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Ischemic stroke remains a leading cause of mortality and disability, with many 
patients failing to benefit from reperfusion therapies due to lysis-resistant thrombus 
formation and severe neuroinflammation. This highlights an urgent need to target 
the fundamental mechanisms linking these two processes. Neutrophil extracellular 
traps (NETs)—web-like structures of DNA and cytotoxic proteins—have emerged 
as a critical mediator of stroke pathology. While essential for host defense, their 
dysregulated formation in the cerebral microvasculature drives a vicious cycle 
of tissue injury. This review synthesizes evidence demonstrating that NETs are 
not mere bystanders but active drivers of stroke pathology. We  dissect the 
core mechanisms by which they mediate three primary detrimental effects: (1) 
promoting stable, lysis-resistant thrombi, which directly contributes to poor clinical 
outcomes; (2) compromising blood–brain barrier integrity; and (3) amplifying the 
neuroinflammatory cascade. Furthermore, we evaluate the clinical utility of NETs 
as powerful biomarkers for diagnosis and prognosis, and we critically analyze 
emerging therapeutic strategies aimed at dismantling them. While targeting NETs 
with agents like DNase I or PAD4 inhibitors holds immense promise, we argue 
that significant translational challenges—such as ensuring therapeutic specificity 
and defining the optimal treatment window—must be overcome. In conclusion, 
targeting the thrombo-inflammatory functions of NETs represents a paradigm shift 
from a purely fibrin-centric view of stroke, opening new avenues for developing 
more effective therapies.
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1 Introduction

Ischemic stroke, a leading cause of adult disability and mortality worldwide, is 
characterized by complex pathological mechanisms. In recent years, neutrophil extracellular 
traps (NETs) have garnered significant attention in ischemic stroke research. NETs are web-like 
structures composed of DNA, proteins, and enzymes released by neutrophils upon activation. 
These structures not only play critical roles in infection and inflammation but also contribute 
to the pathogenesis of diverse diseases (1–3). Accumulating evidence demonstrates elevated 
NET levels in brain tissues and thrombi of ischemic stroke patients, suggesting their 
involvement in disease progression (2, 4, 5).

While the precise mechanisms underlying NET formation and their specific roles in 
ischemic stroke remain incompletely understood, preclinical studies using murine models and 
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clinical sample analyses have revealed spatiotemporal characteristics 
and potential pathways (6, 7). Furthermore, research on NETs in other 
diseases, such as cardiovascular disorders, infections, and autoimmune 
conditions, provides valuable insights into their multifunctional roles 
in health and disease (8–10), underscoring their significance in 
pathological processes. Emerging studies on NETs as biomarkers and 
therapeutic targets highlight the potential of modulating NET 
formation or degradation as a novel therapeutic strategy for ischemic 
stroke (11–13).

This review systematically explores the mechanisms, clinical 
implications, and advances in NET-based biomarkers and therapies. 
By integrating foundational research with cutting-edge clinical data, 
we aim to elucidate the diagnostic and therapeutic potential of NETs 
in ischemic stroke management.

2 Overview of neutrophil extracellular 
traps (NETs)

2.1 Definition and formation mechanisms

Neutrophil extracellular traps (NETs) are web-like chromatin 
structures released by activated neutrophils, primarily composed of 
decondensed DNA, histones, and granular enzymes. These structures 
exhibit antimicrobial properties by trapping and killing pathogens. In 
ischemic stroke, NET formation mechanisms and their pathological 
roles have garnered significant attention. A 2015 study by Grabcanovic 
Musija et al. (14) investigating neutrophilic inflammation and NET 
formation in chronic obstructive pulmonary disease (COPD) revealed 
conserved NET-driven pathways across inflammatory lung diseases. 
This finding suggests that NET biology may share common regulatory 
mechanisms in diverse inflammatory contexts, offering insights into 
their potential roles in ischemic stroke.

Furthermore, Chen et  al. (13) research demonstrated that 
excessive NET formation exacerbates ischemic stroke outcomes, while 
traditional Chinese medicine (TCM) interventions targeting NET 
suppression could mitigate neurological damage. This dual perspective 
highlights the therapeutic potential of modulating NET dynamics and 
underscores the need for mechanistic exploration.

2.2 NETs in health and disease: dual roles 
and clinical implications

NETs play paradoxical roles in health and disease. Rystwej et al. 
(15) studies established NETs as central mediators in infection control, 
autoimmune dysregulation, cancer progression, and even reproductive 
physiology, revolutionizing understanding of neutrophil biology.

However, dysregulated NET activity is implicated in pathological 
conditions. For instance, van Dam et al. (16) work identified NETs as 
key contributors to autoimmune kidney diseases, including acute 
glomerulonephritis and systemic lupus erythematosus (SLE). 
Similarly, Arazna et al. (8) research linked ROS-dependent NETosis 
to autoimmune pathogenesis. Clinically, NET detection methods have 
advanced significantly. Aslanova et al. (17) study revealed NETs’ dual 
role in gynecological malignancies—combating infections while 
paradoxically driving inflammation and cancer progression. Epshtein 
et al. (18) work further demonstrated NETs’ utility as high-iodine 

X-ray contrast agents for endovascular thrombectomy (EVT) imaging, 
enhancing thrombus visualization.

Despite their benefits, NET dysregulation poses risks. Retter et al. 
(19) review emphasized that both excessive and insufficient NET activity 
disrupt immune homeostasis, contributing to sepsis and organ damage.

In summary, NETs represent a double-edged sword: while 
essential for host defense, their uncontrolled release drives 
pathological inflammation and thrombosis. Balancing NET activity 
through targeted therapies—such as peptidyl arginine deiminase 4 
(PAD4) inhibitors or deoxyribonuclease I (DNase I)—holds promise 
for treating ischemic stroke and other NET-related disorders.

3 NETs in ischemic stroke

3.1 NET levels in ischemic stroke patients

Neutrophil extracellular traps (NETs) are significantly elevated in 
ischemic stroke patients. Vallés et  al. (4) demonstrated that acute 
ischemic stroke (AIS) patients exhibit markedly increased NET levels, 
particularly in those over 65 years of age with atrial fibrillation or a 
history of cardioembolic sources. De Wilde et al. (6) further revealed 
that NET formation peaked within 24 h post-stroke and gradually 
declined by 48 h in murine ischemic stroke models.

Laridan’s (2) study investigated NET dynamics within ischemic 
stroke thrombi, aiming to optimize thrombolytic therapy efficacy. 
Lapostolle et al. (5) research identified a strong correlation between 
thrombus-bound NETs and unsuccessful recanalization or prolonged 
procedural time in mechanical thrombectomy. These findings 
underscore NETs’ pivotal role in ischemic stroke pathophysiology. 
Regarding neutrophil-to-lymphocyte ratio (NLR), Liu et  al. (20) 
cohort study demonstrated that elevated NLR predicted poorer 90-day 
functional independence in young adults post-AIS or transient 
ischemic attack (TIA). Song et al. (21) meta-analysis systematically 
evaluated baseline NLR’s prognostic utility across acute stroke 
subtypes, while Quan et al. (22) highlighted NLR’s limitations as a 
standalone biomarker due to confounding variables. Yu et al. (23) 
work further validated NLR’s association with cardiovascular 
mortality and early clinical outcomes in AIS patients.

Additional NET-associated biomarkers have emerged. Lozano 
et  al. (24) observed heightened NET formation in immune 
thrombocytopenia (ITP) patients with platelet and neutrophil 
hyperactivation. Xiao et  al. (25) identified neutrophil gelatinase-
associated lipocalin (NGAL) as a novel biomarker for acute kidney 
injury (AKI) in AIS, correlating with elevated NGAL levels in AKI 
cohorts. Demyanets et  al. (9) linked NET biomarkers H3Cit and 
cfDNA to major adverse cardiovascular events (MACE) post-
percutaneous coronary intervention (PCI).

In summary, robust evidence confirms elevated NET levels in 
ischemic stroke patients, tightly linked to adverse clinical outcomes. 
These insights not only elucidate NETs’ pathological contributions but 
also unveil potential therapeutic targets for mitigating ischemic injury.

3.2 NETs and clinical prognosis

Investigations into the relationship between neutrophil 
extracellular traps (NETs) and clinical outcomes revealed critical 
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insights. Schechter et  al.’s (26) study demonstrated a correlation 
between NET levels in human plasma and disease severity and 
antibiotic treatment responses in active tuberculosis (TB). While this 
research primarily focused on TB, its findings suggested that NETs 
play significant roles in infectious diseases, providing a foundation for 
future investigations into NETs’ prognostic roles in other conditions, 
including ischemic stroke.

3.3 The influence of systemic comorbidities 
on NETs dynamics in ischemic stroke

Ischemic stroke patients rarely present without systemic 
comorbidities, which may function not merely as passive risk factors 
but as active modulators of the innate immune response. A compelling 
hypothesis is that chronic conditions such as diabetes and obesity 
create a systemic environment that “primes” circulating neutrophils. 
This priming renders them hyper-responsive, poised for an 
exaggerated NETotic response upon the acute challenge of cerebral 
ischemia (27, 28).

This priming phenomenon is particularly evident in the context 
of metabolic disorders. Emerging evidence delineates a gut-centric 
mechanism where high-fat diets promote dysbiosis, which in turn 
compromises intestinal barrier integrity. This leads to the systemic 
spillover of bacterial components like lipopolysaccharide, fueling a 
chronic, low-grade state of “meta-inflammation” (29). Concurrently, 
at the cellular level, neutrophils from obese models undergo significant 
metabolic reprogramming, exhibiting an altered dependence on 
glycolysis and fatty acid oxidation (30). This two-pronged 
mechanism—a pro-inflammatory systemic milieu coupled with 
intrinsic cellular alterations—translates into clinically observable 
phenomena. Indeed, studies consistently detect elevated circulating 
markers of NETosis in patients with type 2 diabetes and obesity, 
confirming a state of heightened neutrophil activation (29, 31).

Beyond metabolic syndrome, this principle of neutrophil priming 
by chronic disease likely extends to other systemic inflammatory 
conditions. In systemic sclerosis, for instance, neutrophils exhibit a 
heightened propensity for NET formation, particularly in patients 
with severe vascular complications, suggesting that chronic 
endothelial damage and autoimmune activation may similarly prepare 
neutrophils for a rapid and potent NETotic response (32).

Therefore, in a patient with underlying comorbidities, 
circulating neutrophils can be envisioned as being “pre-activated.” 
When an ischemic stroke occurs, this acute, potent stimulus acts 
on a cell population already poised for action. The result is a 
fulminant and disproportionate release of NETs within the cerebral 
microvasculature. This excess of NETs can exacerbate thrombus 
stability, promote microvascular occlusion, and amplify the 
cascade of neuroinflammation, potentially contributing to poorer 
functional outcomes.

3.4 Clinical implication: NETs drive 
thrombolysis resistance

A critical clinical implication of NETs in ischemic stroke is their 
role in mediating resistance to thrombolytic therapy. The dense 
scaffold of extracellular DNA, histones, and enzymes that constitutes 

NETs creates a physically robust thrombus that is poorly susceptible 
to degradation by standard fibrin-centric lytic agents like recombinant 
tissue plasminogen activator (r-tPA) (33, 34). This mechanistic 
understanding is strongly supported by direct clinical observations. 
Multiple studies have now demonstrated that a high abundance of 
NETs within retrieved thrombi is significantly associated with poor 
interventional outcomes, including unsuccessful recanalization (often 
defined as mTICI scores <2b) and prolonged procedure times during 
mechanical thrombectomy (5).

Furthermore, the age of the thrombus appears to be a pivotal 
factor. The work by Mengozzi et al. (33) revealed that older, more 
organized thrombi contain a higher burden of NETs, and this 
thrombus age was the sole independent predictor of NET content, 
which in turn correlated with impaired clinical outcomes. This 
suggests that as thrombi mature, they become increasingly fortified by 
NETs, solidifying their resistance to lysis. These findings collectively 
underscore that conventional thrombolysis is often insufficient for 
NET-rich clots and have catalyzed interest in adjunct therapies. The 
use of DNase I, which directly degrades the DNA backbone of NETs, 
is emerging as a promising strategy to dismantle the thrombus 
scaffold, potentially restoring its susceptibility to tPA and improving 
overall reperfusion success (7, 33). Therefore, targeting NETs 
represents a paradigm-shifting approach to overcoming thrombolysis 
resistance in a significant subset of acute ischemic stroke patients.

4 Mechanistic insights into NETs in 
ischemic stroke

Neutrophil extracellular traps (NETs) are not mere bystanders in 
ischemic stroke; they are active and potent drivers of a multifaceted 
pathological cascade. Understanding the mechanisms by which NETs 
exert their detrimental effects requires a hierarchical approach, tracing 
their journey from the initial triggers within the ischemic 
microenvironment to the complex intracellular machinery of NETosis, 
and finally to their destructive downstream consequences on the 
neurovascular unit. This chapter will systematically dissect this 
process, providing a mechanistic framework that directly corresponds 
to the core pathological events in stroke.

4.1 Upstream triggers and intracellular 
pathways of NETosis

The formation of NETs in ischemic stroke is a two-stage process, 
beginning with potent triggers from the hostile ischemic environment 
that subsequently activate specific intracellular enzymatic pathways 
within the neutrophil. The initial stimulus arises from a combination 
of oxidative stress, cellular debris, and intense crosstalk with other 
activated cells, particularly platelets. Cerebral ischemia followed by 
reperfusion initiates a burst of reactive oxygen species (ROS), a well-
established trigger for NETosis that directly activates key enzymes like 
NADPH oxidase (35, 36). Concurrently, necrotic neurons and 
damaged endothelium release damage-associated molecular patterns 
(DAMPs), such as high-mobility group box 1 (HMGB1), which 
function as critical danger signals. HMGB1, whether from damaged 
tissue or activated platelets, is a powerful inducer of NET formation, 
linking sterile injury to a robust innate immune response (1, 37). This 
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process is further amplified by direct physical and biochemical 
interactions with activated platelets, which themselves promote NET 
release and functionally integrate the processes of thrombosis and 
inflammation (1, 36).

Once these external triggers are sensed, neutrophils execute the 
NETosis program via distinct intracellular cascades. The classical 
pathway is NADPH oxidase-dependent, where an internal ROS burst 
leads to membrane disintegration and allows granular enzymes like 
neutrophil elastase and myeloperoxidase (MPO) to access and process 
nuclear chromatin, culminating in cell lysis and the explosive release 
of NETs. A second, often faster pathway relies on the nuclear enzyme 
PAD4. PAD4 catalyzes histone citrullination, a key modification that 
neutralizes histone charges and causes profound chromatin 
decondensation, a prerequisite for NET externalization (36). This 
PAD4-dependent mechanism is a critical element in stroke-associated 
thrombosis and represents a key therapeutic target (35). The execution 
of these pathways ultimately unleashes the NET scaffold into the 
neurovascular space, where it orchestrates subsequent 
pathological events.

4.2 Downstream pathological effects of 
NETs in cerebral injury

Once formed, NETs are not inert scaffolds but are biochemically 
active structures that orchestrate tissue damage through three primary, 
interconnected mechanisms: promoting thrombosis, compromising 
the blood–brain barrier, and amplifying neuroinflammation.

First and foremost, NETs are profoundly prothrombotic. Their 
web-like DNA backbone provides a physical scaffold for the 
aggregation of platelets and red blood cells, promoting thrombus 
growth and stability (36). Biochemically, NET components activate 
coagulation pathways and enhance thrombin generation. This 
interplay is further highlighted by the fact that fibrinogen, a key 
clotting protein, readily deposits within the NET meshwork, 
strengthening the thrombus. This dual physical and chemical 
contribution makes the resulting thrombus incredibly stable and 
resistant to both endogenous and therapeutic thrombolysis. Indeed, 
clinical evidence compellingly shows that high NET content in 
retrieved stroke thrombi is a strong predictor of resistance to tPA, 
failed recanalization, and ultimately, poorer patient outcomes (5). 
Supporting the therapeutic potential of targeting this nexus, preclinical 
studies have demonstrated that agents like batroxobin, which can both 
directly inhibit NET formation and degrade fibrinogen, significantly 
attenuate ischemic tissue damage and improve microcirculation in 
peripheral ischemia models (38).

Second, NETs directly attack the integrity of the blood–brain 
barrier (BBB). The proteases embedded within the NET structure, 
such as neutrophil elastase and matrix metalloproteinases, can 
enzymatically degrade the tight junction proteins and basement 
membrane that form the seal of the BBB (35). In parallel, 
NET-associated histones are directly cytotoxic to endothelial cells. 
Furthermore, emerging evidence suggests that NETs can modulate 
cellular functions at the genetic level, for instance, by regulating the 
expression of long non-coding RNAs like NEAT1, which has been 
shown to influence signaling pathways that could similarly impact 
BBB integrity in pathological contexts (39). This combined enzymatic 
and cytotoxic assault creates breaches in the neurovascular barrier, 

leading to vasogenic edema and facilitating the influx of more 
inflammatory cells into the delicate brain parenchyma.

Finally, NETs perpetuate a vicious cycle of neuroinflammation. 
The DNA and histone components of NETs function as DAMPs 
themselves, activating resident brain immune cells like microglia and 
astrocytes (1). This activation triggers a secondary wave of cytokine 
and chemokine production, which serves to recruit even more 
neutrophils to the site of injury. Interestingly, the systemic 
inflammatory state of the host can profoundly influence this local 
response. For example, studies on remote organ injury have shown 
that a systemic insult like a burn can paradoxically suppress the 
recruitment of neutrophils and Subsequent NETosis in the lungs by 
altering chemokine levels such as CCL2 and CCL3 (40). This principle 
suggests that the degree of NET-driven neuroinflammation in stroke 
may not only be dictated by the local brain injury but also modulated 
by a patient’s pre-existing systemic inflammatory status. In this role, 
NETs act as a crucial mechanistic bridge, converting the initial acute 
ischemic injury into a sustained, amplified, and highly destructive 
state of chronic neuroinflammation that drives secondary brain 
damage (Figure 1).

5 NETs in other diseases

5.1 Infectious diseases

The role of neutrophil extracellular traps (NETs) in infectious 
diseases has garnered significant attention (41). Fonseca et al. (42) 
demonstrated that pathogenic Entamoeba histolytica induces NET 
formation in neutrophils, whereas non-pathogenic E. dispar does not. 
Additionally, Bystrzycka’s (43) study revealed that antibiotics such as 
clindamycin and amoxicillin impair NET formation, thereby 
compromising neutrophil antimicrobial function.

In cutaneous immunity, Stephan’s (44) research showed that NETs 
drive inflammatory responses in autoimmune skin diseases while 
contributing to host defense against pathogens. Similarly, Li’s (45) 
study investigating gouty arthritis identified NETs’ antibacterial 
properties as potential therapeutic targets. In COVID-19 patients, de 
Souza Andrade et al.’s (46) work demonstrated that resveratrol inhibits 
NET generation in severe cases, suggesting anti-inflammatory 
benefits. Meier’s (47) study further found that propofol suppresses 
NET formation in human neutrophils, potentially improving sepsis 
outcomes in ICU patients. Regarding chronic diseases, Kim and 
Jenne’s (48) research highlighted platelets’ critical role in immunity, 
pathogen clearance, leukocyte recruitment, and NET induction. 
Zucoloto’s (49) work elucidated platelet–neutrophil interactions, 
particularly in NET-driven coagulation. For specific infection models, 
Yost’s (50) study proposed nNIF (neonatal NET inhibitory factor), 
which reduces inflammation and improves outcomes by inhibiting 
NET formation. Datla et al.’s (51) development of a novel NET array 
device enabled single-cell NET quantification in infection 
and inflammation.

Mechanistically, Neubert et al.’s (52) study showed that blue and 
UVA light induce NET formation via ROS generation in human 
neutrophils. Nakayama (53) work revealed that tunicamycin induces 
NET-like structures in cultured myeloid cells, aiding NETosis research.

Clinically, Czerwińska et al. (54) study found elevated serum levels 
of NE-DNA, MPO-DNA, cit H3, and DNase I  in psoriatic patients 
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compared to healthy volunteers. Li et al. (55) research explored FPR1 
(formyl peptide receptor 1), a NET-associated gene, for its prognostic 
and biological significance in osteosarcoma. Finally, Khan et al.’s (56) 
work linked cystic fibrosis-related CFTR gene defects to chronic 
neutrophil infiltration, airway damage, and increased mortality.

5.2 Cardiovascular diseases

The role of neutrophil extracellular traps (NETs) in cardiovascular 
diseases has garnered significant attention. Tang et al.’s (57) study 
investigated the roles of NETs in heart failure, pulmonary arterial 
hypertension, atrial fibrillation, and ischemia–reperfusion injury, 
revealing associations between these diseases and NETs while also 
proposing potential therapeutic avenues. Furthermore, Shirakawa and 
Sano’s (58) review highlighted that anti-inflammatory therapies 
improve cardiovascular disease outcomes, as neutrophils and their 
released NETs are implicated in the pathogenesis of these conditions. 
Collectively, these findings underscore NETs’ dual roles in driving 
pathological progression and offering therapeutic targets for 
cardiovascular diseases.

6 Diagnostic and therapeutic potential

6.1 NETs as biomarkers

In studies investigating neutrophil extracellular traps (NETs) as 
biomarkers, Baumann et al. (7) demonstrated that circulating NET 
markers reflect thrombotic composition, aiding in stroke diagnosis 
and therapeutic strategy development. Xu et  al. (34) review 
comprehensively analyzed NET biomarkers’ roles in thrombosis and 
their clinical implications across diverse diseases, while exploring 
their therapeutic potential. Additionally, Cheng et  al.’s (59) study 
identified human neutrophil peptides 1–3 (HNPs) as integral 
components of NET complexes, with dysfunction linked to 
lupus nephritis.

In genetic profiling, Zhang et al.’s (11) study utilized the GSE32472 
dataset and machine learning to identify NET-associated genes and 
biomarkers, emphasizing their diagnostic significance. Abaricia et al. 
(60) research revealed that neutrophils form more NETs on stiffer 
PDMS substrates, with fibronectin coating enhancing this effect.

Cichon et al.’s (61) study demonstrated that copper ions modulate 
NET formation during endotoxemia, while ATP7 mutations reduce 
NET release in murine models. Fonseca et al.’s (62) work showed that 
Entamoeba histolytica-induced amoebiasis triggers NET formation in 
infected neutrophils. Moonen et al.’s (63) comparison between oral 
polymorphonuclear neutrophils (oPMNs) and classical PMNs 
(cPMNs) revealed that oPMNs maintain oral health via chemotaxis, 
phagocytosis, and NET formation.

Finally, Gkantzios et al. (64) study proposed neutrophil-to-HDL 
ratio (NHR) and monocyte-to-HDL ratio (MHR) as promising 
ischemic stroke prognosis biomarkers due to their anti-inflammatory 
effects and cost-effectiveness. Collectively, these findings underscore 
NETs’ broad applicability as biomarkers in stroke and other diseases.

6.2 Therapeutic strategies targeting NETs

Recent advances in targeting neutrophil extracellular traps (NETs) 
have revealed multiple promising therapeutic avenues. In 2024, Wang 
et al. (65) demonstrated that astrocyte-derived extracellular vesicles 
(ADEVs) exhibit therapeutic potential in ischemic stroke recovery, 
highlighting a novel strategy to modulate intercellular communication 
for improved stroke outcomes. Similarly, Yan et  al.’s (66) study 

FIGURE 1

The mechanistic landscape of neutrophil extracellular traps (NETs) in 
ischemic stroke. (A) Upstream triggers: The ischemic 
microenvironment initiates NETosis through three primary stimuli. (1) 
Hypoxia/reperfusion injury leads to a burst of reactive oxygen 
species (ROS). (2) Tissue injury results in the release of damage-
associated molecular patterns (DAMPs), such as high-mobility group 
box 1 (HMGB1). (3) Platelet activation promotes direct neutrophil–
platelet interactions. These signals converge to activate neutrophils. 
(B) Intracellular machinery: Activated neutrophils form NETs via two 
main pathways. (1) The classical lytic pathway is NADPH oxidase-
dependent, where ROS production leads to the release of granular 
enzymes (e.g., MPO AND NE) that process chromatin, culminating in 
cell lysis and NET release. (2) The PAD4-dependent pathway involves 
the nuclear enzyme peptidyl arginine deiminase 4 (PAD4), which 
citrullinates histones, leading to chromatin decondensation and the 
release of NETs, often through a non-lytic mechanism. 
(C) Downstream pathological effects: Once released, NETs 
exacerbate cerebral injury through three major mechanisms. (1) 
Pro-thrombotic effects: The DNA scaffold of NETs traps platelets and 
red blood cells, while its components activate coagulation, leading 
to larger, more stable thrombi that are resistant to thrombolysis. (2) 
Blood–brain barrier (BBB) disruption: NET-associated proteases (e.g., 
NE) degrade tight junction proteins, and histones exert direct 
cytotoxicity on endothelial cells, increasing BBB permeability. (3) 
Neuroinflammation amplification: NETs act as DAMPs to activate 
microglia and astrocytes, triggering a pro-inflammatory cytokine 
storm that recruits more neutrophils, thus perpetuating a vicious 
cycle of inflammation and secondary brain damage.
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identified microglia-derived extracellular vesicles (M-EVs) as 
promising candidates for ischemic stroke treatment, further 
expanding the therapeutic landscape of extracellular vesicles in 
neurovascular diseases.

Luo et al.’s (67) review emphasized the transformative potential of 
extracellular vesicles (EVs) in drug delivery and immunotherapy, 
particularly when engineered to enhance targeting specificity. This 
concept was corroborated by Li et  al.’s (68) findings, which 
demonstrated that EVs can traverse the BBB, offering a novel 
mechanism to improve neurological outcomes in ischemic stroke.

Regarding NETs formation mechanisms, Martinez et  al. (69) 
proposed novel tetrahydroisoquinoline inhibitors in 2017 to study 
NETosis and develop therapies for related diseases. Building on this, 
Ivey (70) study revealed that chloroquine and its derivatives reduce 
NET formation by inhibiting PAD4 and autophagy, providing a new 
avenue for anti-infective therapies.

In clinical applications, Peña-Martínez et  al.’s (12) research 
indicated that DNase-I lacks efficacy in dissolving fibrin-rich thrombi, 
underscoring the need for precise NET-targeted strategies. Ngo and 
Gollomp’s (71) study cautioned that excessive NET release may cause 
microvascular damage, necessitating cautious immunomodulatory 
approaches. Santocki and Kolaczkowska’s (72) work stressed the 
importance of understanding NET clearance mechanisms, as NETs 
not only trap pathogens but also contribute to diverse pathologies. 
Janssen et al.’s (73) review explored microbial evasion strategies against 
NETs, revealing insights into bacterial pathogenesis and inspiring 
novel antimicrobial therapies.

Concurrently, Zhu et  al. (74) study highlighted extracellular 
vesicles (30–100 nm) as critical mediators of intercellular 
communication with therapeutic potential for stroke. Deng et al.’s (75) 
research combined electroacupuncture with human-induced 
pluripotent stem cell-derived EVs (iPSC-EVs), showing synergistic 
effects in modulating immune responses and the IL-33/ST2 axis to 
improve neurofunctional recovery.

Ortmann et al.’s (76) study in endotoxemia models demonstrated 
that neutrophil-derived EVs predominantly influence vascular 
interactions, deepening the understanding of EV-NET interplay. 
Huang et al.’s (77) research linked NETs to venous thromboembolism 
(VTE) in colorectal cancer, identifying elevated fibrinolytic activity 
and key protein overexpression as potential therapeutic targets. 
Finally, Jarzebska et al.’s (78) proposal suggested apheresis-based NET 
depletion as a viable strategy for age-related pathological changes, 
emphasizing the translational potential of NET-targeted therapies 
(Table 1).

7 Research trends and future 
directions

In the study of neutrophil extracellular traps (NETs) in ischemic 
stroke, Xu et al. (3) bibliometric analysis in 2025 revealed emerging 
trends and critical research gaps. Studies indicate that China and the 
United States lead in this field, reflecting global prioritization of NETs’ 
role in ischemic stroke pathophysiology.

TABLE 1  Summary of key therapeutic strategies targeting or modulating NETs.

Strategy category Target/mechanism of 
action

Example agent/method Key findings and 
nuances

References

1. Inhibiting NET 

formation

Inhibition of peptidylarginine 

deiminase 4 (PAD4), a key 

enzyme for chromatin 

decondensation

Chloroquine and derivatives

Reduces NET formation by 

inhibiting both PAD4 and 

autophagy.

Martinez et al. (69)

Inhibition of upstream NETosis 

signaling pathways
Tetrahydroisoquinolines

Proposed as novel chemical 

probes to study NETosis and 

develop new therapies.

Li et al. (68)

2. Degrading existing 

NETs
DNA backbone of NETs DNase-I

The classical method for NET 

degradation. However, 

studies show limited efficacy 

in dissolving fibrin-rich 

thrombi, highlighting the 

limitation of monotherapy.

Peña-Martínez et al.(12)

3. Physical removal of 

NETs
Circulating NET components Therapeutic apheresis

Proposed as an 

extracorporeal strategy to 

clear circulating NETs, 

particularly for age-related 

pathologies.

Huang et al. (77)

4. EV-based indirect 

modulation

Neuroprotection and 

immunomodulation via 

intercellular communication

Astrocyte/microglia-derived 

extracellular vesicles (EVs)

Can cross the blood–brain 

barrier to modulate immune 

responses and improve 

neurofunctional recovery, 

representing a novel 

therapeutic platform.

Gkantzios et al.(64); Wang 

et al. (65); Luo et al.(67)

https://doi.org/10.3389/fneur.2025.1641985
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


He et al.� 10.3389/fneur.2025.1641985

Frontiers in Neurology 07 frontiersin.org

8 Related research highlights

Extensive investigations have explored NETs’ involvement in 
ischemic stroke. Kim et al.’s (79) study demonstrated that NETs and 
high-mobility group box 1 (HMGB1) drive inflammatory cascades 
during ischemic injury. Hirsch et al. (80) further linked extracellular 
vesicles (EVs) to neuroinflammation and microvascular dysfunction, 
suggesting their dual role in ischemic and hemorrhagic 
stroke progression.

Therapeutic advancements include Huang et al.’s findings that 
edaravone dexborneol mitigates NETs-mediated BBB disruption in 
acute ischemic stroke (AIS) (10). Astuti et  al. (81) identified 
antioxidants like MonoHER as inhibitors of ROS-dependent NETosis, 
protecting endothelial cells from histone toxicity.

Beyond stroke, NETs’ implications span diverse pathologies. 
Heeringa et al. (82) linked anti-neutrophil cytoplasmic antibody 
(ANCA)-associated vasculitis to excessive NET release during 
active disease. Mauracher et al. (83) uncovered distinct neutrophil 
subsets (high-density vs. low-density) in lung cancer, with 
low-density neutrophils exhibiting heightened activation. 
Mechanistically, Soltani et al. (84) elucidated factor XIII-A’s role 
in NET-fibrin crosslinking, revealing novel therapeutic 
targets (84).

Stem cell-based interventions also emerged: Astuti et al.’s (81) 
study demonstrated that bone marrow mesenchymal stem cells 
(MSCs) suppress neutrophil ROS/MPO activity, promoting tissue 
repair (85). In pediatric oncology, Chen Cheng (2025) developed 
a NETRG-based prognostic model for acute lymphoblastic 
leukemia (ALL), identifying key survival-associated genes (86). 
Soongsathitanon et al. (87) further identified 35 differentially 
expressed proteins in diabetic neutrophils, correlating with 
glycemic control status.

Notably, Kernien et al. (88) discovered that Candida albicans 
biofilms consistently inhibit NET release, highlighting pathogen-
immune evasion mechanisms. Collectively, these studies elucidate 
NETs’ multifaceted roles across diseases and provide critical 
insights for targeted therapeutic strategies.

9 Conclusion and future perspectives

This review has systematically elucidated the multifaceted roles 
of NETs in the pathophysiology of ischemic stroke, establishing 
their central position as a key pathological nexus linking innate 
immunity, thrombosis, and neurovascular unit injury. Substantial 
evidence substantiates that within the critical context of the acute 
phase of stroke and subsequent recanalization injury, the excessive 
formation of NETs not only exacerbates thrombus burden but also 
mediates resistance to thrombolysis, a clinical challenge 
highlighted by recent studies (5, 33). Concurrently, NETs drive the 
cascade of secondary brain injury by disrupting the BBB and 
amplifying neuroinflammation (1, 89). This central role solidifies 
NETs as one of the most promising, albeit complex, therapeutic 
targets in modern stroke research.

While this detrimental role of NETs in acute stroke is now 
well-established, our understanding is far from complete, 
presenting critical questions that must guide future investigation. 
A primary controversy is the potential “double-edged sword” 

nature of NETs. The literature overwhelmingly focuses on their 
acute, destructive functions, yet it remains plausible that NETs 
serve reparative roles in the subacute and chronic phases of 
recovery, perhaps by containing the lesion or modulating glial scar 
formation (19). Another fundamental question concerns NET 
heterogeneity. It is conceivable that NETs triggered by different 
stimuli, such as reactive oxygen species versus direct platelet 
interactions, possess distinct molecular compositions and 
functional capacities, leading to the existence of more 
pro-thrombotic or pro-inflammatory subtypes. This complexity 
extends to interactions with the broader neurovascular unit. For 
instance, a critical unanswered question is whether NET 
components modulate the phenotypic polarization of other key 
cells, such as astrocytes, which play a dynamic role in BBB integrity 
throughout stroke recovery (90).

Resolving these questions will require a shift toward deeper 
molecular investigation. A promising avenue is to link NET activity 
to the dysregulation of critical homeostatic signaling pathways, 
such as the Wnt/β-catenin cascade, which is essential for BBB 
maintenance and is known to be  suppressed post-stroke (91). 
Furthermore, the field must aspire to a higher standard of 
molecular precision. The work by Feng et al. (92), which utilized 
an exogenous toxin to map the selective degradation of specific 
BBB proteins like ZO-1 and collagen IV, provides a compelling 
methodological paradigm. Future research should similarly 
leverage advanced proteomic techniques to identify the specific 
substrates of NET-associated proteases within the BBB, moving 
beyond phenomenology to precise molecular mechanisms.

Ultimately, translating these preclinical findings into effective 
clinical therapies presents significant, though not insurmountable, 
challenges. The first is achieving targeting specificity and safety, as 
systemic inhibition of NETs carries a risk of compromising innate 
immunity (12, 71). Second is the definition of the optimal 
therapeutic window, balancing acute intervention with the 
potential need to preserve long-term reparative functions. The 
third and most immediate challenge is the development of robust 
clinical diagnostics to rapidly quantify a patient’s NET burden, 
which could stratify those at highest risk for complications like 
thrombolysis resistance or those with comorbidities known to 
prime neutrophils (7, 34).

In conclusion, targeting neutrophil extracellular traps opens a new 
and highly promising therapeutic dimension for ischemic stroke. The 
scientific narrative is shifting from merely identifying their presence 
to understanding their central, integrative role. The path forward 
requires moving beyond asking whether to target NETs, to 
determining how to precisely modulate these complex and often 
paradoxical processes. By addressing the fundamental questions of 
their temporal dynamics and functional heterogeneity, and by 
overcoming the challenges of targeted delivery and clinical diagnostics, 
we can hope to harness the full therapeutic potential of modulating 
NETs to meaningfully improve outcomes for stroke patients worldwide.
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