
Frontiers in Neurology 01 frontiersin.org

Quantitative histopathologic 
profiling of arterial 
dissection-related thrombi in 
acute ischemic stroke: etiological 
comparisons
Gang Cai 1,2, XuMing Fang 1, Jun Li 1, YuanHua Cheng 3, 
YanHui Zhang 3 and Lan Chu 2,4*
1 Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China, 
2 Institute of Neuroscience, Soochow University, Suzhou, China, 3 Department of Pathology, Affiliated 
Hospital of Guizhou Medical University, Guiyang, China, 4 Department of Neurology, Beijing Amcare 
Hospital, Beijing, China

Introduction: Arterial dissection is an important etiology of stroke in young 
adults and may demonstrate distinct thrombus characteristics. While most 
studies have focused on compositional differences between cardioembolic 
(CE) and non-cardioembolic thrombi, systematic analyses of dissection-related 
thrombi remain scarce. This study characterized the compositions of dissection 
thrombi, compared them with those of non-dissection thrombi, and explored 
compositional variations among stroke etiologies.
Materials and methods: We retrospectively analyzed the clinical data and 
thrombi of 230 patients with acute ischemic stroke (AIS). The thrombi were 
stained with hematoxylin and eosin (H&E) and digitally scanned, and their 
composition was analyzed based on quantified red blood cell (RBC), fibrin/other 
component (F/O), and white blood cell (WBC) ratios and the total thrombus area. 
Comparisons were made between dissection-related AIS and non-dissection 
etiologies (large artery atherosclerosis [LAA], CE, stroke of other determined 
etiology [SOE], and stroke of undetermined etiology [SUE]).
Results: Among the 230 patients with acute ischemic stroke, 16 (7.0%) had 
dissection-related stroke and 214 (93.0%) had non-dissection stroke (59 LAA, 
124 CE, 2 SOE, and 29 SUE). Compared to those in the non-dissection group, 
the patients in the dissection group were significantly younger and had a lower 
prevalence of hypertension and atrial fibrillation but higher tandem lesion 
frequency (all p < 0.05). Regarding the thrombus characteristics, no significant 
differences were observed in the RBC, F/O, or WBC ratios between the dissection 
and non-dissection groups or subgroups. However, the LAA thrombi were 
significantly smaller than those in the dissection, CE, and SUE groups (p < 0.05).
Conclusion: The H&E-based thrombus composition analysis did not differentiate 
arterial dissection from other stroke etiologies. LAA thrombi exhibited the 
smallest thrombus burden among the major stroke subtypes.
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1 Introduction

The widespread adoption of mechanical thrombectomy has enabled 
the analysis of thrombi retrieved from patients with acute ischemic stroke 
(AIS). There is growing interest in the relationship between thrombi 
composition, including red blood cell (RBC), fibrin/other components 
(F/O), white blood cell (WBC) ratios, and stroke etiology (1). Identifying 
the etiology of stroke is crucial for secondary prevention. Arterial 
dissection, a prevalent cause of stroke in young patients (2), may exhibit 
diagnostically significant thrombi characteristics. Studies have primarily 
focused on the compositional differences among cardioembolism (CE), 
large artery atherosclerosis (LAA), and stroke of undetermined etiology 
(SUE), revealing significant heterogeneity (3, 4). However, systematic 
investigations that specifically address thrombi compositions in cases of 
arterial dissection are scarce. Therefore, this study aimed to characterize 
dissection thrombi compositions and compare them with those of 
non-dissection thrombi to explore the differences in thrombi 
compositions across various stroke etiologies.

2 Materials and methods

2.1 Patients

We reviewed the records of 331 patients with AIS who underwent 
emergency endovascular treatment at the Affiliated Hospital of Guizhou 
Medical University between June 2021 and June 2024. After excluding 
88 patients, including 76 LAA, 5 CE, 4 carotid dissections, 1 stroke of 
other determined etiologies (SOE), and 2 SUE, and 13 patients for whom 
thrombus specimens were unavailable, 230 patients (69.5%) were 
included in the final analysis (Supplementary Figure 1). Clinical data 
were extracted from a prospectively maintained registry database and the 
hospital’s electronic medical record system. Stroke etiology was classified 
using the Trial of ORG 10172  in Acute Stroke Treatment (TOAST) 
criteria (5). Patients with arterial dissection-related stroke were assigned 
to the dissection group, whereas those with non-dissection etiologies, 
including LAA, CE, SOE, and SUE, constituted the non-dissection 
group. The dissection of the cervical carotid or vertebral artery requires 
radiological intervention via CTA or DSA, demonstrating the presence 
of a mural hematoma, dissecting aneurysm, long tapering stenosis, 
intimal flap, double lumen, or occlusion >2 cm above the carotid 
bifurcation and revealing a dissecting aneurysm or long tapering stenosis 
after recanalization (6, 7) (Figure 1). Patients who underwent iatrogenic 
artery dissection secondary to endovascular procedures were excluded.

2.2 Thrombus processing and analysis

The thrombi were collected and preserved according to the 
standardized protocol described by Staessens et al. (8). Each thrombus 
retrieved per procedural pass was fixed in 10% phosphate-buffered 

formalin solution for 24 h, dehydrated, and embedded in paraffin. 
From each paraffin block, representative sections (2–5 μm) were cut 
and stained with hematoxylin and eosin (H&E). All the sections were 
digitized using a Hamamatsu (C13210) whole-slide scanner. A 
researcher with over 10 years of expertise in histopathological analysis 
independently quantified the thrombus components using Orbit 
Image Analysis software (version 3.64) (9). For each case, three 
validated computational models were applied, and the mean values 
were calculated for the RBC ratio, F/O ratio, WBC ratio, and total 
histopathological section area (Figure 2). Thrombi retrieved from the 
same patient during sequential passes were combined and analyzed as 
a single composite sample.

2.3 Statistical analysis

Categorical data are presented as frequencies (percentages), and 
continuous variables are expressed as medians (interquartile range). 
Group comparisons for categorical variables were conducted using χ2 or 
Fisher’s exact tests, with post hoc Bonferroni correction for pairwise 
comparisons when the overall test was significant. For continuous 
variables, Mann–Whitney U-tests were used for two-group comparisons, 
and Kruskal–Wallis tests with Dunn’s correction were employed for multi-
group analyses. The SOE subgroup (n = 2) was excluded from inferential 
statistics due to methodological constraints but was included in 
descriptive reporting. All statistical analyses were performed using IBM 
SPSS Statistics (v20.0), with two-tailed p < 0.05 indicating significance.

3 Results

Among the 230 patients with AIS, 16 (7.0%) had arterial dissection-
related stroke, and 214 (93.0%) had non-dissection etiologies. The 
non-dissection group comprised 59 LAA cases, 124 CE cases, two SOE 
cases (patients with confirmed non-dissection etiologies: 1 carotid stent 
thrombosis and 1 systemic lupus erythematosus-related stroke), and 29 
SUE cases. The patients in the dissection group were significantly 
younger than those in the non-dissection group (45 vs. 66 years, 
p < 0.001) and exhibited a lower prevalence of hypertension (12.5% vs. 
53.5%, p = 0.002) and atrial fibrillation (0% vs. 50.5%, p < 0.001). 
Tandem lesions were predominantly observed in the dissection group 
(100% vs. 18.2%, p < 0.001). The proportion of extracranial artery stent 
implantation was higher in the dissection group (81.2% vs. 8.9%, 
p < 0.001). No intergroup differences were observed in other variables 
(sex, diabetes, dyslipidemia, admission NIHSS score, anterior or 
posterior circulation involvement, intracranial/extracranial occlusion 
or intravenous thrombolysis, mechanical thrombectomy technique, 
number of passes, intracranial primary balloon angioplasty and stent 
placement, and extracranial primary balloon angioplasty; all p > 0.05) 
(Table 1).

Subgroup analyses identified distinct phenotypic and procedural 
signatures in stroke etiology. The patients with arterial dissection were 
the youngest (vs. LAA/CE/SUE; all p < 0.05), with dissection and LAA 
showing a higher male prevalence than did CE (p < 0.05). Vascular 
risk factors followed etiology-specific gradients: hypertension 
decreased stepwise (LAA > CE > dissection; p < 0.05), whereas atrial 
fibrillation was most frequent in the CE group (vs. LAA/SUE/
dissection; all p < 0.001). The lifestyle factors differed as follows: 

Abbreviations: CE, cardioembolism; AIS, acute ischemic stroke; H&E, hematoxylin 

and eosin; RBC, red blood cell; F/O, fibrin/other component; WBC, white blood 

cell; LAA, large artery atherosclerosis; SOE, stroke of other determined etiology; 

SUE, stroke of undetermined etiology; TOAST, Trial of ORG 10172 in Acute Stroke 

Treatment; AD, arterial dissection.
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smoking (LAA > CE, p < 0.05) and alcohol use (LAA > CE/SUE, 
p < 0.05) increased in the LAA group. The NIHSS score was lower in 
the LAA group than in the CE group (p < 0.05) but was comparable 
between the LAA and dissection/SUE groups. Procedural variations 
included higher stent retriever use in the LAA group (vs. dissection, 
CE, or SUE; p < 0.05) and increased intracranial balloon angioplasty/
stenting in the LAA vs. non-LAA group (p < 0.05). Extracranial 

stenting peaked in dissection (vs. all groups; p < 0.01), whereas 
balloon angioplasty was dominant in LAA (vs. CE/SUE; p < 0.001) 
and dissection (vs. CE; p = 0.023). Supplementary Table 1 shows the 
clinical comparisons.

Histopathological analyses revealed no significant differences 
between the dissection and non-dissection groups in the RBC% 
(55.9% vs. 49.8%), F/O% (38.6% vs. 45.9%), WBC% (3.5% vs. 

FIGURE 2

H&E staining and quantification of thrombus. Gross specimen of retrieved thrombus (upper left). Representative HE-stained section (left). Thrombus 
composition quantified using the Orbit Image Analysis model. Calculation results (lower right). Thrombus area was quantified using an area 
quantification model.

FIGURE 1

Radiographic features of cervical artery dissection. (A) Sagittal CTA indicating long-segment stenosis of the internal carotid artery (patient 1). (B) Axial 
CTA showing a double lumen (patient 1). (C) Anteroposterior DSA demonstrating long-segment stenosis with dissection (patient 1). (D) Lateral DSA 
revealing an intimomedial flap in the carotid artery (patient 2). (E) Lateral DSA showing a dissecting aneurysm in the vertebral artery (patient 3).
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3.9%), or total thrombus area (31.3 mm2 vs. 15.8 mm2) (p > 0.05). 
Similarly, subgroup comparisons revealed no significant 
differences in the RBC%, F/O%, and WBC% (p > 0.05). The total 
thrombus area was significantly smaller in the LAA group 
(10.5 mm2) than in the CE (17.7 mm2) and dissection groups 
(31.3 mm2) (p < 0.05). There was no notable difference in the 
total thrombus area between the dissection and CE groups 
(p > 0.05) (Table 2 and Figure 3).

4 Discussion

Arterial dissection is a mechanical vascular injury caused by 
an intimal tear that creates a false lumen, leading to local thrombus 
formation and potential distal embolization. Dissection involves 
different mechanisms than atherothrombotic events resulting from 
plaque rupture or cardioembolic events resulting from atrial 
fibrillation. In the present study, distinct risk profiles were observed 

TABLE 1  Clinical data and thrombus pathology: dissection vs. non-dissection groups.

Variable Dissection (n = 16) Non-dissection (n = 214) p-value

Age, years, median (IQR) 45.0 (34.8–54.5) 66.0 (58.0–75.3) <0.001

Male, n (%) 12 (75.0) 114 (53.3) 0.092

Hypertension, n (%) 2 (12.5) 114 (53.5) 0.002

Diabetes, n (%) 1 (6.2) 34 (15.9) 0.477

Dyslipidemia, n (%) 5 (31.2) 63 (29.4) 1.000

Previous stroke, n (%) 0 (0) 41 (19.2) 0.083

Atrial fibrillation, n (%) 0 (0) 108 (50.5) <0.001

Smoking, n (%) 8 (50.0) 85 (39.7) 0.419

Alcohol, n (%) 5 (31.2) 51 (23.8) 0.548

Admission NIHSS score, median (IQR) 12.0 (8.5–22.5) 16.0 (12–21.3) 0.211

Anterior/posterior, n (%)

 � Anterior 14 (87.5) 184 (86.0)

1.000 � Posterior 2 (12.5) 27 (12.6)

 � Both 0 (0) 3 (1.4)

Intracranial/extracranial, n (%)

 � Intracranial arteries 0 169 (79.0)

<0.001 � Extracranial arteries 0 6 (2.8)

 � Tandem lesion 16 (100) 39 (18.2)

 � IVT, n (%) 6 (37.5) 69 (32.2) 0.665

Mechanical thrombectomy

 � Stent retriever alone, n (%) 0 21 (9.8) 0.373

 � Contact aspiration alone, n (%) 6 (37.5) 75 (35.0) 0.843

 � Combined, n (%) 10 (62.5) 118 (55.1) 0.568

 � Number of passes, median (IQR) 2 (1–3) 2 (1–3) 0.394

Angioplasty (intracranial artery), n (%)

 � Primary balloon angioplasty 0 26 (12.1) 0.227

 � Stent placement 0 16 (7.5) 0.610

Angioplasty (extracranial artery), n (%)

 � Primary balloon angioplasty 3 (18.8) 14 (6.5) 0.103

 � Stent placement 13 (81.2) 19 (8.9) <0.001

Reperfusion (eTICI) at end of procedure, n (%)

 � 2b50/2c/3 15 (93.8) 201 (93.9) 1.000

 � 2c/3 8 (50.0) 159 (74.3) 0.045

Histopathology, median (IQR)

 � RBC (%) 55.9 (39.7–65.6) 49.8 (32.7–63.1) 0.115

 � F/O (%) 38.6 (30.4–55.8) 45.9 (32.7–64.3) 0.121

 � WBC (%) 3.5 (2.7–5.4) 3.9 (2.7–5.0) 0.932

 � Total thrombus area (mm2) 31.3 (14.0–42.3) 15.8 (8.4–36.9) 0.103

IVT, intravenous thrombolysis; RBC, red blood cell; F/O, fibrin/other component; WBC, white blood cell; eTICI, expanded thrombolysis in cerebral infarction score; IQR, interquartile range.
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among the patient groups: patients with arterial dissection were the 
youngest and had the least hypertension; patients with LAA had 
strong associations with vascular risk factors such as hypertension, 
smoking, and alcohol use; and patients with CE showed the highest 
rates of atrial fibrillation. These patterns align with their respective 
pathophysiological mechanisms—mechanical or genetic in 
dissection, atherosclerosis in LAA, and cardiac embolism in 

CE—highlighting the need for targeted prevention and 
treatment strategies.

Previous studies on thrombus composition and stroke etiology 
have predominantly focused on CE, LAA, and SUE sources (4, 10). 
However, the findings have been inconsistent. Kim et al. reported 
that clots from CE have a significantly higher proportion of RBCs 
and lower proportion of fibrin than those from LAA (11). In 

TABLE 2  Comparison of thrombus pathological characteristics among patients with different stroke etiologies.

Variable Dissection 
(n = 16)

LAA (n = 59) CE (n = 124) SOE (n = 2)a SUE (n = 29) p-value

RBC (%), median (IQR) 55.9 (39.7–65.6) 49.1 (33.7–62.6) 50.1 (30.0–63.4) 67.3 (50.7–83.8) 45.5 (15.8–65.3) 0.344

F/O (%), median (IQR) 38.6 (30.4–55.8) 46.0 (32.2–62.7) 45.2 (32.9–65.1) 30.6 (15.6–45.6) 51.5 (31.2–78.9) 0.306

WBC (%), median (IQR) 3.5 (2.7–5.4) 4.1 (2.7–6.1) 3.9 (2.8–4.7) 2.2 (0.6–3.7) 3.8 (2.6–4.8) 0.502

Total thrombus area (mm2), 

median (IQR)
31.3 (14.0–42.3) 10.5 (6.1–23.4) 17.7 (10.4–37.4) 38.8 (2.2–75.4) 17.7 (13.3–49.1) 0.004

LAA, large artery atherosclerosis; CE, cardioembolism; SOE, stroke of other determined etiology (confirmed non-dissection causes); SUE, stroke of undetermined etiology; RBC, red blood 
cell; F/O, fibrin/other component; WBC, white blood cell.
aGroups with SOE (n = 2) were excluded from statistical comparisons owing to methodological limitations.

FIGURE 3

Scatter plot comparison of thrombus components and area across different etiologies. (A) Red blood cell proportion; (B) fibrin/others proportion; 
(C) white blood cell proportion; (D) total thrombus area. AD, arterial dissection; LAA, large artery atherosclerosis; CE, cardioembolic; SUE, stroke of 
undetermined etiology.

https://doi.org/10.3389/fneur.2025.1640562
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Cai et al.� 10.3389/fneur.2025.1640562

Frontiers in Neurology 06 frontiersin.org

contrast, another study reported that LAA thrombi had the highest 
percentages of RBCs, CE, and SUE (12). The discrepancies in these 
findings may be  attributed to the limited statistical power in 
previous studies, which often resulted from small sample sizes. 
Furthermore, the nonuniform distribution of thrombus 
components may undermine the representativeness of individual 
histological sections, especially when sample sizes are insufficient. 
It has been suggested that, for compositional analyses in large-scale 
studies, one thrombus section per case is adequate, whereas three 
sections per case have been recommended in smaller cohorts (8). 
Variations in image analysis software may also contribute to 
discrepancies in results. Thrombi associated with arterial dissection 
remain underexplored. The Stroke Thromboembolism Registry of 
Imaging and Pathology study (13), which examined thrombi from 
1,350 patients with AIS using Martius Scarlet Blue staining, 
reported a higher RBC content in arterial dissection thrombi than 
in those from LAA and CE (50% vs. 46% vs. 42%; p < 0.01). 
However, this study primarily assessed the compositional 
differentiation between LAA and CE thrombi rather than the 
diagnostic utility for arterial dissection. Theoretically, arterial 
dissection thrombi may exhibit distinct compositional profiles 
compared to thrombi of other etiologies; however, the composition 
of arterial dissection thrombi is influenced by various factors, such 
as the extent of the intimal tear, hemodynamic conditions, and age 
of the thrombus, which likely contribute to their intrinsic 
heterogeneity. We observed a higher proportion of RBCs in the 
dissection thrombi than in the LAA and CE (55% vs. 49% vs. 50%). 
However, this difference was not statistically significant, implying 
that the conventional histological evaluation of cellular 
composition has limited efficacy in distinguishing stroke etiologies. 
Notably, RBC-rich thrombi tend to have a softer consistency and 
are more vulnerable to fragmentation, leading to distal 
embolization (1). This may explain the higher incidence of tandem 
lesions in the dissection group than in the non-dissection group 
observed in this study.

An assessment of thrombus burden is critically important for 
guiding endovascular treatment strategy selection and predicting 
clinical outcomes. Current standard evaluation methods primarily 
rely on non-contrast computed tomography or computed 
tomography angiography (14, 15); however, these radiologically 
estimated burdens lack validation for physically retrieved thrombi. 
Area analyses of representative sections of the retrieved thrombi in 
this study revealed that thrombi associated with LAA exhibited the 
smallest cross-sectional area, which was significantly smaller than 
those associated with CE or dissection. This may reflect differences 
in the context of thrombosis. LAA occlusions typically represent 
acute thrombosis superimposed on underlying stenosis, forming 
rapidly via platelet aggregation in a high-shear environment, 
resulting in compact, adherent thrombi, where even small volumes 
can cause complete occlusion. CE thrombi, however, form slowly 
under low-shear conditions, driven by thrombin-mediated 
coagulation with greater growth potential. Dissection-related 
thrombi develop within the false lumen, which may extend 
longitudinally, facilitating larger thrombus volumes. These 
observed differences in thrombus area may inform thrombectomy 
device selection; smaller LAA thrombi may be more amenable to 
stent retrievers, while larger CE or dissection thrombi might 
be better suited for aspiration thrombectomy. Notably, among the 

88 patients excluded because of non-retrieved thrombi, 76 (86.4%) 
were LAA cases, suggesting a lower thrombus burden in the 
LAA. Rather than thrombus absence, these small thrombi may 
fragment and migrate distally; when advancing microcatheters/
microwires through occluded arteries, fresh thrombus fragments 
can be pushed into patent distal segments, where endogenous lysis 
occurs (16). In such scenarios, successful reperfusion was achieved 
either by direct primary balloon angioplasty and/or stenting, 
despite mechanical thrombectomy attempts without thrombus 
retrieval. Furthermore, thrombi classified as SUE demonstrated a 
significantly larger mean area than did the LAA thrombi, providing 
evidence that potentially supports a non-LAA origin in a subset of 
SUE cases.

This study has several limitations: (1) Only retrieved thrombus 
portions were analyzed, and unretrieved thrombus fragments may 
have affected the results; (2) the spatial heterogeneity (17) of thrombi 
may have limited the representativeness of two-dimensional sections 
for the overall composition; and (3) H&E staining cannot reliably 
differentiate fibrin from platelets, and it is unclear whether these 
components differ between arterial dissection and other causes, 
necessitating further immunohistochemical validation.

5 Conclusion

This study demonstrated the absence of significant compositional 
differences between the thrombi associated with arterial dissection-
related stroke and those associated with non-dissection stroke. The 
findings suggest that conventional histopathological staining has 
limited efficacy in distinguishing dissection from other etiologies. 
Notably, the thrombi resulting from dissection, CE, and SUE exhibited 
significantly larger areas than those resulting from LAA, indicating a 
greater thrombus burden. These findings may have important 
implications for the optimization of mechanical 
thrombectomy strategies.
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