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Traumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive
decline, yet the underlying pathophysiologic mechanisms are incompletely
understood. This gap in knowledge is in part related to a lack of reliable and
efficient methods for measuring cortical lesions in neuroimaging studies. The
objective of this study was to develop a semi-automated lesion detection
tool and apply it to an investigation of longitudinal changes in brain structure
among individuals with chronic TBI. We identified 24 individuals with chronic
moderate-to-severe TBI enrolled in the Late Effects of TBI (LETBI) study who
had cortical lesions detected by T1l-weighted MRI and underwent two MRI
scans at least 2 years apart. Initial MRI scans were performed more than 1 year
post-injury, and follow-up scans were performed a median of 3.1 (IQR = 1.7)
years later. We leveraged FreeSurfer parcellations of T1-weighted MRI volumes
and a recently developed super-resolution technique, SynthSR, to automate
the identification of cortical lesions in this longitudinal dataset. Trained raters
received the data in a randomized order and manually edited the automated
lesion segmentations, yielding a final semi-automated lesion mask for each scan
at each time point. Inter-rater variability was assessed in an independent cohort
of 10 additional LETBI subjects with cortical lesions. The semi-automated lesion
segmentations showed a high level of accuracy compared to “ground truth”
lesion segmentations performed via manual segmentation by a separate blinded
rater. In a longitudinal analysis of the semi-automated segmentations, lesion
volume increased between the two time points with a median volume change
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of 491 (IQR = 12.95) mL (p < 0.0001). Lesion volume significantly expanded
in 37 of 61 measured lesions (60.7%), as defined by a longitudinal volume
increase that exceeded inter-rater variability. Longitudinal analyses showed
similar changes in lesion volume using the ground-truth lesion segmentations.
Inter-scan duration was not associated with the magnitude of lesion growth.
While the proposed tool requires further refinement and validation, we show
that reliable and efficient semi-automated lesion segmentation is feasible in
studies of chronic TBI, creating opportunities to elucidate mechanisms of post-
traumatic neurodegeneration.
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1 Introduction

Traumatic brain injury (TBI) is a well-established risk factor for
neurodegenerative diseases (1). The pathophysiologic mechanisms
that link TBI to post-traumatic neurodegeneration (PTND) are
not fully understood, though emerging evidence implicates a
“polypathology” (2) that includes axonal injury (3), tau deposition
(4), vascular injury (5, 6), and neuroinflammation (3). An
underexplored factor in the pathogenesis of PTND is the potential
impact of focal cortical lesions, such as cerebral contusions, which
are amongst the most common lesions in individuals with TBI (7).
It is unknown whether focal lesion size evolves during the chronic
stage of TBI (i.e., more than 1 year post-injury) and whether this
may contribute to clinical decline.

In addition to a paucity of longitudinal studies in individuals
with chronic TBI, a key barrier to elucidating the impact
of cortical lesions on PTND pathogenesis is methodological.
Historically, lesions that disrupt the surface of the cerebral
cortex have prevented MRI segmentation tools from accurately
differentiating lesion boundaries from the pial surface or the
gray-white matter junction (8-11). Similarly, lesions that involve
the white matter may lead to erroneous segmentation of lesion
boundaries from nearby cortical and subcortical structures (12,
13). As a result, segmentation tools distributed with imaging
analysis programs such as FreeSurfer (14), FSL (15), and SPM
(16) have been unable to robustly measure longitudinal lesion
growth. Hence, individuals with lesions have typically been
excluded from TBI studies of cortical and subcortical volumetrics
(17, 18). Achieving precise segmentations of lesions and nearby
anatomic structures is essential for downstream workflows,
including reconstruction of cortical surfaces and generation of
volumetric measures (19), yet preliminary efforts to achieve this
goal have required substantial time by operators trained in human
neuroanatomy (11).

To address this methodological barrier and knowledge gap,
we performed a longitudinal MRI study of individuals with
chronic TBI and leveraged recent innovations in machine learning
image analysis (20, 21) to create a semi-automated lesion
segmentation tool. We tested the ability of this semi-automated
lesion segmentation tool to detect longitudinal changes in lesion
volume in individuals with chronic TBI enrolled in the Late Effects
of TBI (LETBI) study (22). Our goal was to develop a tool that
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provides reliable and efficient measurement of cortical lesions to
accelerate the study of PTND pathogenesis in individuals with
chronic TBI.

2 Materials and methods

2.1 Participant selection

Between 2014 and 2023, 305 participants were enrolled in the
ongoing LETBI study at Icahn School of Medicine at Mount Sinai
(ISMMS) and the University of Washington (UW) (22). The LETBI
study recruits individuals with a history of moderate or severe TBI.
We used the United States Department of Defense classification
of moderate TBI, which includes individuals considered by
other classification systems as having “complicated mild” TBI
(i.e., mild by Glasgow Coma Scale score criteria but with an
intracranial lesion detected by brain imaging) (23). For the present
longitudinal study, participants needed to have two MRI scans
during consecutive study visits (>2 years apart), each including
T1-weighted (T1w) multi-echo magnetization prepared gradient-
recalled echo (MEMPRAGE) scans (24) with a resolution of 1
mm isotropic.

Based on these criteria, 249 participants were excluded (n =
220 not yet eligible for second study visit, n = 29 without a T1w
MEMPRAGE MRI dataset at both time points). Of the n = 220
excluded participants, scans from n = 10 were randomly selected
to form the inter-rater dataset. Of the remaining 56 participants,
at least one cortical lesion was identified in n = 24 (42.9%) by
a trained rater who visually inspected the Tlw images. Lesions
were defined by visible disruptions in the cortical gray matter or
cortical gray/white junction. Lesions could extend into the adjacent
subcortical white matter.

2.2 Data acquisition, quality assessment,
and processing

Tlw images were obtained using Siemens Skyra, Philips
Achieva, and Philips Ingenia Elition X scanners at 3 Tesla field
strength. The images were acquired at 1 mm isotropic resolution.
Siemens Skyra scans used a repetition time (TR) of 2,530 ms
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TABLE 1 MRI acquisition parameters for study participants.

10.3389/fneur.2025.1640514

Manufacturer Model Field strength (T) TR/TE (msec/msec) Number of scans
Siemens Skyra 3T 2,530/1.79-7.37 18
Philips Achieva 3T 2,530/1.67-7.07 11
Philips Ingenia Elition X 3T 2,530/2.14 19

TABLE 2 Quantitative quality assessment of MRI data at each enrollment
site.

Enrollment  Longitudinal SNR CNR
site cohort

MSSM n=9 2330 +/— 5.73 0.93 +/— 0.19
uw n=15 3929 4+/— 1221 | 0.75+/—0.14

and echo times (TE) ranging from 1.79ms to 7.37 ms. Philips
Achieva scans used a TR of 2,530 ms and TEs ranging from 1.67
to 7.07 ms. Philips Ingenia Elition X scans used a TR of 2,530 ms
and a TE of 2.14 ms. Further information about the number of
scans obtained from each scanner is provided in Table 1. Eleven
participants underwent imaging on one scanner for their initial
scan and a different scanner for their follow-up scan due to
upgrades occurring during the study follow-up periods. Additional
sequence parameters for the T1w sequences on each scanner have
been previously reported (22).

Qualitative and quantitative data quality assessments were
performed on the processed images of all 24 subjects at both
time points. Data uniformity and comparability across subjects
and scanning platforms were examined, given the variations
in sequence parameters. Visual quality assessments were based
on the accuracy of FreeSurfer-generated surfaces (excluding
those encompassing lesioned tissue) and the segmentation of
subcortical structures, utilizing an accuracy rating scale adapted
from Diamond et al. (11). Signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR) were measured using the FreeSurfer tools
“wm-anat-snr” and “mri_cnr’ calculating SNR in white matter
(WM) and the average of the WM-grey matter (GM) and GM-
cerebrospinal fluid (CSF) contrasts, respectively. While no subjects
were excluded due to quality assessment measures, differences were
observed between the SNR distributions of enrollment sites, as
reported in Table 2.

The T1w images were then processed, and the surfaces were
constructed, using FreeSurfer v7.4 (14). FreeSurfer processing
involves motion correction, averaging of Tlw images, removal
of non-brain tissue, automated Talairach transformation, and
segmentation of brain structures. It also includes intensity
normalization, GM/WM boundary tessellation, and topology
correction. Further steps involve surface deformation, surface
inflation, spherical atlas registration, cortical parcellation, and the
creation of curvature and sulcal depth maps. To robustly segment
neuroanatomic structures in brains with heterogeneous pathology,
we used the Sequence Adaptive Multimodal SEGmentation
(SAMSEG) tool (25, 26), instead of the default automated
segmentation (aseg) tool, before FreeSurfer recon-all. FreeSurfer
reconstructions for all participants were completed successfully.
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2.3 “Ground truth” lesion segmentation

Ground truth segmentations for all participants were
established through manual tracing performed by a neurologist
blinded to subject identification and time point. The process
involved loading each Tlw image into the FreeSurfer image
viewer, Freeview. A blank label volume was created using the same
geometry as the T1w image. The neurologist (BLE) then manually
segmented each lesioned area using the voxel edit tool, ensuring
accurate and detailed delineation of the lesions. All segmentations
were initially performed on a single label volume, which was later
separated into unique values to indicate the presence of multiple
lesions for individual subjects, thus creating a detailed ground
truth segmentation volume at each time point for all participants.

2.4 Semi-automated lesion segmentation

To minimize time requirements and reduce false negatives
(i.e., missed labeling) in manual tracing, we developed a novel
method for semi-automated lesion segmentation intended to be
implemented into existing FreeSurfer workflows. As illustrated
in Figure 1A, we leveraged SynthSR (20, 21), a publicly available
tool integrated within FreeSurfer that turns an MRI scan of any
orientation, resolution, and contrast into a 1 mm isotropic Tlw
image while inpainting lesions.

We applied SynthSR to T1w images for all participants and then
repeated the FreeSurfer recon-all process on the synthesized images
(Figure 1B). We defined lesional voxels by comparing the SAMSEG
(27) labels from the synthesized image with those from the original
T1w image (Figure 1C) using the following rules: a voxel is defined
as a lesion if the segmentation label changed: (1) from white
matter (in the original T1w recon) to gray matter (in the SynthSR
recon); or (2) from CSF to background/white matter/gray matter;
or (3) from white matter hypo-intensity to white matter. These
rules were determined heuristically based on the segmentation label
changes inside the lesional areas from a subset of our sample (n
= 5, randomly selected from the entire cohort and blinded to
time point). Additional details and FreeSurfer segmentation class
information is outlined in Table 3.

To determine the segmentation rules, we relied on the label
changes within the ground truth lesion masks from those 5 subjects.
Specifically, within the lesional areas defined by the ground truth
masks, we counted the number of voxels that had any changes
in their labels between the original SAMSEG and the SynthSR
SAMSEG, and we then sorted them from the largest to the smallest.
We used the label change with the largest voxel count as our first
rule and evaluated the Dice scores across the entire image against
the ground truth. We then used a “greedy approach” by adding the
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Overview of Semi-Automated Lesion Segmentation Method

A. Pre-Processing B. FreeSurfer Output ASEG
Acquired T1w SynthSR Output Tiw SynthSR

FreeSurfer
|
recon-all
'
C. Compare Segmentations D. Morphological Operations
Reference Slice T1w ASEG SynthSR ASEG If the voxel is determined to be a lesion, then:

» Fillin holes

» Spherical erosion by 1 voxel

* Remove small areas (via connected
components < 70 voxels)

» Spherical dilatation by 1 voxel

y
E. Post-Processing

3=

Lo Lr]
=

Manual edits to
remove incorrectly
labeled regions (red
circle)

Owhite Matter @ Grey Matter @ CSF @ White Matter Hypointesnity

Final segmentation

It's a lesion if at each voxel:

a) White matter is segmented as grey matter

b) CSF is segmented as white matter, grey matter, or background
c) White matter hypointensity is segmented as white matter

FIGURE 1

Overview of semi-automated lesion segmentation method. SynthSR images are generated for each acquired T1w image (A). Both images are then
processed through FreeSurfer recon-all, resulting in ASEG label volumes (B). The SynthSR-ASEG is compared to the acquired T1w ASEG to highlight
segmentation differences. Segmentation differences are identified voxel-by-voxel by comparing SynthSR ASEG and T1w ASEG volumes using
predefined tissue-class rules: a voxel is classified as lesion if its label changes from white matter in ASEG to gray matter in SynthSR-ASEG, or from CSF
to white matter, gray matter or background, or from white matter hypointensity to white matter (C). Voxels meeting these criteria are classified as
lesions and refined through morphological operations, including hole filling, erosion, small component removal, and dilation. (D). Finally, the cleaned
segmentation is reviewed for errors, including incorrectly labeled anatomy or missed lesions, and corrected to produce the final modified,
semi-automated segmentation (E).

label change with the second, third, etc. largest voxel counts and re- Subsequently, we applied morphological image processing (28)
evaluated the Dice. We stopped this rule selection process when the ~ to remove false positives, reduce noise, and ensure that the
Dice score started decreasing. detected lesional areas are topologically correct, including hole
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TABLE 3 Segmentation rules to identify lesional voxels.

T1 SAMSEG ASEG SynthSR ASEG (FreeSurfer

Label ID)

(FreeSurfer Label ID)

White matter (2, 41) Gray matter (3, 42)

CSF (24) White matter (2, 41)
CSF (24) Gray matter (3, 42)
CSF (24) Background (0)

White matter hypointensity (77) White matter (2, 41)

Additional details regarding FreeSurfer labels are provided at https://surfer.nmr.mgh.harvard.
edu/fswiki/FsTutorial/ AnatomicalROI/FreeSurferColorLUT.

filling, spherical erosion/dilation, and area opening (Figure 1D).
Successful application of this pipeline facilitated the identification
of clusters of lesioned voxels in the SynthSR inpainted volume,
yielding an initial automated lesion segmentation mask (Figure 1E).
A trained rater then performed manual edits (the only manual step
in the semi-automated lesion segmentation method) to enhance the
accuracy of lesion segmentation boundaries, yielding a final semi-
automated lesion mask. In post-processing, this mask was separated
into unique values to identify multiple lesions for a single subject.
The rater performing manual edits for the semi-automated lesion
segmentation method was blinded to the “ground truth” manual
segmentations performed by the prior rater.

2.5 Evaluation of inter-rater variability for
the manual editing step of the
semi-automated method

To determine inter-rater variability for the manual editing step
of the semi-automated lesion segmentation method, we randomly
selected 10 Tlw images with lesions from the LETBI dataset
that were not included in the 24-subject longitudinal dataset (i.e.,
subjects for whom longitudinal data were not yet available). These
10 independent Tlw images were edited by three raters, each
of whom traced every lesion present on each scan. Raters were
provided with SynthSR-generated segmentation masks (i.e., the
initial automated lesion mask, as represented by the yellow lesion
mask in Figure 1E) and instructed to revise the segmentations,
creating a final semi-automated lesion mask (as represented by the
blue lesion mask in Figure 1E). In post-processing, this mask was
further separated into unique values to identify multiple lesions
for individual subjects. The raters’ final lesion masks were then
compared to measure inter-rater variability.

To test inter-rater variability, we performed Bland-Altman
analyses for each pair of raters (Rater 1 vs. Rater 2, Rater 1
vs. Rater 3, and Rater 2 vs. Rater 3), calculating the mean
difference (bias) and 95% limits of agreement (LoA). This analysis
was completed on the volume of each lesion, with multiple
lesions from patients contributing to the analysis and each lesion
being treated as an independent observation. Additionally, we
computed the Intraclass Correlation Coefficient (ICC) to assess
the reliability of lesion-tracing. These analyses together assessed
both agreement and reliability in lesion volumes, identifying any
systematic biases or random variability. The LoA established a
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benchmark for subsequent statistical testing of longitudinal lesion
expansion, allowing us to determine whether observed changes in
lesion volume over time reflect lesion expansion or variability in
the method.

2.6 Quantifying the contribution of the
initial segmentation to the semi-automated
method

We quantified the contribution of the initial, fully automated
segmentation step and the degree of subsequent manual editing
needed to generate the final semi-automated segmentations. For
this analysis, we calculated Dice coefficients for each lesion against
the ground truth before and after manual refinement. We assessed
whether these differences were significantly different from zero
using Wilcoxon signed-rank tests. Bland—-Altman plots were used
to assess agreement between the two approaches by plotting the
lesion-wise difference in Dice against the lesion-wise mean Dice.

For the voxel-wise comparisons, we calculated voxel-level
true positives (TP), false negatives (EN), true negatives (TN),
and false positives (FP) by comparing ground truth with both
initial segmentation and refined semi-automated segmentations at
corresponding voxel locations. TP were voxels where both ground
truth and segmentation were non-zero; FP were voxels where the
segmentation was non-zero, but the ground truth was zero; TN
were voxels where both were zero; and FN were voxels where the
ground truth was non-zero, but the segmentation was zero. For
each lesion, we then derived the Dice coefficient [2 TP/(2 TP + FP
+ FN)], sensitivity [TP/(TP + FN)], specificity [TN/(TN + FP)],
and precision [TP/(TP + FP)]. Given that zero-valued background
voxels were highly prevalent, we emphasize precision rather than
specificity, as it more directly reflects the reliability of positive voxel
detections. Per-lesion metrics were then aggregated across subjects
by reporting the mean and standard deviation for each comparison.

We next evaluated computational efficiency by measuring the
total time required for recon-all completion. Runtimes for the
SAMSEG and SynthSR workflows were compared with those from
a standard FreeSurfer v8.0 run to assess potential time savings.

Lastly, we quantified manual workload using an edited fraction
metric, calculated as (deleted 4 added) voxels divided by the final
semi-automated lesion voxels. This reflects the proportion of voxels
requiring change during manual refinement, providing an estimate
of editing effort.

2.7 Comparison of automated,
semi-automated and ground truth
segmentations

To evaluate the agreement of methods, we compared edited
semi-automated segmentations to the ground-truth segmentations
(Figure 2) at both time points using Wilcoxon signed-rank tests and
Bland-Altman analyses. The Wilcoxon tests assessed whether there
were statistically significant differences in the volumes generated by
the two methods, while the Bland-Altman analyses estimated the
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FIGURE 2

trained rater, and the manually traced “ground truth” segmentation (blue)

Initial Automated
Segmentation

Comparison of the initial automated lesion segmentation (yellow), the modified semi-automated segmentation (green), which was revised by a

Ground Truth
Segmentation

Modified Semi-Automated
Segmentation

mean difference (bias), standard deviation, and limits of agreement
between them.

To complement the volumetric comparisons, we performed
voxel-wise comparisons of the initial automated segmentations
and the semi-automated segmentations against the ground truth
segmentations. By comparing both automated and semi-automated
segmentations against the ground truth segmentations, we provide
a quantitative measure of the changes in Dice scores, sensitivity,
and precision that occur during the manual refinement process of
semi-automated segmentation.

2.8 Testing for longitudinal changes in
lesion volume

We hypothesized that there are detectable changes in lesion
volume when comparing Visit 1 to Visit 2 for the entire cohort
and when comparing single-subject changes in lesion volume to
the null distribution of inter-rater variability (Figure 3). We tested
these two hypotheses using the semi-automated segmentations, as
well as the ground truth segmentations. We began by comparing
lesion voxel volumes, measured in mL, between Visit 1 and Visit
2, and then calculating the difference (Visit 2 - Visit 1) for each
pair of measurements to determine the change in lesion volume.
The statistical significance of these changes was assessed using the
Wilcoxon signed rank test.

2.9 Testing for changes in lesion volume
compared to inter-rater variability

Next, we tested whether the observed longitudinal changes
in Dice overlap and lesion volume exceeds the degree of inter-
rater variability. Dice overlap and lesion volume differences were
calculated for each lesion segmentation. For inter-rater data, Dice
overlap and lesion volume differences were averaged across the
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three raters to generate composite scores for each lesion. For the
semi-automated and ground truth groups, Dice overlap and lesion
volume differences were derived by comparing Visit 2 to Visit 1
segmentations. Statistical significance of the differences between
longitudinal changes in lesion measurements (i.e., Dice overlap and
volume) and inter-rater variability was assessed using the Wilcoxon
rank sum test, with a significance threshold of 0.05, to account
for outliers and the small sample size. Finally, we operationally
defined lesion expansion at the individual lesion level based on an
increase in lesion volume greater than 2 times the SD over the
mean of the inter-rater volume variability, consistent with prior
neuroimaging studies (29). In a secondary analysis, we tested for
lesion expansion using a 1.5 SD cutoff based on the application of
this statistical threshold to define abnormal cognitive performance
in clinical practice (30).

Longitudinal analyses of lesion volumes were performed in
the subject’s native space at each time point. This method was
selected instead of using the FreeSurfer longitudinal pipeline, which
combines the two time points to generate a base image (31). The
averaging process in the FreeSurfer pipeline would obscure the
examination of lesion progression by blending the time points
together, thus failing to capture dynamic changes in lesion size and
location. By performing analyses in native space, we maintain the
integrity of individual time point data, allowing for precise tracking
of lesion growth and development over the study period without
introducing registration artifacts.

2.10 Evaluation of factors associated with
lesion volume change

We examined the relationship between changes in lesion
size (measured in mL) and the interval between imaging visits
(measured in days). For changes in lesion size, we use the values
previously calculated for analyses as described in Section 2.8.
Individual lesion clusters were matched between visits to directly
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FIGURE 3
T1lw images from Visit 1 of six representative subjects demonstrating the heterogeneous nature of lesion size and location. Images are overlayed with
the ground truth lesion segmentations from Visit 1 (red shaded regions) and Visit 2 (blue outlined regions)

compare changes over time. Pearson correlation coefficient (R)
and two-tailed p-value were computed to assess the strength and
significance of any linear relationship between changes in lesion
size and duration between study visits. We applied Ordinary
Least Squares (OLS) regression analysis to further investigate how
age, sex and interval between study visits relate to changes in
lesion volume.

In addition, we examined whether voxel intensity changes
introduced by SynthSR influenced lesion volume differences or the
extent of manual editing. For each visit and lesion, we quantified the
number and volume of lesioned white matter voxels that underwent
a signal change after SynthSR processing. These measures were
compared with the manual-edit overlap and absolute lesion volume
difference using visit-wise Spearman correlations.

3 Results

3.1 Participant and lesion characteristics

The 24 longitudinal participants ranged in age at Visit 1 from
33 to 73 years old, with a median age of 55.8 years (IQR =
14.3). Of these participants, nineteen were males. The 10 inter-
rater participants ranged in age from 31 to 73 with a median age
of 51.8 years (IQR = 22.8). Nine of the inter-rater participants
were male. Additional descriptive statistics are provided in Table 4.
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Lesions were heterogeneous with respect to their neuroanatomic
locations and were most prevalent in the anterior frontal and
temporal lobes (Figure 4). For the 24 individuals studied here
the ground truth lesion volume at Visit 1 ranged from 0.47 to
53.28 mL (median = 8.81 mL, IQR = 12.21 mL) and Visit 2 lesion
volume ranged from 0.99 to 122.52 mL (median = 19.29 mL, IQR
= 34.42 mL). For the 10 different subjects in inter-rater cohort, the
lesion volume ranged from 0.93 to 29.38 mL (median = 4.44 mL,
IQR = 7.53 mL).

3.2 Inter-rater variability

We first assessed agreement among the three raters using
Bland-Altman analysis (Table 5). The mean bias values between
each pair of raters ranged from —0.98 mL to 1.44 mL, with LoA
spanning from —3.57mL to 4.60 mL. Additionally, the ICC was
calculated to evaluate reliability among raters. The ICC (2,1)
was 0.98 (95% CI: 0.93-0.99), indicating excellent reliability.
These results demonstrate a high level of consistency across the
raters, with minor differences likely attributable to individual rater
preferences or the inherent complexity of lesion-tracing in chronic
TBI. Variability within the LoA reflects the heterogenous and
complex nature of the lesions, leading to differing identifications
and tracings by raters.
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TABLE 4 Patient and lesion characteristics.

Characteristics

Longitudinal dataset (n = 24)

10.3389/fneur.2025.1640514

Inter-rater dataset (n = 10)

Age at first visit (years) 55.8 11.2

Visit interval (days) 1,328.5 498.7
Sex (male:female) 19:5 N/A
Lesion volume (visit 1, mL) N/A N/A

33-73 51.8 14.5 31-73
734-2366 N/A N/A N/A

N/A 9:1 N/A N/A
0.47-53.28 N/A N/A 0.93-29.38

FIGURE 4

Intersubject Lesion Overlap (%)

Neuroanatomic distribution of ground truth lesions across time points. Heatmap of all 48 ground truth lesion tracings registered to MNI space and
overlayed on a 100 micron MRI template (46), revealing a predominance of frontotemporal cortical lesions in this cohort. Color and opacity of the
heatmap are modulated by the percent of lesion traces in each voxel, with the maximum overlap observed being 33%.

3.3 Contribution of the initial automated
segmentation to the semi-automated
pipeline

Wilcoxon signed-rank tests showed that Dice coefficients
significantly increased after refinements at both visits (Visit 1: W
= 49.0, p < 0.0008; Visit 2: W = 8.0, p < 0.0001). Bland-Altman
analyses indicated mean Dice improvements of +0.065 at Visit 1
(95% LoA: —0.247 to 0.377) and +0.245 at Visit 2 (—0.136 t0 0.615)
(Figure 5). These results demonstrate that manual refinement
recovers, on average, an additional 6.5 % and 23.9 % Dice overlap
in Visit 1 and 2, respectively.
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Table 6 details the improvement in Dice score and sensitivity
achieved by the semi-automated segmentations, as compared to
the initial automated segmentations, at each visit. At Visit 1, Dice
increased from 0.47 to 0.54 and sensitivity from 0.45 to 0.56, while
precision decreased slightly from 0.72 to 0.70. At Visit 2, Dice
improved from 0.40 to 0.64 and sensitivity from 0.29 to 0.63, with
precision dropping from 0.87 to 0.77. These observations suggests
that the manual refinement step of the semi-automated pipeline
increases volumetric overlap with the ground truth segmentation
and recovers more true lesion voxels than the initial segmentation
captures alone. The observed increase in Dice and sensitivity paired
with the decrease in precision at both timepoints indicates that
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TABLE 5 Inter-rater Bland Altman agreement results.

10.3389/fneur.2025.1640514

Comparison Mean difference (bias) [mL] Dice (mean + SD) Upper LOA [mL] Lower LOA [mL]
Rater 1 vs. Rater 2 1.44 0.82 £ 0.07 4.60 —1.72
Rater 1 vs. Rater 3 0.47 0.75+£0.18 2.03 —1.10
Rater 2 vs. Rater 3 —0.98 0.77 £0.17 1.62 —3.57
1.0 1.0
—=- Mean A = 0.065 —=- Mean A = 0.245
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FIGURE 5
Bland—-Altman plots comparing initial vs. refined semi-automated Dice (against ground truth) per lesion for Visit 1 (left) and Visit 2 (right).

while more true lesion voxels are being captured, some non-lesion
voxels are also being added to the segmentation masks during the
manual refinement.

We assessed computational efficiency by extracting recon-
all completion times from log files for SAMSEG, SynthSR, and
FreeSurfer v8. Across all participants and visits, runtimes were
shorter with SynthSR (2.43 £ 0.40 h; 2.41 & 0.43h) and SAMSEG
(2.67 & 0.42h; 2.75 £+ 0.42h) than with FreeSurfer v8 (3.88 =+
0.76 h; 3.84 4 0.46 h), representing an average ~1.4 h reduction and
lower variability (Table 7).

Although editing time was not recorded, the edited fraction was
small at Visit 1 (median = 0.11, IQR = 0.00-0.43) and larger at Visit
2 (median = 0.59, IQR = 0.51-0.71), indicating that refinement
typically required labeling substantially fewer voxels than fully
manual tracing. Together with the observed Dice improvements
after refinement, these findings suggest reduced manual effort
despite some increases in non-lesion voxels. The time required
for each segmentation method varied depending on lesion burden.
We estimated that lesion adjustment using the semi-automated
method required approximately 10-20 min per scan, compared to
60-90 min for manual segmentation.

3.4 Semi-automated segmentation
performance compared to ground truth
segmentation

At Visit 1, the semi-automatic volume measurements yielded

a mean bias of 2.42 mL (SD = 7.06 mL, median = —0.01 mL, IQR
= 6.36 mL) relative to the ground truth measurements. The limits
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of agreement ranged from —11.41 mL to 16.25 mL, demonstrating
a reasonably close alignment between the two methods. The
Wilcoxon signed-rank test indicated no statistically significant
difference (W = 276.00, p = 0.26), suggesting that the semi-
automated method closely approximates the ground truth.

At Visit 2, the semi-automated measurements showed a higher
mean bias of —3.08 mL (SD = 9.71 mL, median = —2.49 mL, IQR
= 5.99mL) compared to the ground truth, with a wider range
of agreement (—22.13 mL to 15.96 mL). This observation suggests
that measurement differences varied more than in the first visit. A
Wilcoxon signed-rank test revealed a significant difference between
the two methods at this timepoint (W = 197.00, p = 0.019),
suggesting that the discrepancies between the semi-automated and
ground truth measurements were more pronounced at this visit.

Collectively, these findings at Visit 1 and Visit 2 suggest that the
semi-automated method provides a reliable alternative to ground
truth tracing, offering comparable accuracy and consistency,
despite increased variability at the second timepoint (Figure 6).

3.5 Longitudinal changes in lesion volume

Longitudinal changes in lesion sizes derived from semi-
automated segmentations at Visit 1 and Visit 2 ranged from
—0.11 to 55.21 mL. The Wilcoxon signed-rank test results yielded
a statistic of 1.0 at p < 0.0001, indicating an increase in lesion
volume between Visit 1 and Visit 2. Repeating the Wilcoxon signed-
rank test using the ground truth segmentations similarly revealed
an increase in lesion volume, ranging from 1.30 to 79.45mL (W =
1.00, p < 0.0001).
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TABLE 6 Group-level performance metrics against ground truth segmentations for initial vs. semi-automated segmentations.

Segmentation Visit 1 Visit 2
methods : - : o
Dice Sensitivity  Precision  Specificity Dice Sensitivity  Precision  Specificity

(M£SD) (M=£SD) (M + SD) (M + SD) (M £ SD) (M + SD) (M + SD) (M + SD)

Initial automated 0.47 £ 0.30 0.45 £ 0.30 0.72£0.17 1.00 £ 0.00 0.40 £0.23 0.29£0.17 0.87 £0.21 1.00 £ 0.00

segmentation

Semi-automated 0.54 = 0.30 0.56 £ 0.31 0.70 £ 0.71 1.00 % 0.00 0.64 £ 0.28 0.63 +0.28 0.77 £ 0.22 1.00 % 0.00

segmentation

TABLE 7 Recon-all runtimes by method and visit.

SAMSEG SynthSR FreeSurfer v8
M &+ SD [HH:MM] Min—Max M + SD [HH:MM] Min—Max M =+ SD [HH:MM] Min—Max
Visit 1 2.67 +0.42 2.02-3.64 2.43 £ 0.40 1.80-3.34 3.88+0.76 3.05-6.61
Visit 2 2.75+042 1.86-3.65 241 £ 043 1.90-3.35 3.84 +0.46 3.13-4.62
Visit 1 Visit 2
——=- Mean Diff: 2.42 ——- Mean Diff: -3.08
40 ---- Upper LOA: 16.25 40 ---- Upper LOA: 15.96
---- Lower LOA: -11.41 ---- Lower LOA: -22.13
o °
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FIGURE 6
Bland-Altman agreement plots comparing lesion volume measurements across visits and methods. Each plot shows the difference vs. the mean,
with bias (dashed red lines) and limits of agreement (dashed black lines).

3.6 Changes in lesion volume compared to
inter-rater variability

The longitudinal changes in Dice overlap from Visit 1 to Visit
2 exceeded inter-rater variability for both the semi-automated
method (W = 1299.0, p < 0.0001) and the ground truth method
(W = 684.5, p < 0.0001). Similarly, the increase in lesion volume
from Visit 1 to Visit 2 exceeded inter-rater variability (i.e., the
volume difference between raters for the same lesion) for both
the semi-automated method (W = 225.0, p < 0.0001) and the
ground truth method (W= 16.0, p < 0.0001) (Figure 7). Further,
90.6% of lesions for the ground truth method and 60.7% of lesions
for the semi-automated method experienced an increase in lesion
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volume greater than 2 times the SD over the mean of the inter-
rater results (top dashed line in Figure 7, right). When using a
threshold of 1.5 times the SD over the mean of the inter-rater
results, 93.8% of lesions for the ground truth and 65.6% of lesions
for the semi-automated experienced an increase in lesion volume.

3.7 Lesion size variation across different
visit intervals

Inter-visit intervals ranged from 727 to 2,366 days. Correlation
analyses revealed no relationship between visit intervals and
changes in lesion size for both the semi-automated (R = —0.12,
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p = 0.38) and ground truth (R = —0.10, p = 0.58) methods
(Figure 8). Regression models accounting for age, sex, and visit
interval explained only 7.3% (R*> = 0.073) and 52% (R* =
0.052) of the variance in lesion volume change, for the semi-
automated and ground truth methods, respectively. After adjusting
for the number of predictors, the adjusted R* values were 0.024
for semi-automated and —0.049 for ground truth, indicating
minimal explanatory power. None of the individual predictors were
statistically significant in either model (all p > 0.11). The overall
F-statistics were 1.49 (p = 0.23) for semi-automated and 0.52
(p = 0.68) for ground truth, suggesting that the models did not
effectively predict lesion volume changes. Together, these findings
indicate that the observed changes in lesion size after TBI are not
explained by age-related factors or influenced by sex, regardless of
the measurement method used.

3.8 Impact of SynthSR-induced voxel
intensity changes on lesion volume and
editing burden

We further assessed whether SynthSR-induced voxel intensity
changes were associated with lesion volume differences or editing
burden (Table 8). Correlations between intensity change volume
and lesion volume difference were small and non-significant (Visit
1: p = —0.26, p = 0.215, g = 0.287; Visit 2: p = 0.08, p = 0.713, g =
0.713). The intensity change count showed modest, visit-dependent
correlations with manual-edit overlap (Visit 1: p = 0.38, p = 0.067,
q = 0.134; Visit 2: p = 0.41, p = 0.047, g = 0.134), suggesting a
potential but limited influence on manual editing requirements.
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4 Discussion

In this longitudinal MRI study of 24 individuals with chronic
TBI, we demonstrate the reliability and efficiency of a semi-
automated cortical lesion segmentation tool. Our findings indicate
that this semi-automated method performs robustly against
ground-truth manual tracings to segment lesions with improved
precision over an automated technique and with improved time
efficiency compared to previously developed methods (11). Further,
in a proof-of-principle application of the semi-automated lesion
segmentation tool, we provide preliminary evidence that cortical
lesions expand beyond 1 year post-injury, with 37 of 61 measured
lesions (60.7%) expanding on MRI scans performed at least 2
years apart. These observations raise the possibility that lesion
expansion may contribute to PTND—a finding that will require
confirmation in larger longitudinal studies with clinical-radiologic-
pathological correlations. The semi-automated lesion tool thus
creates new opportunities to investigate the role of cortical lesions
in the pathogenesis of PTND.

The semi-automated lesion segmentation tool developed here
builds upon recent innovations in machine learning-based imaging
analysis, most notably SynthSR (20, 21). What distinguishes this
tool from previously developed lesion segmentation methods is: (1)
increased efficiency when compared to traditional manual tracing;
(2) compatibility with standard FreeSurfer outputs with a fully
specified, scriptable sequence of steps to support reproducibility
within FreeSurfer-based workflows; and (3) scalability to large
datasets with anatomically guided segmentation. The new semi-
automated tool demonstrates robust performance characteristics
against “ground-truth” manual lesion segmentations, as evidenced
by the strong agreement observed between the two methods at Visit
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TABLE 8 Correlations between lesion intensity changes and manual-editing burden across visits.

Association Visit 1 Visit 2

P P
Absolute lesion volume difference (mL) <> —0.263 0.215 0.287 0.079 0.713 0.713
Intensity-change volume within lesions (mL)
Intensity-change voxels within lesions (count) < 0.380 0.067 0.134 0.409 0.047 0.134
Manual-edit overlap (count)

1. The observed discrepancies at Visit 2 may reflect a heightened
sensitivity of the semi-automated method to more complex lesion
morphologies, which could account for the increased variability
in measurements. Collectively, these findings underscore the
reliable performance of semi-automated segmentation compared
to traditional manual tracing, but also the potential for future
improvement in the reliability of the method.

Importantly, the semi-automated lesion segmentation tool
requires human input to refine and optimize lesion boundaries—
a step that reflects the inherent challenge of training automated
tools to detect traumatic lesions, which often have heterogeneous
signal characteristics related to variable distributions of gliosis,
demyelination, and encephalomalacia. This manual editing step
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required approximately 10-20 min per MRI scan, and we estimate
that several hours of training were required for each rater
performing the manual editing. Nonetheless, the time required for
the manual editing step in the newly proposed method is far less
than for our previously published lesion segmentation method (11).
While the prior tool required manual creation of set points along
the entire lesion surface, the new method requires only a small
number of voxel-based edits in volumetric space. A key future
direction will be to determine whether full automation is reliable.
This goal may be attainable via integration with recently developed
methods such as VoxelPrompt (32) and FastSurfer-LIT (33). We
currently recommend manual editing of segmented lesions until
further studies confirm the reliability of fully automated methods.
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The lesion expansion observed in this cohort is consistent
with and builds upon the growing evidence base indicating that
pathological processes in TBI persist and progress in the chronic
setting, even beyond one year post-injury. The clinical significance
of lesion expansion is well established in the acute stages of care
(34), wherein expansion of an acute lesion may cause mass effect
and herniation. In the chronic stage, there are many unanswered
questions about the clinical relevance, underlying mechanisms,
and temporal dynamics of TBI lesion expansion. Prior evidence
from histopathology (3, 35) and neuroimaging studies suggests that
inflammation persists in the chronic stage of TBI (36, 37), but
whether chronic lesion expansion is attributable to inflammation,
gliosis, microvascular ischemia, or some combination of factors
is unknown. Elucidating mechanisms of chronic lesion expansion
will require pathological-radiologic correlation analyses, which the
LETBI study is designed to perform, given the premortem consent
for autopsy provided by LETBI participants (22). The absence of
an association between lesion expansion and time between scans
suggests that lesion expansion occurs at variable rates, though
this preliminary observation will require future studies with larger
sample sizes to confirm.

Several limitations should be considered when interpreting the
results of this study. The small sample size of 24 individuals with
chronic TBI limits the generalizability of our results, necessitating
larger cohorts for validation. Only investigating two imaging time
points and the relatively brief follow-up period of 3.5 +/— 1.2
years is also insufficient to elucidate the long-term trajectory of
lesion expansion and its implications for PTND. The potential
contribution of cortical lesion expansion to the pathogenesis of
PTND is unknown and will require future studies with sufficiently
large sample sizes to account for other risk factors, as well as
protective factors.

While the semi-automated tool improves efficiency, it
still requires manual input for refining lesion boundaries,
introducing potential variability and subjectivity. Additionally, the
heterogeneous neuroanatomic locations and signal characteristics
of traumatic lesions further complicate the segmentation process,
as the tool may not uniformly handle all types of lesions with
the same accuracy. It is currently unknown whether the semi-
automated method detects lesions that evade detection by manual
raters who do not have access to the initial automated lesion masks.
Lastly, this study did not test for cognitive and functional correlates
of lesion expansion—a crucial area for future research. Addressing
these limitations will be essential for advancing our understanding
of cortical lesion dynamics in chronic TBI.

A key goal in future studies will be to evaluate the accuracy
and efficiency of the proposed semi-automated lesion segmentation
technique in comparison to fully automated techniques that are
being generated in the rapidly evolving field of deep learning.
There is an increasing number of MRI segmentation algorithms
that are being applied to a broad spectrum of neuropsychiatric
diseases using deep learning tools (38-41), as well as applications
in more widely available CT scans (42-44). Several such techniques
have been applied to individuals with TBI (42, 45), underscoring
the potential for fully automated deep learning techniques to
supplement, or ultimately replace, the type of semi-automated
lesion segmentation tool developed here.
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Nevertheless, there are several potential benefits of a technique
that leverages a robust software package like FreeSurfer, which has
been intensively tested, verified and can handle a broad spectrum
of neuroimaging data. Specifically, our technique obviates the need
for extensive model training for different types of lesions, because
it generates preliminary segmentations via a simple, reproducible
pipeline amenable to subsequent curation. Standalone, dataset-
specific deep learning approaches, by comparison, require further
validation of their generalizability, entail maintenance and
support, investment in replication infrastructure, and significant
computational resources for training on new datasets. Also,
because our approach relies on standard FreeSurfer outputs, it is
immediately deployable and likely more feasible to integrate into
existing neuroimaging pipelines than establishing a computational
environment for more sophisticated automated segmentation.

5 Conclusions

In summary, we developed and implemented a semi-automated
lesion detection tool that accurately identifies and efficiently
quantifies the volume of cortical lesions in individuals with chronic
TBI. Further, we provide proof-of-principle evidence that this
lesion segmentation tool can detect longitudinal lesion growth
in the chronic stage of TBI. Future applications of this tool
have the potential to elucidate the pathophysiologic links between
lesion expansion and the clinical expression of PTND, including
in individuals with TBI resulting in large cortical lesions that
would otherwise exclude them from analyses of neuroimaging
data. Ultimately, the integration of lesion segmentation into
clinical MRI workflows has the potential to inform preventive,
diagnostic, prognostic, and therapeutic strategies for individuals
with chronic TBL
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