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integrating intracranial artery 
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Objective: To investigate whether intracranial artery calcification (IAC) serves as 
a reliable imaging predictor of mechanical thrombectomy (MT) outcomes and 
to develop robust machine learning (ML) models incorporating preoperative 
emergency data to predict outcomes in patients with acute ischemic stroke 
(AIS).

Methods: This retrospective study included patients with AIS and anterior 
circulation occlusion who underwent MT at the Second Affiliated Hospital 
of Dalian Medical University and the Central Hospital Affiliated to Dalian 
University of Technology between January 2017 and December 2024. Patients 
were categorized into favorable [modified Rankin Scale (mRS) 0–2] and poor 
outcome (mRS 3–6) groups based on their 90-day functional independence. 
Preoperative clinical and radiological data, including a quantitative assessment 
of IAC, were systematically collected. Eleven ML algorithms were trained and 
validated using Python, and external validation and performance evaluations 
were conducted. The Shapley additive explanation (SHAP) method was used to 
interpret the optimal model.

Results: A total of 823 eligible patients were enrolled and stratified into training 
(n = 437), internal validation (n = 188), and external testing (n = 198) cohorts. 
The Extra Trees model demonstrated the highest predictive accuracy. The top 
three predictors were a history of hypertension, serum albumin level, and total 
calcified volume.

Conclusion: The total volume of IAC is a critical imaging biomarker for 
predicting MT outcomes in patients with anterior circulation AIS. The ML models 
developed using preoperative emergency data demonstrated strong predictive 
performance, providing a valuable tool to help clinicians identify suitable MT 
candidates with greater precision.
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1 Introduction

With advancements in neurointerventional techniques–
particularly after the publication of five large randomized controlled 
trials in the New England Journal of Medicine in 2015–mechanical 
thrombectomy (MT) has become the standard treatment for acute-
phase anterior circulation acute ischemic stroke (AIS) (1–5). However, 
meta-analyses show that only 46% of patients achieve favorable 
outcomes, with a significant proportion of patients still experiencing 
poor outcomes or death (6). This underscores the urgent need for 
reliable predictive models to identify appropriate candidates for 
MT. Several traditional scoring systems have been developed using 
logistic regression to predict MT outcomes. These include: The 
Pittsburgh Response to Endovascular therapy (PRE) score (7), which 
considers age, National Institutes of Health Stroke Scale (NIHSS), and 
Alberta Stroke Program Early CT Score (ASPECTS); The Stroke 
Prognostication using Age and NIH Stroke Scale (SPAN) score (8), 
based on age and NIHSS; The Totaled Health Risks in Vascular Events 
(THRIVE) score (9), which includes age, NIHSS, and chronic 
comorbidities; and The Houston Intra-Arterial Therapy (HIAT) score 
(10), which incorporates age, NIHSS, and admission blood glucose, 
and its updated version, HIAT2 (11), which also includes 
ASPECTS. The area under the receiver operating characteristic (ROC) 
curve for these scores ranges from 0.56 to 0.79, highlighting the need 
for improved predictive accuracy.

Machine learning (ML) enables high-precision analysis of large 
clinical datasets using artificial intelligence algorithms. A recent meta-
analysis of MT outcome prediction models found that machine 
learning-based models generally outperform traditional models in 
predicting the outcomes of neurointerventional procedures, while 
emphasizing the importance of external validation for model 
generalizability. However, existing machine learning models for 
predicting MT outcomes are predominantly based on post-procedural 
clinical data (12–14). Only a limited number of studies have 
incorporated only preprocedural clinical data and the simple imaging 
score ASPECTS, generally overlooking the key imaging features of 
arterial calcified plaques (15). Intracranial artery calcification (IAC), 
a common imaging finding on non-contrast cranial computed 
tomography (CT), is closely associated with atherosclerotic plaques 
and potentially exerts a more direct impact on MT outcomes (16). 
Although previous studies have explored the association between IAC 
and MT outcomes, their conclusions have shown significant 
discrepancies (17, 18). Therefore, we  conducted a comprehensive 
quantitative assessment of IAC and evaluated its potential as an 
imaging biomarker for MT prognosis. Additionally, we  aimed to 
develop machine learning models using emergency preprocedural 
data to aid in the precise identification of AIS patients most likely to 
benefit from MT.

2 Methods

2.1 Data source

We retrospectively enrolled patients with anterior circulation AIS 
who underwent MT at the Second Affiliated Hospital of Dalian 
Medical University and the Central Hospital Affiliated to Dalian 
University of Technology between January 2017 and December 2024. 

This study received ethical approval from the Institutional Ethics 
Committee (approval number: KY2025-014-01), with a waiver of 
informed consent granted due to the retrospective nature of the study.

2.1.1 Inclusion and exclusion criteria
Inclusion criteria: (1) Age ≥18 years; (2) Availability of baseline 

non-contrast cranial computed tomography (CT) scans; (3) Signed 
informed consent for MT treatment of anterior circulation occlusion. 
Exclusion criteria: (1) severe cardiopulmonary or renal dysfunction, 
(2) incomplete follow-up data, (3) poor-quality cranial CT images, 
and (4) pre-stroke modified Rankin Scale (mRS) score >2.

2.2 Data collection

Demographic information, preoperative emergency clinical 
parameters, and baseline non-contrast CT scans were systematically 
collected. Clinical variables included medical history of hypertension, 
diabetes mellitus, coronary artery disease, atrial fibrillation, previous 
stroke history, smoking, alcohol consumption, tumor, intravenous 
thrombolysis, advanced imaging, laterality of the occluded vessel, 
NIHSS score, activated partial thromboplastin time, prothrombin 
time, international normalized ratio, fibrinogen, thrombin time, white 
blood cell count, neutrophil count, lymphocyte count, neutrophil-to-
lymphocyte ratio, red blood cell count, hemoglobin, platelet, urea, 
creatinine, blood glucose, and albumin. Functional outcomes were 
assessed via telephone follow-up at 90 days post-stroke using the mRS, 
evaluated by a neurologist blinded to clinical data. Patients were 
classified into favorable (mRS 0–2) and poor (mRS 3–6) 
outcome groups.

2.3 IAC quantification

All pre-MT CT scans were acquired using Siemens 64-slice CT 
scanners (120 kV, 260 mAs, 5 mm slice thickness, and coverage 
from the external auditory meatus to the cranial vertex). 
Calcifications were defined as hyperdense lesions ≥130 Hounsfield 
Units (HU) spanning ≥2 contiguous voxels. IAC quantification 
referred to the previously described and validated methods (19, 20). 
Two experienced neurologists with over 10 years of expertise in 
neurointervention independently used ITK-SNAP software to set a 
CT value threshold of 130 Hounsfield Units (HU) to delineate 
regions of interest (ROIs)–specifically, IAC lesions, layer-by-layer 
on non-contrast brain CT images, without access to any patient 
data (Figure 1). If the volume difference between the two evaluators’ 
ROI exceeded 10 mm3, the evaluators reviewed the ROIs 
collaboratively, discussed discrepancies, and independently 
re-delineated the ROIs until the difference was within 10 mm3, 
ensuring accuracy. The final ROIs were confirmed by a senior chief 
physician with over 20 years of experience in neurointervention 
and quantitatively assessed using ITK-SNAP software. Prior to 
image evaluation, standardized training was conducted by two 
neurologists with more than 10 years of neurointerventional 
experience. Fifty cranial CT images were independently delineated, 
and inter-rater consistency was evaluated using the intraclass 
correlation coefficient (ICC). An ICC > 0.75 indicated excellent 
consistency. At the end of training, the ICC between the two 
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evaluators was 0.92 (Supplementary Table 1). The delineated vessels 
included the internal carotid, middle cerebral, vertebral, and basilar 
arteries. Measurement indicators included the presence of 
calcification, total calcified volume (TCV), ipsilateral culprit-vessel 
calcified volume (ICV), calcified vessel count, and calcification 
pattern. Due to the highly skewed distribution of volumes and the 
inclusion of patients with zero calcification, a logarithmic 
transformation was applied to TCV and ICV, expressed as 
ln(volume + 1), with units in cubic millimeters. The classification 
system proposed by Kockelkoren et al. was adopted to evaluate 
internal carotid artery calcification patterns (21).

2.4 Machine learning model development 
and validation

Variables with <10% missing data were included in the analysis. 
Given this low proportion, missing values were imputed using the 

mean or median of the training set, depending on the data type. The 
Central Hospital cohort (n = 625) was randomly divided into training 
(70%, n = 437) and internal validation (30%, n = 188) sets. The cohort 
from the Second Affiliated Hospital (n = 198) served as the external 
test set. Feature selection was performed using least absolute 
shrinkage and selection operator (LASSO) regression. 5-fold cross-
validation was conducted on the training set, and a random search 
method was employed for hyperparameter tuning. Eleven machine 
learning algorithms were trained using Python 3.8 and Scikit-learn: 
Support Vector Machine (SVM), Random Forest, Extra Trees, 
Extreme Gradient Boosting (XGBoost), LightGBM, Naive Bayes, 
Adaptive Boosting (AdaBoost), Gradient Boosting, Logistic 
Regression (LR), Multilayer Perceptron (MLP), and Decision Tree. 
Internal and external validations were performed, and model 
performance was evaluated using the area under the ROC curve 
(AUC) and decision curve analysis (DCA). The optimal model was 
selected through a holistic assessment of multiple performance 
metrics, including AUC, accuracy, sensitivity, and specificity, with 

FIGURE 1

Schematic diagram of intracranial artery calcification segmentation (A–D) internal carotid artery, middle cerebral artery, vertebral artery, and basilar 
artery; blue indicates CT values below the 130 HU threshold defined by ITK-SNAP software.
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statistical comparisons conducted via DeLong’s test. Model 
interpretability was further enhanced using Shapley Additive 
Explanations (SHAP).

2.5 Statistical analysis

All statistical analyses were conducted using Python 3.8. 
Normality was assessed using the Kolmogorov–Smirnov test. 
Continuous variables are presented as mean±SD (for normally 
distributed data) or median [interquartile range] (for non-normally 
distributed data). Categorical variables are expressed as frequencies 
(percentages).

3 Results

3.1 Baseline characteristics

A total of 823 patients with anterior circulation MT who met 
inclusion and exclusion criteria were enrolled. Of these, 276 (33.54%) 
were classified into the favorable outcome group and 547 (66.46%) 
into the poor outcome group. The cohort was stratified into training 
(n = 437), internal validation (n = 188), and external testing (n = 198) 
sets. Thirty-seven variables were included in the analysis; baseline 
characteristics are summarized in Table 1.

3.2 Machine learning model performance

LASSO regression with 10-fold cross-validation for regularization 
parameter tuning selected ten features for model development 
(Figure 2). Figure 3 presents ROC curves for the training and internal 
validation sets across the 11 machine learning models. Table  2 
summarizes the AUC, accuracy, sensitivity, and specificity of each 
model in both sets. DCA indicated a substantial net clinical benefit 
across a broad threshold probability range, demonstrating strong 
clinical utility (Figure 4).

3.3 Model interpretation

The Extra Trees model was identified as the optimal model 
through a comprehensive evaluation that integrated statistical 
comparison of AUC via DeLong’s test, alongside assessments of 
accuracy, sensitivity, and specificity (Supplementary Figures 1, 2). 
This model achieved an AUC of 0.89  in the training set, with an 
accuracy of 0.81, 0.82, and 0.80, respectively. In the internal validation 
set, it achieved an AUC of 0.85, with an accuracy of 0.80, sensitivity 
of 0.79, and specificity of 0.81. SHAP analysis illustrated the 
directional contribution of each predictor. Figure 5 displays SHAP 
values for the ten predictors ranked by the mean absolute 
contribution. Feature values (blue = low, red = high) indicate the 
direction of impact on prediction outcomes. The three most 
influential predictors were history of hypertension, serum albumin 
level, and TCV, followed by age, creatinine, admission blood glucose, 
platelet count, NIHSS, neutrophil-to-lymphocyte ratio, and onset-to-
door time.

3.4 External validation

Figure 6 shows the ROC and decision curves for the external test 
set across the 11 models. The AUC, accuracy, sensitivity, and specificity 
values for the different models are summarized in 
Supplementary Table 2. For the external test set, the optimal model 
based on Extra Trees achieved an AUC of 0.82 (95% confidence 
interval: 0.76–0.88), with accuracies of 0.70, 0.85, and 0.64. These 
results confirmed the model’s strong predictive and generalization 
capabilities. DCA demonstrated a substantial net clinical benefit of 
using the model to guide MT decisions across a broad range of 
threshold probabilities, indicating high clinical applicability.

4 Discussion

The machine learning models developed and validated in this 
study, based on preoperative clinical data and imaging features of 
arterial calcification, demonstrated strong predictive performance. To 
our knowledge, this is the first study to incorporate preoperative 
emergency data–including IAC–into machine learning frameworks to 
predict MT outcomes. By limiting feature selection to preoperative 
data, the models maximized clinical applicability and provided 
actionable guidance for emergency physicians in making personalized 
diagnostic and therapeutic decisions.

Among the 11 machine learning models constructed, the Extra 
Trees model demonstrated superior predictive performance, achieving 
AUC values exceeding 0.8 across the training, internal validation, and 
external test sets. The primary advantage of machine learning models 
over traditional logistic regression lies in their ability to automatically 
capture nonlinear relationships and feature interactions, thereby 
reducing collinearity effects and exhibiting stronger predictive 
capabilities in high-dimensional data (22). The Extra Trees algorithm 
employs ensemble learning with decision trees, balancing performance 
and efficiency in binary classification tasks through dual randomness–
random feature selection and random split points–making them 
particularly more suited for handling high-dimensional noise and 
interaction effects in complex medical data (23). To enhance 
interpretability, the SHAP method was used to explain the model 
results and demonstrate feature importance rankings. The three most 
critical predictors were a history of hypertension, serum albumin 
level, and TCV, followed by age, creatinine level, admission blood 
glucose level, platelet count, NIHSS score, neutrophil-to-lymphocyte 
ratio, and onset-to-admission time. Among these, age and NIHSS 
score were commonly included in previous scoring systems, while 
emergency admission blood glucose aligned with the HIAT score 
metrics. Both the HIAT2 score and the machine learning model 
constructed by Nishi et al. (15) included only the simplified semi-
quantitative imaging indicator ASPECTS, without incorporating 
advanced neuroimaging features. The results of this study suggest that 
TCV evaluation of IAC is a more suitable imaging predictor than 
ASPECTS. Hypertension, a traditional risk factor for cerebrovascular 
disease, may influence MT outcomes through multiple mechanisms 
(24). Prolonged, uncontrolled preoperative hypertension can 
exacerbate atherosclerosis, increase vascular tortuosity and thrombus 
burden, and thereby hinder the passage of thrombectomy devices and 
prolong procedural times. Intraoperative and postoperative 
hypertension may trigger cerebral hyperperfusion syndrome, leading 
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TABLE 1 Baseline characteristics of patients in the training set, internal validation set, and external test set.

Variables Total (n = 823) Train set (n = 437) Validation set (n = 188) Test set (n = 198)

Age, M (Q₁, Q₃) 71.00 (64.00, 78.00) 71.00 (64.00, 77.00) 70.00 (64.00, 78.00) 72.00 (65.00, 79.00)

Men, n (%) 527 (64.03) 278 (63.62) 129 (68.62) 120 (60.61)

Hypertension, n (%) 514 (62.45) 264 (60.41) 114 (60.64) 136 (68.69)

Diabetes, n (%) 206 (25.03) 107 (24.49) 45 (23.94) 54 (27.27)

Atrial fibrillation, n (%) 386 (46.90) 197 (45.08) 87 (46.28) 102 (51.52)

Coronary heart disease, n (%) 139 (16.89) 76 (17.39) 24 (12.77) 39 (19.70)

Previous stroke history, n (%) 115 (13.97) 53 (12.13) 25 (13.30) 37 (18.69)

Smoking, n (%) 317 (38.52) 165 (37.76) 74 (39.36) 78 (39.39)

Alcohol, n (%) 216 (26.25) 104 (23.80) 44 (23.40) 68 (34.34)

Tumor, n (%) 65 (7.90) 27 (6.18) 11 (5.85) 27 (13.64)

Intravenous thrombolysis, n (%) 354 (43.01) 180 (41.19) 88 (46.81) 86 (43.43)

Advanced imaging, n (%) 354 (43.01) 226 (51.72) 94 (50.00) 34 (17.17)

Left occlusion, n (%) 398 (48.36) 210 (48.05) 88 (46.81) 100 (50.51)

NIHSS, M (Q₁, Q₃) 16.00 (13.00, 20.00) 16.00 (13.00, 21.00) 17.00 (14.00, 22.00) 15.00 (13.00, 19.00)

APTT, M (Q₁, Q₃) 33.10 (30.60, 36.15) 33.10 (30.30, 36.50) 33.10 (30.48, 36.45) 33.05 (30.90, 35.48)

Prothrombin time, M (Q₁, Q₃) 13.30 (12.70, 14.00) 13.30 (12.60, 14.00) 13.30 (12.60, 14.20) 13.30 (12.80, 13.80)

International normalized ratio, M (Q₁, Q₃) 1.03 (0.99, 1.10) 1.03 (1.00, 1.12) 1.03 (1.01, 1.12) 1.02 (0.96, 1.06)

Fibrinogen, M (Q₁, Q₃) 3.20 (2.74, 3.73) 3.20 (2.71, 3.63) 3.20 (2.73, 3.64) 3.33 (2.84, 4.04)

Thrombin time, M (Q₁, Q₃) 17.60 (16.90, 18.60) 17.60 (16.90, 18.80) 17.60 (16.98, 18.83) 17.30 (16.70, 17.90)

White blood cell, M (Q₁, Q₃) 7.75 (6.27, 9.47) 7.75 (6.36, 9.51) 7.75 (6.60, 9.52) 7.44 (5.96, 9.13)

Neutrophil, M (Q₁, Q₃) 5.15 (3.85, 6.88) 5.15 (3.93, 6.82) 5.18 (4.00, 7.17) 4.79 (3.54, 6.57)

Lymphocyte, M (Q₁, Q₃) 1.63 (1.15, 2.20) 1.63 (1.15, 2.20) 1.63 (1.05, 2.13) 1.67 (1.19, 2.31)

Neutrophil lymphocyte ratio, M (Q₁, Q₃) 3.04 (2.01, 5.09) 3.04 (2.05, 5.07) 3.11 (2.21, 5.53) 2.65 (1.73, 4.80)

Red blood cell, M (Q₁, Q₃) 4.58 (4.24, 4.91) 4.58 (4.30, 4.92) 4.58 (4.26, 4.88) 4.56 (4.08, 4.88)

Hemoglobin, M (Q₁, Q₃) 142.00 (130.00, 153.00) 142.00 (133.00, 154.00) 141.50 (132.00, 151.00) 142.00 (126.25, 151.00)

Platelet, M (Q₁, Q₃) 189.00 (161.00, 221.50) 189.00 (163.00, 221.00) 189.00 (165.00, 224.75) 184.50 (153.25, 218.75)

Urea, M (Q₁, Q₃) 6.40 (5.40, 7.67) 6.40 (5.49, 7.70) 6.40 (5.59, 7.82) 6.40 (5.20, 7.35)

Creatinine, M (Q₁, Q₃) 68.00 (57.40, 81.05) 68.00 (57.00, 80.00) 68.00 (57.75, 81.00) 69.20 (59.37, 85.30)

Admission blood glucose, M (Q₁, Q₃) 7.40 (6.60, 8.91) 7.40 (6.49, 9.30) 7.40 (6.67, 9.29) 7.40 (6.77, 8.32)

Albumin, M (Q₁, Q₃) 41.60 (39.40, 43.75) 41.60 (40.00, 44.00) 41.60 (40.35, 44.10) 40.35 (38.32, 42.98)

Onset to door time, M (Q₁, Q₃) 135.00 (60.00, 240.00) 165.00 (60.00, 275.00) 165.00 (90.00, 270.00) 89.50 (53.50, 191.50)

ASPECTS, M (Q₁, Q₃) 9.00 (7.00, 10.00) 8.00 (7.00, 9.00) 8.00 (7.00, 10.00) 9.00 (8.00, 10.00)

Calcified vessel count, M (Q₁, Q₃) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00)

In(ICV + 1), M (Q₁, Q₃) 3.74 (0.00, 4.81) 3.81 (1.50, 4.91) 3.87 (1.75, 4.84) 3.39 (0.00, 4.47)

In(TCV + 1), M (Q₁, Q₃) 4.62 (3.38, 5.54) 4.72 (3.45, 5.62) 4.84 (3.42, 5.68) 4.33 (3.25, 5.16)

Calcification, n (%) 706 (85.78) 375 (85.81) 166 (88.30) 165 (83.33)

90-day mRS score 0–2, n (%) 276 (33.54) 160 (36.61) 61 (32.45) 55 (27.78)

Internal carotid artery calcification 

patterns

No calcification, n (%) 140 (17.01) 71 (16.25) 27 (14.36) 42 (21.21)

Intimal calcification, n (%) 594 (72.17) 321 (73.46) 136 (72.34) 137 (69.19)

Medial calcification, n (%) 29 (3.52) 18 (4.12) 6 (3.19) 5 (2.53)

Mixed calcification, n (%) 60 (7.29) 27 (6.18) 19 (10.11) 14 (7.07)

NIHSS, National Institutes of Health Stroke Scale; APTT, activated partial thromboplastin time; ASPECTS, Alberta Stroke Program Early CT Score; ICV, ipsilateral culprit-vessel calcified 
volume; TCV, total calcified volume; mRS, modified Rankin Scale.
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FIGURE 2

LASSO plot for feature selection (A, coefficient path plot; B, cross-validation error plot).

to blood–brain barrier disruption, increased risk of brain edema, and 
a higher probability of hemorrhagic transformation. Albumin may 
exert protective effects on MT outcomes through mechanisms such as 
antioxidative stress, anti-inflammation, maintenance of osmotic 
pressure, protection of vascular endothelial function, and stabilization 
of blood–brain barrier integrity (25). In Yao et  al.’s (12) MT 

machine-learning prediction model, which was based on postoperative 
laboratory indicators, albumin was the core predictor. This study 
further validated the predictive role of albumin level using 
preoperative data. The remaining model features consisted of routine 
clinical characteristics and laboratory results available in most 
hospitals, thereby ensuring clinical practicality.

FIGURE 3

ROC curves of 11 machine learning models on the training and internal validation sets (A: training set; B: internal validation set).
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IAC was previously considered a marker of irreversible vascular 
aging; however, recent studies have revealed that it involves multiple 
pathophysiological mechanisms and represents a dynamically regulated 

process (26) that closely associated with the onset, development, and 
prognosis of AIS (27, 28). Vascular lumen stenosis and hardening caused 
by calcification may more directly influence MT treatment outcomes in 

TABLE 2 Predictive performance of 11 machine learning models on the training and internal validation sets.

Model Task AUC Accuracy Sensitivity Specificity

SVM Train 0.74 0.73 0.67 0.76

SVM Validation 0.74 0.65 0.85 0.55

RandomForest Train 0.78 0.71 0.72 0.71

RandomForest Validation 0.85 0.76 0.84 0.72

ExtraTrees Train 0.89 0.81 0.82 0.80

ExtraTrees Validation 0.85 0.80 0.79 0.81

XGBoost Train 0.87 0.78 0.86 0.73

XGBoost Validation 0.82 0.79 0.61 0.87

LightGBM Train 0.87 0.81 0.74 0.85

LightGBM Validation 0.81 0.81 0.69 0.87

NaiveBayes Train 0.72 0.68 0.74 0.64

NaiveBayes Validation 0.74 0.74 0.74 0.74

AdaBoost Train 0.80 0.72 0.77 0.69

AdaBoost Validation 0.78 0.80 0.43 0.98

GradientBoosting Train 0.80 0.74 0.64 0.80

GradientBoosting Validation 0.82 0.77 0.72 0.80

LR Train 0.75 0.70 0.66 0.71

LR Validation 0.83 0.78 0.79 0.78

MLP Train 0.76 0.73 0.54 0.84

MLP Validation 0.72 0.62 0.85 0.50

DecisionTree Train 0.76 0.73 0.50 0.86

DecisionTree Validation 0.73 0.72 0.51 0.82

FIGURE 4

DCA of 11 machine learning models on the training and internal validation sets (A, training set; B, internal validation set).
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FIGURE 5

SHAP swarm plot for feature influence.

patients with AIS. Nevertheless, current research conclusions remain 
inconsistent. A semiquantitative study conducted by Haussen et al. (17) 
suggested that extensive calcification of the intracranial internal carotid 
artery does not affect the clinical outcomes of endovascular treatment. 
In contrast, Hernández-Pérez et  al. (29) reported that intracranial 
carotid artery calcification volume was associated with MT outcomes at 
90 days post-treatment, based on a cohort of 194 patients who were 
either unresponsive to thrombolytic therapy or had contraindications. 
Compagne et al. (30) conducted a post hoc subgroup analysis of 344 
patients with anterior circulation stroke from the 2015 MR CLEAN trial, 

finding better efficacy in those with medial calcification patterns, though 
no significant correlation between IAC volume and outcomes. A 2023 
study by Rodrigo-Gisbert et  al. involving 393 patients with AIS 
qualitatively indicated that symptomatic IAC could predict endovascular 
treatment outcomes (18). A recent prospective study by Sierra-Gómez 
et  al. (31), utilizing a semi-quantitative visual calcification score, 
indicated that carotid artery calcification was associated with larger 
infarct volumes and poorer outcomes following MT. Despite numerous 
studies, the conclusions remain heterogeneous, with most relying on 
qualitative or semi-quantitative assessment and lacking comprehensive 

FIGURE 6

ROC curves and DCA of 11 machine learning models on the external test set (A: ROC curves; B: DCA).
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quantitative evaluation of IAC indicators. In this study, we conducted a 
thorough quantitative assessment of IAC, identifying it as an important 
predictor of MT outcomes. These findings not only clarify the 
relationship between IAC and MT success but also offer valuable insights 
for constructing high-performance machine learning prediction models 
incorporating plaque imaging features.

The potential mechanisms underlying the predictive value of IAC 
involve several pathways, including a direct increase in plaque hardness 
as a marker of atherosclerosis, thereby contributing to increased surgical 
difficulty (32). Additionally, microcalcifications arising from the 
necrosis or apoptosis of lipid core cells may increase the risk of plaque 
rupture (33). Additionally, IAC may impair vascular endothelial 
function and reduce the vessel’s buffering capacity and compensatory 
capacities in response to blood flow changes (34, 35). The superiority of 
TCV over ICV and other calcification metrics is attributed to its more 
accurate reflection of overall IAC distribution. In large vessel occlusion 
of the anterior circulation, cerebral blood flow critically depends on 
collateral supply from the contralateral anterior circulation and the 
posterior circulation via the anterior and posterior communicating 
arteries. Thus, assessing calcification in all major intracranial arteries, 
including the contralateral anterior circulation arteries, the vertebral 
arteries, and the basilar arteries, provides a more comprehensive 
evaluation of the impact of IAC on collateral compensatory flow 
compared to conventional approaches that evaluate only the 
occluded vessel.

The machine learning models developed in this study can assist 
physicians in predicting treatment outcomes more accurately, this 
enabling more personalized treatment plans. However, our study had 
some limitations. First, as a retrospective study, it may be subject to 
inherent biases. Second, the study included a relatively small number 
of patients in the model development cohort. Third, although internal 
and external validation was performed, the model’s generalizability 
requires further testing in diverse populations (e.g., across different 
races or countries). Future large-scale, multicenter prospective studies 
across various cohorts, including non-East Asian populations, are 
needed to refine and optimize the prediction models. Despite these 
limitations, establishing a reliable model for predicting MT outcomes 
holds significant value for guiding clinical decision-making.

In conclusion, total IAC volume is a critical predictor of MT 
outcomes in patients with anterior circulation AIS. The machine 
learning models developed using preoperative emergency data 
demonstrated strong predictive performance, offering a robust 
theoretical foundation for clinicians to more accurately identify 
patients with AIS who are suitable candidates for MT.
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