocessing

Before model training, we performed a systematic data
preprocessing pipeline on all ultrasound images to ensure input data
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TABLE 1 Description of the public neuromuscular ultrasound dataset.

Characteristic Details

Total subjects 1,283
Subjects with normal images 849
Subjects with abnormal images 434

Demographics 729 males; average age: 50 + 21 years

3,917 (approx. three to four images per subject
Total images
per muscle)

Biceps brachii, tibialis anterior, medial
Muscles included
gastrocnemius

Neuromuscular disorders (e.g., myopathy,
Pathology type
neuropathy)

Image specifications B-mode, PNG format

Data source Mendeley data (doi: 10.17632/3jykz7wz8d.1)

quality, structural consistency, and to promote model training stability
and convergence. This pipeline included size unification, noise
suppression, and image enhancement. First, we performed image
standardization and cleaning. To meet the input requirements of the
deep learning model, all images were uniformly resized to 224 x 224
pixels. Given that ultrasound images are inherently affected by speckle
noise, we employed a median filter with a 5 x 5 kernel (14). This
method was chosen for its effectiveness in suppressing salt-and-
pepper-like noise while preserving critical muscle boundary details
better than linear filters like Gaussian blur. Subsequently, to address
the issue of variable contrast across different images, which can arise
from different equipment settings or patient tissues, we applied
Contrast Limited Adaptive Histogram Equalization (CLAHE) instead
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of global histogram equalization. CLAHE enhances local contrast
without over-amplifying noise in relatively uniform regions, making
it particularly suitable for medical image analysis.

Considering the high heterogeneity of clinical ultrasound
images, we implemented a comprehensive data augmentation
strategy to enhance the model’s robustness and mitigate overfitting
(15). For the training set, we applied several transformations with
specified probabilities: resized cropping (to 224 x 224), horizontal
flipping (p = 0.5), and perturbations in brightness, contrast, and
saturation (with a jitter factor of 0.2). On this basis, we further
introduced the Mixup data augmentation strategy, with the mixing
coefficient 4 drawn from a Beta distribution (« = 0.2, # = 0.2). This
method generates virtual training samples by linearly combining
two images and their corresponding labels, which has been shown
to improve model generalization and performance on imbalanced
datasets (15).

For label processing, we encoded the original diagnostic labels
(“normal” and “abnormal”) into a binary format: 0 for normal and 1
for pathological. This was based on the z-score grading results, and a
mapping dictionary was constructed to ensure consistent annotation
during training and validation. Additionally, to meet the input
requirements of NMD-AssistNet, the images were converted to
tensors and normalized at the channel level using PyTorch’s built-in
Normalize function. The mean and standard deviation were set to the
standard values used by the ImageNet pre-trained model ([0.485,
0.456, 0.406] and [0.229, 0.224, 0.225]), respectively, to facilitate the
application of transfer learning strategies (16). To systematically
validate the contribution of each component within this preprocessing
pipeline, we designed an ablation study. This study involved
incrementally adding each processing step to a baseline model to
quantify its specific impact on performance.
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2.3 Region of interest segmentation

Although the main task of this study focuses on the classification
of ultrasound images of neuromuscular diseases, due to the fact that
muscle tissue in ultrasound images often has features such as blurred
boundaries, uneven grayscale distribution, and complex background
structures, direct classification training on the entire image may cause
the model’s attention to diverge and interfere with the accuracy of
feature extraction. Therefore, before the image is input into the model,
we introduced the muscle contour information based on expert
annotation to extract the region of interest (ROI) to weaken irrelevant
background interference and enhance the model’s ability to focus on
key structures. Each image in the dataset is accompanied by a muscle
cross-sectional area (CSA) contour mask drawn by experts. These
masks were originally used for grayscale analysis and muscle volume
estimation. In this study, we converted it into the cropped area
required for the classification task, extracted the minimum rectangular
area containing the muscle body by calling the contour boundary
coordinates, and performed appropriate upper, lower, left, and right
edge expansion on this basis to retain the surrounding important
structural information. The processed ROI images were uniformly
adjusted to the standard input size and replaced the original full
images in the subsequent model training process. This strategy
effectively reduces the risk of model learning background noise while
retaining the core muscle tissue features, and improves the focus and
discriminability of feature extraction. It is worth pointing out that this
study did not train a pixel-level segmentation model separately, but
made full use of the existing manually annotated segmentation mask
as a guide to construct better classification input samples through ROI
cropping. The reliability of these masks is critical. The ground-truth
segmentation was performed by two experienced clinicians (a
physiotherapist and a technical physician). They first annotated
images independently, then resolved discrepancies via consensus
discussion (12).

2.4 Diagnostic model construction

2.4.1 NMD-AssistNet

In order to achieve efficient and accurate identification of
neuromuscular diseases, this paper designs a lightweight deep
learning model tailored for ultrasound image diagnosis tasks, named
NMD-AssistNet (Neuromuscular Disease Assistive Network). The
model uses an improved GhostNet as the backbone architecture,
combined with an attention mechanism and a lightweight convolution
strategy, to significantly reduce the number of model parameters and
computational overhead while ensuring diagnostic performance,
thereby meeting the comprehensive requirements of medical image
analysis for efficiency, generalization ability, and clinical deployability.

NMD-AssistNet consists of three key modules: the basic backbone
adopts the GhostNet framework to obtain efficient sparse feature
representation; the feature enhancement part introduces the channel
and space dual attention mechanism—CBAM to enhance the model’s
ability to pay attention to the texture and structure of the lesion area
(17); at the same time, the model embeds depthwise separable
convolution and channel shuffle operations in multiple convolutional
layers to further compress parameters, improve operation speed, and
enhance the fusion and flow of multi-scale features (12). The final
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output layer of the model uses global average pooling combined with
a fully connected layer to map to a binary classification label space to
achieve automatic judgment of “healthy” and “pathological” images.
We introduced label smoothing technology at the loss function level
to effectively alleviate the risk of overfitting during training. At the
same time, in terms of training scheduling strategy, the SWALR
method is used, combined with periodic learning rate adjustment and
model weight averaging to improve the optimization convergence
speed and obtain more stable model performance (18).

2.4.2 Model comparison

In order to systematically evaluate the performance advantages of
NMD-AssistNet, this study selected five representative deep learning
models for comparison, including CSPNet (12), EfficientNet (12),
GhostNet (19), HRNet (20), and Vision Transformer (ViT) (21). These
models cover different technical paths such as lightweight design, multi-
scale modeling and global attention mechanism, representing the current
mainstream modeling strategies for medical image classification. CSPNet
and GhostNet emphasize high efficiency, but have deficiencies in feature
expression and lesion perception; although EfficientNet has strong
performance, its large network size limits clinical deployment; HRNet
maintains high-resolution features and has ideal boundary preservation
effects, but has high computational complexity; ViT has global modeling
capabilities and is suitable for large-scale natural image classification, but
is prone to overfitting in small and medium sample medical scenarios.

2.5 Experimental setup

To ensure a rigorous and clinically meaningful evaluation, the
dataset was partitioned at the subject level to prevent data leakage,
where all images from a single individual were exclusively allocated to
either the training or the validation set. We employed a stratified
random sampling strategy based on the diagnostic label (normal vs.
abnormal) to maintain a consistent class distribution across the sets.
From the total of 1,283 subjects, 898 subjects (70%) were allocated to
the training set, and the remaining 385 subjects (30%) were assigned
to the validation set. This subject-level split resulted in the following
data distribution: (1) Training set: Comprised 898 subjects (595
normal, 303 abnormal), totaling approximately 2,742 images. (2)
Validation set: Comprised 385 subjects, totaling 783 images. The
model was trained on an Ubuntu 20.04 platform configured with an
Intel 19-12900K CPU, 128GB RAM, and an NVIDIA RTX 3090 GPU
(24GB). The development environment included PyTorch 1.13.1,
CUDA 11.7, and cuDNN 8.4.1 (22). The training used the Adam
optimizer (initial learning rate 0.001, batch size 32, weight decay le-5),
and combined with the SWALR strategy to dynamically adjust the
learning rate to improve convergence efficiency. The total number of
training epoch was set to 100, and the early stopping mechanism was
enabled to prevent overfitting. All comparison models (CSPNet,
EfficientNet, GhostNet, HRNet, and ViT) were uniformly trained on
the same data and environment to ensure experimental fairness.

2.6 Model evaluation

We evaluated model performance using several quantitative
metrics, including accuracy, precision, recall, F1-score, and the area
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under the curve (AUC). Accuracy measures the proportion of
correct classifications and is the basic indicator for evaluating overall
performance. Precision (also known as positive predictive value,
PPV) is used to evaluate the proportion of the model’s predictions
of the “pathology” category that are actually pathological, reflecting
its ability to control false positives. Recall measures the model’s
ability to identify pathological samples and reflects the risk of missed
diagnosis. The F1-score, as the harmonic mean of precision and
recall, is suitable for scenarios with uneven sample distribution.
Finally, the AUC value reflects the stability and discrimination
ability of the model at different decision thresholds and is an
important basis for evaluating the generalization performance of the
model (23). In addition to these quantitative metrics, we qualitatively
assessed the model’s interpretability using Gradient-weighted Class
Activation Mapping (Grad-CAM), a technique that generates a
visual heatmap to identify the image regions most influential for the
model’s classification decision. In these visualizations, the heatmap
is used for a qualitative assessment of the model’s focus. Warmer
colors (e.g., red) indicate regions that were more influential in the
model’s classification decision, while cooler colors (e.g., blue)
represent areas of lesser importance. This approach helps to interpret
where the model is looking, rather than quantifying the precise
importance of each pixel.

3 Results
3.1 NMD-AssistNet performance

3.1.1 Overall performance

NMD-AssistNet achieved high performance across all evaluated
metrics (Table 2). The model correctly classified 738 out of 783 total
samples, with the full confusion matrix detailed in Table 2. Figure 2
shows the receiver operating characteristic (ROC) curve for
NMD-AssistNet, which is positioned close to the upper-left corner
with an AUC value of 0.9776.

3.1.2 Ablation study on preprocessing methods
An ablation study was conducted to validate the effectiveness of
each component in the data preprocessing pipeline. As detailed in
Table 3, each added step incrementally improved model performance.
The inclusion of standard data augmentation (Exp. D) yielded the
most substantial increase in F1-score, while the complete pipeline
with Mixup (Exp. E) achieved the highest scores across all metrics.

TABLE 2 Detailed performance metrics and confusion matrix.

Metric Value  Confusion Value
matrix

Accuracy 0.9502 True positives (TP) 240
Sensitivity (recall) 0.9177 True negatives (TN) 498
Specificity 0.9540 False positives (FP) 24
Precision (PPV) 0.9085 False negatives (FN) 21
Negative predictive value

0.9595 AUC 0.977
(NPV)
F1-score 0.9130 Trainable parameters 2,395,768
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3.2 Comparison of model results

To evaluate its performance relative to other models,
NMD-AssistNet was compared with five mainstream architectures
under identical conditions. As shown in Figure 3, NMD-AssistNet
achieved the highest values across all four metrics (accuracy, recall,
precision, and F1-score) when compared to CSPNet, EfficientNet,
GhostNet, HRNet, and ViT. Figure 4 illustrates that the parameter
count of NMD-AssistNet (2.4 M) is substantially lower than that of
the other models. The ROC analysis further shows that the AUC for
NMD-AssistNet (0.979) was higher than all other tested models
(Figure 5).

3.2.1 Grad-CAM display and analysis of the model

Grad-CAM was used to visualize the model’s focus areas on
typical healthy and pathological muscle images (Figure 6). For healthy
samples (Figure 6A), the high-response areas in the heat map
concentrated on the transverse stripe-like texture corresponding to
neatly arranged muscle fibers. For the pathological sample (Figure 6B),
the high-response areas focused on regions with disordered echoes,
blurred edges, or focal hypoechoic areas. These visualized regions
correspond to locations of known pathological features.

4 Discussion

This study developed NMD-AssistNet, an efficient and lightweight
deep learning model designed to meet the clinical need for auxiliary
diagnosis of neuromuscular diseases by automatically classifying
muscle tissue in ultrasound images. The model demonstrated strong
performance, achieving an accuracy of 0.9502 and an AUC of 0.9776.
This success is attributed to its hybrid architecture. By integrating the
lightweight GhostNet framework with a CBAM attention mechanism,
depthwise separable convolution, and channel shuffle strategies,
NMD-AssistNet effectively focuses on key pathological features while
maintaining a remarkably low parameter count of 2.4 M, which is
significantly lower than larger models like ViT and HRNet.
Furthermore, advanced training strategies, including Mixup
augmentation, label smoothing, and SWALR, were employed to
enhance the model's generalization and stability, proving the
effectiveness of our design.

A critical analysis of the Grad-CAM visualizations, however,
warrants a more nuanced discussion. As observed, the heatmaps
occasionally highlight the boundary between the ROI and the masked
background. This phenomenon can be attributed to the nature of
Grad-CAM interacting with the pre-segmented dataset used in this
study (24). The artificial, sharp edge resulting from the expert-
provided segmentation masks creates a high-gradient region, which
can become a prominent focus for the visualization technique (25).
While this may suggest the model is learning from edge artifacts, it is
crucial to interpret this alongside the model’s high accuracy. The
strong performance indicates that the model successfully learns
discriminative features from within the muscle tissue itself, as these
are essential for distinguishing between healthy and pathological
patterns. The boundary highlighting is more likely a byproduct of the
visualization technique interacting with pre-processed data, rather
than the sole basis for the model’s decision. This observation
underscores a key challenge in applying post-hoc interpretability
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FIGURE 2
ROC curve and corresponding AUC value of the NMD-AssistNet model on the validation set.

TABLE 3 Ablation study on the contribution of each data preprocessing component to the model’'s performance.

Preprocessing methods Accuracy Precision  Recall Fl-score
A Baseline (resizing and normalization only) 85.20% 84.50% 85.80% 85.10% 0.915
B +Median filter 86.00% 85.20% 86.70% 85.90% 0.923
C +Median filter + CLAHE 87.10% 86.50% 87.70% 87.10% 0.935
D +Median filter + CLAHE + standard augmentation 91.60% 90.50% 91.50% 91.00% 0.97
E Full pipeline (+median filter + CLAHE + standard augmentation + mixup) 92.70% 91.90% 92.50% 91.30% 0.977

methods to pre-segmented images and reinforces the importance of
our future research direction (26). Developing an end-to-end model
that operates on unsegmented, raw ultrasound images would not only
streamline the clinical workflow but also yield more authentic
interpretability results, ensuring the model’s focus is entirely on
natural anatomical and pathological features.

It is crucial to contextualize the role of NMD-AssistNet within the
broader clinical diagnostic pathway. Neuromuscular diseases are
characterized by hidden onset, diverse symptoms, and high
misdiagnosis rates (27). Our model’s function is to provide a rapid,
objective classification of a single muscle’s ultrasound image as
‘pathological’ or ‘healthy’; it does not, by itself, identify the specific
type of NMD. The definitive diagnosis of NMDs relies on a
comprehensive evaluation, where identifying the specific pattern of
affected and spared muscle groups is paramount (28). For instance,
patterns of selective muscle involvement are critical clues that help
clinicians narrow the differential diagnosis among various muscular
dystrophies or myopathies before proceeding to genetic testing or
muscle biopsy.

Therefore, the primary clinical impact of NMD-AssistNet is its
potential as a powerful adjunctive screening tool, rather than a
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standalone diagnostic solution. First, it can provide an objective,
quantitative assessment of muscle echogenicity, reducing the inter-
observer variability common in ultrasound interpretation and
helping less experienced clinicians make more reliable initial
judgments. Second, in a clinical setting, a rapid “abnormal” finding
from NMD-AssistNet can help prioritize patients for further, more
invasive and costly investigations like electromyography (EMG) or
genetic panels. Finally, due to its non-invasive nature, the tool
could be used longitudinally to objectively monitor disease
progression or treatment response. The model’s low computational
overhead makes it highly suitable for deployment on portable
ultrasound equipment or edge computing devices, bringing
intelligent diagnostic support to primary care facilities and
community screening scenarios.

Although this study has achieved good results in model design
and performance, there are still several limitations that cannot
be ignored in the process of clinical transformation and practical
application. Firstly, a primary limitation is the model’s reliance on
pre-segmented ROIs. This approach hinders clinical efficiency.
Furthermore, it can create visual artifacts at the ROI boundaries in
Grad-CAM maps, complicating interpretability. Therefore, future
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work will focus on developing an end-to-end model to analyze
unsegmented images, which would simultaneously streamline the
diagnostic process and provide more authentic visual explanations.
Secondly, the use of single-center data is a key limitation,
necessitating external validation to ensure the model can generalize
across different equipment and patient populations. To this end,
validating our model on public datasets is our crucial next step to
prove its potential as a clinically viable tool. Thirdly, the current
model only performs a binary classification (healthy vs.
pathological) and has not yet been refined to differentiate specific
subtypes of neuromuscular diseases, such as muscular dystrophy or
myasthenia gravis. This limits the model’s immediate applicability
for refined diagnosis and individualized treatment planning.
Finally, our dataset was partitioned into only training and test sets,
without a separate, dedicated validation set for hyperparameter
tuning. While we mitigated this by performing model selection
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using cross-validation within the training data, future work could
benefit from a three-way split (training, validation, and test). This
would provide an even more robust framework for model
development and evaluation, further ensuring the generalizability
of the results.

5 Conclusion

This study introduces NMD-AssistNet, a lightweight deep
learning model for the automated classification of neuromuscular
diseases from ultrasound images. The primary significance of our
work lies in achieving high diagnostic accuracy while maintaining
exceptional computational efficiency. This balance is critical for
clinical translation, as it enables the model’s potential deployment on
portable ultrasound systems or edge devices, thereby facilitating
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ROC curve and AUC comparison among models on the validation set. NMD-AssistNet achieved the highest AUC (0.9776), outperforming CSPNet (A,
0.8904), EfficientNet (B, 0.9593), GhostNet (C, 0.9724), HRNet (D, 0.9676), and ViT (E, 0.9495).

o8 10 00 02 o8 10

04 06
False Positive Rate

Receiver Operating Characteristic

True Positive Rate

P2 — ROC curve (area = 0.9495)

oa 06 o8 10
False Positive Rate

FIGURE 6

Grad-CAM activation heatmap visualization, where (A) represents healthy samples and (B) represents abnormal samples.

point-of-care screening. Furthermore, our interpretability analysis
using Grad-CAM confirms that the model’s decisions are based on
clinically relevant tissue features, a crucial step for building trust and
acceptance among clinicians. While the results are promising,
we acknowledge that future work must validate the model’s
generalizability on larger, multi-center datasets. The next logical step
is to evolve this framework from a binary classifier into a multi-class
system capable of differentiating specific disease types. In summary,
NMD-AssistNet provides a viable technical approach for developing
intelligent, efficient, and trustworthy AI-powered tools to augment the
clinical workflow for neuromuscular disease diagnosis.
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