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Introduction: Chorea-acanthocytosis (ChAc) is the most common subtype of

neuroacanthocytosis (NA) caused by mutations in VPS13A (vacuole protein

sorting-associated protein 13A). ChAc is characterized by the presence of

spherocytes and neurological symptoms. This article reports two families with

ChAc and summarizes some suggestive characteristics, providing an e�ective

basis for clinicians to screen ChAc in the early stage and e�ectively reduce the

misdiagnosis and missed diagnosis of this disease.

Methods: We first performed whole-exome sequencing (WES) and confirmed

three NA cases in two families. Detailed clinical and peripheral blood smear

analyses are presented, supplemented by molecular electron microscopy to

assess erythrocyte ultrastructure. To further evaluate the functional impact of

candidate variants, we additionally performed RNA splicing analysis.

Results: Three ChAc cases in two families were identified. Clinically, almost all

cases presented initial movement disorders, and Elevated creatine kinase (CK)

level. Besides, both peripheral blood smear and scanning electron microscopy

revealed characteristic acanthocytes.

Conclusions: This study provides key clinical indicators for early ChAc screening:

early movement disorders combined with persistently elevated CK levels and

significant acanthocytosis on peripheral blood smear. We further identified three

novel VPS13Amutations, expanding the variant spectrum and confirming clinical

heterogeneity in ChAc.

KEYWORDS

chorea-acanthocytosis, gene mutations, VPS13A, neurology, whole-exome sequencing

1 Introduction

Neuroacanthocytosis syndromes encompass a group of rare, genetically

heterogeneous neurological disorders defined by the presence of acanthocytes

(abnormally spiked erythrocytes) in peripheral blood and progressive

neurodegeneration (1) encompassing principal subtypes such as autosomal recessive
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chorea-acanthocytosis (ChAc) and X-linked McLeod syndrome

(MLS). These conditions predominantly affect the basal ganglia

and manifest with a spectrum of movement disorders, including

chorea, dystonia, and Parkinsonism, alongside neuropsychiatric

symptoms such as cognitive decline and behavioral changes (2).

NA syndromes arise from mutations affecting membrane-

associated proteins or lipid metabolism, leading to both

erythrocyte deformation and neuronal dysfunction (3).

Among these disorders, chorea-acanthocytosis (ChAc) stands

out as one of the principal autosomal recessive subtypes,

highlighting the intersection of hematological abnormalities and

neurological decline.

ChAc, caused by biallelic mutations in the VPS13A gene,

is characterized by a deficiency of chorein, a protein essential

for maintaining membrane integrity in erythrocytes and neurons

(4). The ChAc mainly occurs in adulthood with an average

age of about 35 years, and rarely occurs before the age of

20 years or after the age of 50 years (5). Clinically, ChAc

was associated with a wide spectrum of phenotypes, typically

including involuntary movements, cognitive decline, seizure,

psychiatric features, and neuromuscular manifestations with

elevated serum biochemical indicators and increased acanthocytes

in peripheral blood (1, 6). Elevated liver enzymes were found

in over 50% of patients. Acanthocytosis was observed in

almost all ChAc patients, ranging from 5% to 50%, but

didn’t seem to correlate with the severity of ChAc (6).

The common link between the neurological and erythroid

abnormalities is an abnormality of cell membranes. Detection

of acanthocytes in a blood film is diagnostically useful (7).

Notably, the diagnosis of ChAc remains clinically challenging due

to its phenotypic overlap with conditions such as Huntington’s

disease, McLeod syndrome, and Pantothenate kinase-associated

neurodegeneration (PKAN).

To date, diverse mutation patterns of VPS13A, consisting

of missense, nonsense, frameshift, splice site, replication,

and deletion mutations, have been reported (8). In this

report, we discovered two novel loss-of-function mutations,

which have not been reported previously, and extended the

genetic characteristics of ChAc. Detailed clinical features and

Molecular Studies are presented. These findings expand the

VPS13A variants spectrum and confirm the clinical variability in

ChAc patients.

2 Methods

2.1 Patients and samples

Three patients were recruited from the Department of

Neurology of the First Affiliated Hospital of Fujian Medical

University, including DNA samples stored in the internal registry

of the Department of Neurology and the Institute of Neurology

and sent by clinicians for the diagnosis of extrapyramidal diseases

during the years 2013–2022. Patients were examined by at least

two senior neurologists, and their family members were also

tested, if possible. Genomic DNA of patients and closest living

relatives was extracted from peripheral lymphocytes using a

TGuide Blood Genomic DNA Kit (Tiangen, Beijing). All samples

were obtained with informed consent of probands or their legal

representatives. The study was approved by the local ethics

commission.

2.2 Whole exome sequencing

Whole-exome sequencing (WES) was performed for the two

pedigrees. A SureSelect Human All Exon V6 kit (Agilent) was

used to capture whole-exome DNA. Sequencing was performed by

the Illumina HiSeq 3,000 platform and aligned to the consensus

sequence (UCSC hg38). Genome Analysis Toolkit (GATK) and

ANNOVAR were used to annotate the variants. Variants that

met the following criteria were excluded first: (i) the variant

did not affect a change in amino acid sequence; and (ii) the

allele frequency was >1% in the 1,000 Genomes Project, ESP

database, or gnomAD. Then we filtered the variants according

to patterns of inheritance and obtained the potential disease-

causing genes.

2.3 RNA splicing analysis

Total RNA was isolated from the peripheral blood

leukocytes of family members. RNA was extracted using a

Trizol extraction kit (Invitrogen, Carlsbad, CA, USA) and

then synthesized to cDNA with a PrimeScript RT reagent

kit (TAKARA BIO, Kusatsu, Shiga, Japan) according to

the manufacturer’s protocols. Primers were designed to

target VPS13A exons 2-4 to confirm aberrant splicing

(forward: 5′-GAGGAACATGGTTTTCGAGTC-3′; reverse:

5′-GTCCCGATTTGTGATATCATC-3′). The products amplified

by the above primers were separated by agarose gel electrophoresis.

The DNA fragments were then purified from the gels and sent for

Sanger sequencing.

2.4 Sanger sequencing

Sanger sequencing was carried out to validate the potential

variants identified byWES on an ABI 3,500 x LDxGenetic Analyzer

(Applied Biosystems, Foster City, USA). Screen all family members

with or without extrapyramidal symptoms.

2.5 Peripheral blood smear preparation

The morphology of RBCs was investigated using a method

according to Alexander Storch et al. (9). Blood was drawn into

5ml commercially available syringes pre-filled with potassium-

EDTA solution (Changgeng, Fuzhou). Blood smears were prepared

on glass slides and stained using the commercially available

Wright-Giemsa Stain Kit (Baso, Zhuhai). All blood preparations

were investigated on photomicrographs using a light microscope

(DP27; Olympus, Japan) at a magnification of 1,000 (oil

immersion). All RBCs on at least five photomicrographs of

each preparation were analyzed by a blinded investigator.
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TABLE 1 Summary of clinical features of the ChAc families.

Family # 1 2

Case # II-2 II-1 II-1

Gene VPS13A VPS13A VPS13A

Mutation c.145-2A > G c.130A > T c.94_95insC

Diagnosis ChAc ChAc

Age of onset 26 31 22

Gender M F M

Initial Symptom Involuntary movements Asymptomatic hyperCKemia Involuntary movements

Disease duration 2 3 10

Movement disorder Orofaciolingual chorea, involuntary vocalizations,

and Involuntary movements of the limbs

No Orofaciolingual chorea, involuntary

vocalizations, and alopecia

CK level 2091–2853 U/L 732 U/L 500–600 U/L

Visual impairment No No No

Cognitive impairment No No No

Cardiac disease No No No

Peripheral neuropathy Yes No No

Acanthocytosis 6.0% NA >10%

M, male; F, female; NA, not available.

Corresponding to Redman’s classification (10), type AI/AII RBC

were counted as abnormal (referred here as acanthocytes).

The number of acanthocytes was expressed as a percentage of

total erythrocytes.

2.6 Scanning electron microscopy analysis

In our patients, fresh peripheral blood was screened for

erythrocytes by environmental scanning electron microscopy

(ESEM) according to previous studies (11). Briefly, aliquots

of red blood cell suspensions were gently pelleted by

centrifugation and fixed in 2.5% glutaraldehyde and 4%

paraformaldehyde. After washing, the cells were dehydrated

in a 50%−100% graded series of ethanol, dried by critical

point, coated with a conducting material, and imaged with

ESEM. A board-certified clinical pathologist independently

determined the erythrocytes in a blinded manner. Contracted

red cells with irregularly spaced thorny surface projections

were defined as acanthocytes. The counts of acanthocytes

within 3% were considered to be within the normal

range (12).

3 Results

3.1 Identification of variants by whole
exome sequencing and sanger sequencing

We identified 3 new ChAc cases from 2 families. Clinical

features of all 3 cases were summarized in Table 1. WES

was performed in 2 unrelated patients. After verification

by Sanger sequencing, we found 3 variants within VPS13A

(NM 033305) in two index cases, all of whom carried loss-

of-function mutations. Among these novel variants without

included in HGMD, one is homozygous splice-site mutation

(c.145-2A > G), and the other two were compound heterozygous

frameshift mutations (c.94_95insC), nonsense mutations (c.130A

> T). The frequency of c.145-2A > G was absent in ExAC.

The variants c.94_95insC and c.130A > T were absent in

gnomAD. This mutation (c.145-2A > G) was predicted by

MutationTaster as disease-causing. The other two variants

(c.94_95insC; c.130A > T) were predicted by MutationTaster to

be prediction disease causing. According to American College

of Medical Genetics and Genomics (ACMG) standards, we

classified these three variants as “likely pathogenic” (PVS1

and PM2).

3.2 RNA splicing analysis to enhance the
pathogenicity of ACMG

We further performed functional validation at the RNA

level. Via detection by WES, ac.145-2A > G mutation in

VPS13A in proband (II-2) in F1, causing ChAc, was identified.

We therefore sought to validate the result through analysis

of cDNA reverse transcribed from RNA extracted from the

peripheral blood samples of the patient. A shorter transcript

was observed in gel electrophoresis, indicating that the position

of the lost acceptor for the variant led to exon 3 skipping, and

the length of the absent exon (43bp) matched its observed

length in the patient-derived cDNA sequence, compared

with that in a healthy control. Sanger sequencing confirmed

that exon 3 was absent in the truncated transcript due to
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FIGURE 1

Pedigrees, mutation analysis, RNA Splicing Analysis, and peripheral blood smear for the ChAc families. (A) Pedigrees of three cases from two ChAc

families: The square represents the male, and the circle represents the female. A filled symbol indicates the proband. (B) Mutation analysis:

Visualization of the mutations in our cases is shown with Chromas. (C) RNA Splicing Analysis: Agarose gel electrophoresis analysis of VPS13A

fragments in the proband (II-2, lane 2) and normal controls. The proband exhibits an aberrant 474 bp fragment (F1) compared to the wild-type 517

bp band, indicating exon skipping. Mutation visualization via Chromas confirms the splicing site mutation c.145-2A>G. (D) RNA Splicing Analysis:

(Continued)
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FIGURE 1 (Continued)

Schematic diagram illustrating the consequence of the c.145-2A>G mutation, which disrupts the canonical splice acceptor site of intron 2, resulting

in complete skipping of exon 3 during transcript processing. (E) Peripheral blood smear: acanthocytes were shown via Wright-Gimsa staining

(original magnification, ×400) in proband (II-2) in F1 (a), proband (II-1) in F2 (b). Examination of peripheral blood of proband (II-2) in F1 by scanning

electron microscopy (original magnification, ×2500) showing acanthocytosis (c).

transcriptional skipping caused by the c.145-2A > G variant

(Figure 1).

3.3 Clinical features of patients carrying
VPS13A variants

3.3.1 Case 1
A 26-year-old male, who developed orofaciolingual chorea,

involuntary vocalizations, and involuntary limb movements 2

years ago. Electromyography (EMG) testing demonstrated sensory

conduction velocity slowing, abnormal spontaneous activities

in the right first dorsal interosseous. Cognitive examination

only showed reduced short-term memory (Mini Mental State

Examination 28/30, MoCA 26/30). Laboratory testing revealed

persistent hyperCKemia (2091–2853 U/L, normal 24–170 U/l),

elevated serum CK-MB, LDH, and AST/ALT levels. His peripheral

blood smear demonstrated 6.0% acanthocytes after Wright–

Gimsa staining, and environmental scanning electron microscopy

also observed RBC with spicules, which were irregular in

shape and orientation/distribution (Figure 1). Nerve conduction

studies (NCS) showed peripheral neurogenic alterations in the

upper and lower limbs. The electrocardiogram presented QT

prolongation (442ms) while the echocardiogram was normal.

His family is notable for an elder sister (aged 31; II-1 in F1)

with hyperCKemia (732 U/L), elevated AST/ALT, LDH, and

CKMB since her pregnancy 3 years ago, but with no chorea

or dystonia.

3.3.2 Case 1
A 42-year-old male has suffered from chorea of the mouth and

involuntary movements for the past 10 years. The patient shows

increased tongue movement, with the tongue sticking out to the

right. Occasionally, there are actions such as frowning, blinking,

and sticking out the tongue. It often leads to biting the oral mucosa

and causing oral ulcers. The gait characteristics of the patient are

intermittent trunk flexion, extension spasm, and occasional knee

flexion. The patient is prone to shaking their limbs when walking,

and occasionally experiences head drooping and flexing of the right

leg. The muscle strength of the limbs is normal, the muscle tone

is reduced, and the tendon reflexes of the limbs are decreased.

No Kaiser–Fleischer (K–F) rings were observed in the bilateral

corneas. The cognitive function was hardly impaired. Laboratory

tests showed persistent hyperemia (500–600 U/L). It is worth

noting that the patient showed obvious hair loss during the course

of the disease, which may be related to endocrine dysfunction

secondary to underlying neurological diseases (Figure 2).

4 Discussion

Chorea-acanthocytosis (ChAc) is a rare neurodegenerative

disorder, with an estimated global prevalence of 1 case per

million population (1). While cases have been reported worldwide,

higher incidence clusters are observed in regions with increased

consanguinity rates, such as the Middle East and Japan (13).

The disease typically manifests between the second and fourth

decades of life, with a mean age of onset around 30 years,

which aligns with the age range of our reported cases (14). ChAc

is inherited in an autosomal recessive manner and caused by

mutations in the VPS13A gene, which interfere with the production

of chorein, found in brain tissue and erythrocytes (15). Recent

studies have demonstrated that chorein and lipid scramblase

XK are functional partners at the plasma membrane (16, 17).

Chorein regulates many vital processes, including cytoskeletal

architecture, calcium homeostasis, autophagy, and cell survival

(18). Chorein binds to the cell membrane through the N-

terminal PH domain, and the C-terminal β-helical structure

is involved in protein-protein interactions. The destruction of

functional domains can directly lead to neurodegeneration (19).

Among the 73 exons of the VPS13A gene without specific

hotspots, many disease-related mutations have been described.

The total length of the gene is about 250 kb, which is composed

of 73 exons (20). We reported three novel highly deleterious

homozygous variants of the VPS13A gene, including a novel

compound heterozygous VPS13A mutation (c.94_95insC and

c.130A > T) and two novel homozygous mutations (both

NM_033305.2:exon3:c.145-2A > G), which further expands the

mutation spectrum of VPS13A.

The clinical manifestations observed in our cohort align

with the core features of ChAc, including progressive chorea

and elevated serum creatine kinase levels (21). Notably, one

patient exhibited severe alopecia, a feature rarely documented

in ChAc. While the pathophysiology of hair loss in this context

remains unclear, we speculate that hair follicle dysfunction

could stem from impaired lipid metabolism or cytoskeletal

integrity in keratinocytes, as chorein is known to regulate

membrane stability and vesicular trafficking in various cell

types (22). Alternatively, chronic oxidative stress secondary to

neurodegeneration or systemic metabolic disturbances in ChAc

may disrupt hair follicle cycling (23). Previous studies have

reported hypothalamic-pituitary axis abnormalities in ChAc

patients (24). Further investigation, integrating trichoscopic

analysis and lipidomic profiling of scalp tissues, could help

clarify this association. Current therapeutic strategies for ChAc

remain largely supportive and symptomatic (25). Chorea

may be partially alleviated with dopamine-depleting agents

or atypical antipsychotics, though their efficacy is variable
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FIGURE 2

Clinical comparison of alopecia symptoms during disease progression. (a) Photos of the patient at the age of 30, showing uniform hair distribution,

normal density, and no visible exposed areas of the scalp. (b) A photo of the patient at the age of 42. It has been 10 years since then. The picture

shows obvious hair thinning and increased scalp visibility, tongue muscle tone disorder, and the tongue protruding to the right.

and limited by side effects such as sedation or drug-induced

parkinsonism (26). Neuropathic pain associated with peripheral

neuropathy often requires gabapentin or duloxetine, while

selective serotonin reuptake inhibitors (SSRIs) may address

comorbid depression (27). Crucially, multidisciplinary care

involving physiotherapy and speech therapy is essential to mitigate

functional decline.

This report expands the mutational and phenotypic landscape

of VPS13A-related ChAc, highlighting novel genetic variants

and atypical clinical features such as alopecia. The integration

of clinical observations with molecular insights underscores the

systemic nature of chorein deficiency and calls for multidisciplinary

investigations to unravel its pleiotropic effects. However, our study

is limited by its small cohort size and the absence of functional

validation for the identified variants, which precludes definitive

conclusions about their mechanistic contributions to atypical

features like alopecia. Future work should prioritize longitudinal

studies in larger cohorts and experimental models to address these

gaps and refine genotype-phenotype correlations in ChAc.

5 Conclusion

This study expounds the clinical characteristics and

diagnostic approaches of chorea-acanthocytosis (ChAc),

providing key insights for differentiating this neurodegenerative

disease from other diseases with similar clinical symptoms.

Although the detection of VPS13A gene mutations and the

identification of chorein protein deficiency by Western blot

remain the gold standard for diagnosis, the proposed multi-

dimensional framework—integrating progressive motor disorders,

neuropsychiatric manifestations, and hematological features—has

significantly improved clinicians’ ability to identify ChAc in

overlapping phenotypes.
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