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Angiographic assessment of
lenticulostriate artery sign to
predict clinical outcomes after
thrombectomy in patients with
stroke

Shen Chen, Lisong Dai, Yiran Zhang, Xiaoer Wei, Bicong Yan
and Yuehua Li*

Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to
Shanghai Jiao Tong University School of Medicine, Shanghai, China

Objective: Lenticulostriate artery (LSA) reperfusion is critical for basal ganglia
blood supply. Basal ganglia infarction (BGI) inconveniencing patients with large
artery occlusion and occluded perforators may influence clinical outcomes.
This study aims to investigate the association between LSA recanalization, BGI,
and long-term outcome after thrombectomy in the ischemic hemisphere.
Methods: In total, 158 stroke patients who underwent thrombectomy were
included in this study. Clinical and imaging variables were retrospectively
analyzed. LSA signs were categorized as presence (LSA+) or absence (LSA-)
of clear vascular patency in the ischemic hemisphere at on-going and post
recanalizations. Logistic regression was used to test the relationship between
baseline clinical and imaging variables and BGI (primary outcome). The
secondary outcome was 90-day modified Rankin Scale (mRS) >2.

Results: Good functional outcome (MRS <2, 41.8%) varied among LSA sign
patterns. In the multivariate analysis, LSA sign patterns were significantly
associated with both BGI and 90 days mRS >2. The odds ratios of LSA—/— and
LSA+/LSA— patterns in BGl and long-term outcome remained significant after
adjustment of confounders. Models comprising LSA patterns achieved AUC of
0.74 for BGI and 0.91 for long-term outcome.

Conclusion: LSA signs before and after thrombectomy were significantly
associated with BGI and long-term functional outcome. This may be a potential
predictor of regional ischemic vulnerability and long-term recovery in patients
with stroke.

KEYWORDS

stroke, mechanical thrombectomy, basal ganglia, digital subtracted angiography,
lenticulostriate arteries, outcome prediction

1 Introduction

Ischemic stroke is the leading cause of disability and mortality worldwide (1). Therefore,
rapid restoration of blood flow by interventional treatment in the ischemic area is crucial to
minimize brain injury and improve clinical outcomes (2, 3). Mechanical thrombectomy has
emerged as the standard intervention of choice for the recanalization of large-vessel occlusions
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FIGURE 1

Flowchart of study inclusion and exclusion criteria. MCA, middle cerebral artery. ICA, internal carotid artery; LSA, lenticulostriate artery.

(2, 4). However, the success of endovascular treatment is not uniform,
and various factors contribute to the variability in long-term clinical
outcomes (5, 6).

Accurate  prognosis  assessment following mechanical
thrombectomy is crucial to ensure successful recanalization and guide
subsequent management strategies (4). Despite successful
recanalization, quite a few patients still experience unfavorable
outcomes due to microvascular reperfusion failure and basal ganglia
injury (BGI). The modified Rankin Scale (mRS), which evaluates the
degree of functional recovery, is widely applied as a standard outcome
measure in stroke trials, with the time point of 90 days after therapy
being the most commonly adopted approach for assessing long-term
disability (2, 4). However, long-term outcome assessment in stroke is
inherently delayed, and irreversible complications or disabilities may
occur before such evaluations are made. Therefore, the identification
of early-phase imaging biomarkers is warranted to enable timely risk
stratification and to guide post-treatment management decisions.

Lenticulostriate arteries (LSAs) are small perforating arterioles
<1 mm in diameter that arise from the middle cerebral artery (MCA)
(7). They supply critical regions involved in motor and sensory
functions, such as the basal ganglia and internal capsule (8, 9).
Therefore, recanalization of the MCA toward the LSA is crucial for
predicting the risk of BGI (10). Angiographic features of LSAs have
recently emerged as a feasible strategy for predicting clinical outcomes
following MCA recanalization treatment (11, 12). However, most of
these studies only considered LSA status before treatment (13-16).

Abbreviations: AUC, Area under the curve; BGlI, Basal ganglia infarction; CT,
Computed tomography; DSA, Digital subtraction angiography; LSA, Lenticulostriate
arteries; MCA, Middle cerebral artery; MRI, Magnetic resonance imaging; mRS,
Modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, Odds
ratio; ROC, Receiver operating characteristic; mTICl, modified Thrombolysis in

Cerebral Infarction.

Digital subtraction angiography (DSA) is a real-time
neuromonitoring technique used to detect brain vasculature,
including small perforators. Studies have suggested several
intraoperative angiographic signs observed on DSA during
endovascular thrombectomy that are associated with prognosis after
discharge (17-19). Several researchers have emphasized the LSA
territory, basal ganglia, and its association with the outcome of
ischemic stroke (15-20). Nevertheless, the effect of LSA angiographic
signs at the pre- and post-treatment stages on clinical outcomes
warrants validation.

Therefore, this study aimed to elucidate the impact of LSA
reperfusion status on the clinical outcomes of patients with large-
vessel occlusions and develop prediction models to guide follow-up
management strategies for patients with stroke. We hypothesized that
combined assessment of pre- and post-thrombectomy LSA patterns
would predict clinical outcomes in patients with large-
vessel occlusion.

2 Materials and methods
2.1 Study enrollment and ethics

We performed a retrospective cohort study involving patients
with anterior circulation stroke who underwent thrombectomy
between 2020 and 2022. The patient selection flowchart is shown in
Figure 1. The inclusion criteria were as follows: 1. Anterior circulation
large-vessel occlusion confirmed by computed tomography (CT)
angiography or DSA; 2. Presence of core infarction within 24 h of
symptom onset on perfusion CT; 3. Underwent thrombectomys; 4.
Achieved satisfactory recanalization, deemed as modified
Thrombolysis in Cerebral Infarction (mTICI) score of 2¢-3; and 5.
Complete follow-up examination with magnetic resonance imaging
(MRI) or non-enhanced CT. The exclusion criteria were as follows: 1.
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Incomplete medical and surgical records; 2. Poor image quality or
severe artifacts; and 3. Lost to follow-up. This study was approved by
the Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine Institutional Ethics Committee [IRB:
2022-KY-130(K)]. Consent for publication was obtained from
all participants.

2.2 Clinical information

The National Institutes of Health Stroke Scale (NIHSS) on
admission and discharge were recorded. The long-term neurological
outcomes were assessed using the mRS at discharge and on 90th day.
Good and poor clinical outcomes were defined as mRS scores of 0-2
and >3, respectively. Patients who died during hospitalization were
assigned an NIHSS score of 42 or mRS score of 6. The two outcome
endpoints were chosen as BGI at follow-up and 90 days mRS >2.

2.3 Imaging protocol and assessment

All patients underwent multimodal stroke-admission CT imaging
using a 640-slice multi-detector CT scanner (United Imaging,
Shanghai, China). Standard imaging protocols were employed to
evaluate the cerebral vascular status. Admission protocols included
noncontrast CT, perfusion CT imaging, and CT angiography with the
following parameters: tube voltage, 70-90 kV; and tube current,
100-250 mA. A 45 mL iopromide bolus was injected at a flow rate of
4 mL/s, followed by 30 mL saline. The occlusion site was confirmed
on CT angiography. The Alberta Stroke Program Early CT Score was
assessed using early noncontrast CT. Perfusion CT imaging was used
to confirm the core infarction volume using quantitative software.
Follow-up noncontrast CT images were obtained using the same scan
parameters. Follow-up MRI was performed using a 3.0 T MRI
scanner. The MRI sequences included axial T1-weighted, axial
T2-weighted, axial fluid-attenuated inversion recovery, and axial
diffusion-weighted images with b values of 0 and 1,000 s/mm?, as well
as automatically calculated apparent diffusion coefficient maps. On
follow-up CT or diffusion-weighted images, the BGI final volume was
quantified using semi-automated software (uAI workstation).
Hemorrhagic transformation was defined as parenchymal hemorrhage
or hemorrhagic infarction. Parenchymal hemorrhage was
demonstrated as a dense blood clot with a substantial to mild space-
occupying effect on the infarction core. Hemorrhagic infarction was
defined as sparse hyperdensities within the infarction core or along its

margins (21).

2.4 Endovascular treatment and
angiographic evaluation

Endovascular treatment was performed in the Neuroangiography
Suite using a biplane digital angiography machine (Artis Zee; Siemens
Healthcare). Patients were treated under conscious sedation or general
anesthesia before the procedure. Angiographic features of the LSA
were evaluated before and after thrombectomy. The Yasargil (22)
classification was used to classify the LSAs. The morphology of the
LSA, including its patency and length, was compared as described in
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Figures 2A-C; when vessels appeared as continuous dense lines in
contrast to adjacent areas, they were classified as LSA+; otherwise,
they were classified as LSA—. The pre- and post-thrombectomy LSA
sign patterns, from fine to worst, were graded as 1. LSA+/+, 2.
LSA—/+, 3. LSA+/—, 4. LSA—/—. LSA+/+ or LSA—/+ were considered
favorable LSA patterns. Conversely, LSA+/— and LSA—/— were
considered unfavorable patterns. Collateral flow in the ipsilateral
ischemic region was assessed based on the American Society of
Interventional and Therapeutic Neuroradiology collateral score.
Levels 3 and 4 were defined as good collaterals, whereas levels 0-2
were defined as poor. Two board-certified neuroradiologist and
neurointerventionalist independently assessed LSA sign patterns and
collateral circulation. Discrepancies were resolved through a
consensus review. The mTICI grade were assessed at the end of the
intervention. The mTICI score of 3 deemed as complete
recanalization (23).

2.5 Statistical analysis

Continuous variables were described as mean * standard
deviation or median (interquartile range). Student’s t-test, Mann-
Whitney U test, or Fisher’s exact test was used depending on the data
normality. The Kruskal-Wallis H test and chi-square test were used
for multi-group comparisons as well as post hoc pairwise comparisons.
Univariate and multivariate logistic analyses were performed to
identify independent parameters after comparing the degrees of
collinearity between the two variables. Confounders were selected a
priori based on existing literature and clinical consensus (24).
Multivariable logistic regression models were used to estimate
associations and adjust confounders. Sensitivity analyses were
conducted by comparing LSA patterns with adjustment of
confounders. All logistic regression results were expressed as odds
ratios (OR) or adjusted OR with corresponding 95% confidence
intervals. Prediction performance was assessed using receiver
operating characteristic (ROC) curve analysis. Goodness of fit was
assessed using the Hosmer-Lemeshow test. The area under the curve
(AUQ) of nested models with and without confounders. Internal
validation was performed using 1,000 bootstrap samples. The
agreement between observed and predicted outcomes was assessed
using calibration plots. Statistical significance was set at two-tailed
p-values of <0.05. All statistical analyses were performed using SPSS
and R software.

3 Results

3.1 Demographic and clinical
characteristics

Initially, 251 participants were enrolled to our cohort. Patients were
excluded for posterior circulation occlusion (n = 32), missing follow-up
imaging (n = 29), unsatisfactory recanalization or mTICI less than 2¢
(n = 11) and incomplete medical record (n = 21). In total, 158 patients
fulfilled the inclusion criteria. The demographic and procedural
characteristics of the participants are shown in Table 1. The mean age was
64 + 14.5 years, and 60.8% (96) participants were male. On admission,
hypertension was prevalent in 63.9% (101) of the study cohort. In the
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FIGURE 2

Pre-thrombectomy and post-thrombectomy images of representative LSA recanalization cases. The upper right circle demonstrates LSA perfusion
details. Yellow arrows marked the anatomical positions of LSAs and MCA. Case 1 (A). An 80-year-old female patient with proximal M1 occlusion
showed faint LSA visualizations on preoperative angiography, which remarkably improved angiographic opacification after mechanical thrombectomy.
Case 2 (B). A 59-year-old male patient with distal M1 occlusion exhibited clearly visible LSAs on preoperative angiography, which showed near-
complete LSA occlusion with loss of angiographic delineation on post-thrombectomy scan. (C) The coronal anatomical illustration of the basal ganglia
region, including the MCA perforators, which supplies the nucleus in this region. LSA, lenticulostriate artery; MCA, middle cerebral artery.
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TABLE 1 Baseline characteristics of study’s cohort.

Age (years) 64 + 14.5
Male 96 (60.8)
Left lesioned side 75 (47.5)

Height (cm) 165 (150, 181)
Weight (kg) 65 (45, 130)
Ilness history
Hypertension 101 (63.9)
Diabetes mellitus 48 (30.4)
Coronary disease 27 (17.1)
Stroke history 38 (24.1)
Atrial fibrillation 43 (27.4)
NIHSS on admission 10 (0,37)
Occlusive vessel site
M1 106 (67.1)
M2 25(15.8)
ICA 27 (17.1)
Complete recanalization (mTICI >3) 138 (87.3)
Time from angiography to puncture (min) 5 (5, 40)
Time from puncture to recanalization (min) 36 (22, 67)

Data are presented as means + standard deviations, medians with interquartile ranges in
parentheses, or numbers of patients with percentages in parentheses.
ICA, internal carotid artery; mTICI, modified thrombolysis in cerebral infarction.

study cohort, 25.3% (40) of patients had no BGI and 41.8% (66) achieved
good long-term outcome (90-day mRS <2). Good long-term outcomes
were more prevalent among younger adults and male populations
(p <0.001 and p = 0.023, respectively). (Supplementary Tables 1, 2).
Hypertension, diabetes mellitus, stroke, and atrial fibrillation were
associated with poor long-term outcome. The M1 segment was the most
frequent occlusion site (54.4%), significantly more common than both
M2 and internal carotid artery occlusions (10.1%) in the BGI group
(p=0.027). The elevated blood pressure and use of antiplatelets/
anticoagulants therapy were more common in BGI and worse long-term
outcome. Baseline, discharge NIHSS and discharge mRS scores
significantly differ in BGI and 90-day mRS scores. Significantly higher
rates of hemorrhagic transformation were observed in patients with BGI
(44.9% vs. 15.0%, p = 0.001). Additionally, hemorrhagic transformation
was significantly associated with both short- and long-term outcomes
(p =0.001 and 0.005, Supplementary Figure 1).

3.2 LSA sign patterns with clinical
outcomes

The LSA sign patterns significantly impacted clinical outcomes
in intergroup comparison, as shown in Table 2. Among the patients
with patent LSA post-thrombectomy, 36 and 79 were of the LSA+/
LSA+ and LSA—/LSA+ groups. The median 90-day mRS scores were
1 and 3, respectively. LSA+ pre- and post-thrombectomy were
significantly associated with the absence of BGI after treatment
(p=0.026 and 0.023, respectively; Supplementary Table 1). The
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LSA+/LSA— and LSA+/LSA+ groups demonstrated significantly
higher rates of insular lobe infarction than the LSA—/LSA+ group (60
and 63.9% vs. 26.6%, p = 0.001). The LSA—/LSA— group showed a
greater median infarction volume than the LSA+/LSA+ group
(7,732 mm’ vs. 620 mm?®). In intergroup comparison, indistinct LSA
post-thrombectomy (LSA—/LSA— and LSA+/LSA—) was associated
with more severe long-term outcomes (Figure 3). Good clinical
outcomes were observed in the LSA+/LSA+ compared to the LSA+/
LSA— group (66.7% vs. 30.0%, p = 0.004).

3.3 Associations of LSA patterns for BGI
and 90-day mRS score according to the
different multivariate models

All variables with statistical significance were included into

univariate and multivariate regression analysis
(Supplementary Tables 3, 4). Four multivariate regression models
were constructed to adjust for potential confounders. In the
unadjusted crude model, LSA patterns were positively associated
with BGI (p = 0.008) as shown in Table 3. In model 1 that adjusted
for gender, NIHSS on admission, and occlusive vessel site, LSA
patterns remained positively associated with BGI (p = 0.030). In
model 2, after additional adjustment of peri-procedural variables,
LSA patterns remained positively associated with BGI (p = 0.037).
In Table 4, model 3 adjusted for age, gender, hypertension, diabetes
mellitus, stroke history, atrial fibrillation, and NIHSS on admission.
Model 4 adjusted for peri-procedural variables. After adjusting all
confounders, LSA sign patterns and discharge mRS score remained

independent predictors for 90 day mRS >2 (p = 0.001 and 0.008).

3.4 ROC analysis

The AUC the nested models for BGI ranged between 0.74-0.92,
with or without adjustment for confounders (Supplementary Table 5).
Regarding long-term outcome prediction, the AUC of the predictive
models ranged between 0.91-0.96. The ROC curves of the prediction
models combining LSA patterns were compared with prediction models
without LSA patterns, shown in Figure 4. Prediction models without
LSA patterns had lower AUC than models combining LSA patterns
(AUC: 0.74 vs. 0.69 and 0.91 vs. 0.89). The bootstrap C-index values of
the prediction models for BGI and 90-day mRS score were 0.78 and
0.97, respectively. Both prediction models exhibited better calibration
and discrimination ability (Hosmer-Lemeshow test y* = 4.59, p = 0.830).

4 Discussion

To the best of our knowledge, this is the first study to
characterize pre- and post-thrombectomy LSA angiographic signs
in patients with large-vessel occlusion. Our study suggests that LSA
sign patterns are significantly associated with BGI and long-term
functional independence. Our models comprising clinical and
imaging markers demonstrated good prediction performance for
both BGI and 90-day mRS scores (AUCs, 0.74 and 0.91,
respectively) and may thereby play a promising role in facilitating
treatment strategies following thrombectomy.
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TABLE 2 Intergroup comparison of post-treatment clinical outcomes among different LSA patterns.

Variables LSA sign patterns
LSA—/LSA+ LSA—/LSA— LSA+/LSA— LSA+/LSA+

(n=79) (n = 23) (n =20) (n = 36)
Hemorrhage transformation

31(39.2) 11 (47.8) 8 (40.0) 9 (25.0) 0.307
(n=59)
Parenchymal hemorrhage

7(8.9) 3(13.0) 2(10.0) 1(2.8)

(n=13)
Hemorrhagic infarction

24 (30.3) 8(34.8) 6(30.0) 8(22.2)
(n=46)
Discharge NIHSS 4(0,42) 8(0,42) 10 (0, 42) 4(0,32) 0.094
Discharge mRS 2(0,6) 3(0,6) 4(0,6) 2(0,6) 0.204
BGI volume/mm? 4,178 (0, 50,310) 7,732 (0, 33,078)a 7,050 (0,28,040) 620 (0, 48,873) 0.004*
BGI evolution <0.001*
Progression (1 = 26) 5(6.3)a 1(4.3)a 2(10.0)a 18 (50.0)
Persistent infarction (n = 81) 47 (59.5)a 15 (65.2)a 9 (45.0) 10 (27.8)
Regression (n = 31) 14 (17.7) 5(21.7) 7 (35.0) 5(13.9)
Remained normal (n = 20) 13 (16.5) 2(8.7) 2(10.0) 3(8.3)
Infarction of the LSA territory
Caudate nucleus (n = 43) 16 (20.3) 11 (47.8) 6 (30.0) 10 (27.8) 0.074
Internal capsule (n = 52) 25 (31.6) 12 (52.2) 8 (40.0) 7 (19.4) 0.072
Lentiform nucleus (n = 114) 60 (75.9)a 20 (87.0)a 16 (80.0) 18 (50.0) 0.006*
Insular lobe (n = 65) 21 (26.6) 9(39.1) 12 (60.0)b 23 (63.9)b 0.001*
Long-term functional

3(0,6) 5(0,6) 5(0,6) 1(0,6) 0.023%

outcome (90 days mRS)
Good functional outcome

30 (37.9)a 6(26.1)a 6(30.0) 24 (66.7) 0.004*
(90 days mRS <2)

Data are presented as means + standard deviations, medians with interquartile ranges in parentheses, or numbers of patients with percentages in parentheses. In post hoc pairwise comparisons:

a, significant compared to LSA+/LSA+ group. b, significant compared to LSA—/LSA+ group.
#p-values indicate the significance of predictors with a threshold of <0.05.

NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin scale; LSA, lenticulostriate artery; BGI, basal ganglia infarction; ICA, internal carotid artery.

While a number of studies have explored the prognostic value of
LSA visualization in stroke triage. Kaesmacher et al. (12) reported that
the appearance of LSAs on magnetic resonance angiography after
thrombectomy was associated with favorable outcomes. Horie et al.
(25) suggested that the basal ganglia fate was associated with the
involvement of LSA. In contrast, other studies have shown that
pre-thrombectomy LSA visualization or MCA occlusion involving
LSA also correlates with prognosis (11, 16, 26). In the current study,
we characterize the LSA dynamic change during thrombectomy,
integrating both pre- and post-treatment imaging to identify patterns.
Notably, this method relies on standard DSA during the intervention
course, avoiding additional appointment registration or scheduling
delays. Despite its clinical convenience, the utility of the dynamic LSA
patterns for prediction purpose remained underexplored. Our
findings address this gap by using LSA status as independent predictor
for both BGI and 90-day functional outcomes, even after adjusting for
multiple clinical and radiological confounders. After adjustment risk
factor of age, gender, medical history, admission NIHSS, occlusion
site and peri-procedural factors, the associations between LSA
patterns and predicting BGI as well as long-term mRS outcomes
remained statistically significant, confirming its independent
prognostic value.

Frontiers in Neurology

Our intergroup comparison found that imaging and clinical
outcomes varied widely based on LSA sign patterns, with favorable
post-thrombectomy LSA patterns associated with a good long-
term prognosis. For instance, patients with patent LSA throughout
the intervention (LSA+/LSA+ group) demonstrated a median
90-day mRS score of 1, which is lower than the median 90-day
mRS score of those with unfavorable LSA patterns after
thrombectomy (LSA—/LSA— and LSA+/LSA— groups). Regarding
the unfavorable LSA patterns before and after treatment, the
lentiform nucleus was found to be most vulnerable to ischemia,
followed by the insular lobe, caudate nucleus, and internal capsule.
As previously described, this is due to the differences in the
cellular constituents and metabolic demands of the regional
territories. The caudate nucleus, lentiform nucleus, and insular
lobes, which are composed of gray matter, are relatively more
sensitive to anoxic environments. Conversely, the internal capsule,
which is composed of white matter (27), is less vulnerable to
ischemia after thrombectomy (28, 29).

The phenomenon of unfavorable LSA vascular patterns during
thrombectomy result in poor prognosis could be interpreted. Certain
neuroimaging markers of LSA morphology have been proposed to
reflect vascular vulnerability (12, 29, 30). Because of the congenital
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Bar graph depicting the distribution of 90 days mRS in terms of LSA patterns. LSA, lenticulostriate artery; 90 days mRS, 90 days modified Rankin scale.

TABLE 3 Association of LSA patterns with BGI.

Primary Crude Model 1 Adjusted Model 1 Adjusted Model 2
outcome: BGI
Variables Unadjusted OR Adjusted OR Adjusted OR fo)
LSA patterns 0.008* 0.030* 0.037%
LSA—/LSA+ 1 1 1
LSA—/LSA— 3.88 (0.55,45.77) 1.96 (0.41, 14.72) 2.95(0.72,20.16)
LSA+/LSA— 1.07 (0.21, 6.06) 1.02 (0.23,4.77) 0.97 (0.28, 3.92)
LSA+/LSA+ 0.17 (0.04, 0.61) 0.34(0.11, 0.88) 0.39 (0.16, 0.94)
Hemorrhagic

5.29 (1.64,20.27) 0.008* 4.25(1.49, 14.12) 0.012% 3.62 (1.22,10.48) 0.009%
transformation
Discharge mRS 0.97 (0.71, 1.31) 0.852 1.07 (0.85, 1.36) 0.563 1.19 (0.98, 1.46) 0.081

Crude model 1 adjusted for none.
Adjusted Model 1: adjusted for gender, NIHSS score on admission, and occlusive vessel site.

Adjusted Model 2: adjusted for SBP and DBP in addition to the variables in Adjusted Model 1.

Data are presented as odds ratio with 95% confidence interval in parentheses.
*#p-values indicate the significance of predictors with a threshold of <0.05.

BGI, basal ganglia infarction; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; LSA, lenticulostriate artery; OR, odds ratio.

absence of anastomotic branches of perforating arteries, this vascular
anatomy is inherently predisposed to lenticulostrate infarction
depending on occlusion site of perforating arteries (31). In addition,
microvascular hemodynamic changes may contribute to this
vulnerability. Studies have shown that lack of dilated or preserved
LSAs on follow-up MRA may associated with less favorable functional
outcomes, possibly impacting microvascular integrity and more
extensive reperfusion injury (12, 30). Prolonged hypoperfusion or
delayed reperfusion following large-vessel occlusion damage the
cerebral autoregulatory mechanisms in small perforating arteries, lead
to infarction in ischemia-prone territories such as the striatocapsular
region. Other factors such as inflammatory responses and thrombus
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migration have also been implicated as mechanisms that may impair
vascular response to ischemia (32, 33).

Moreover, we found that hemorrhagic transformation was not
associated with LSA patency. However, its incidence was higher with
BGI. After spontaneous reperfusion, a series of changes including
activation of the endothelium and excessive production of oxygen-
free radicals can compromise the integrity of the blood-brain barrier
within infarcted areas (34). Despite successful recanalization,
hyperperfusion and hemodynamic changes in the infarcted tissue
may occur. These hemodynamic changes, especially in the LSA
territory where leptomeningeal collaterals are scarce, are associated
with a higher risk of hemorrhagic transformation (35). Nevertheless,
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TABLE 4 Association of LSA patterns with long-term outcome.

10.3389/fneur.2025.1644288

Secondary Crude Model 2 Adjusted Model 3 Adjusted Model 4
outcome:
90 days mRS >2
Variables Unadjusted OR Adjusted OR Adjusted OR
LSA patterns 0.002* 0.002* 0.001*
LSA—/LSA+ 1 1 1
LSA—/LSA— 1.98 (0.39, 11.64) 261 (0.58, 13.42) 1.68 (0.42, 7.02)
LSA+/LSA— 031 (0.03,3.81) 0.34 (0.06, 1.78) 0.39 (0.08, 1.80)
LSA+/LSA+ 0.07 (0.01,0.35) 0.09 (0.02,0.39) 0.10 (0.02,0.36)
Hemorrhagic

1.79 (0.51, 6.74) 0.372 1.20 (0.42, 3.39) 0.743 1.52 (0.58, 4.05) 0.382
transformation
Discharge NTHSS 1.14 (1.01, 1.34) 0.063 1.13 (1.01, 1.30) 0.052 1.18 (1.05, 1.35) 0.010%
Discharge mRS 1.81 (1.05, 3.24) 0.032 1.91 (1.25, 3.01) 0.003* 1.70 (1.14, 2.53) 0.008

Crude Model 2 adjusted for none.

Adjusted Model 3: adjusted for age, gender, hypertension, diabetes mellitus, stroke history, atrial fibrillation, and NIHSS score on admission.
Adjusted Model 4: adjusted for SBP and antiplatelet/anticoagulant therapy in addition to the variables in Adjusted Model 3.

Data are presented as odds ratio with 95% confidence interval in parentheses.
*#p-values indicate the significance of predictors with a threshold of <0.05.
NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; LSA, lenticul

ostriate artery; OR, odds ratio.
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FIGURE 4
Comparison of prediction models with versus without LSA combination. Blue curves represent models without LSA patterns. Red curves represent
models with LSA patterns [(A) BGI; (B) Long-term outcome]. Shaded area indicates confidence intervals. LSA, lenticulostriate artery; AUC, area under
the receiver operating characteristic curve.

the neurological status at discharge could have more impact long-
term outcomes than BGI and hemorrhagic transformation. BGI is
more closely associated with cognitive impairment (10). The
incorporation of discharge NIHSS and discharge mRS scores into the
second model aligns with previous research (10, 25). The early
neurological exam could predict long-term neurological function
status and the daily activities rehabilitation.

Importantly, our finding regarding LSA signs was consistent with
previous studies, supporting the use of LSA patterns for predicting
outcomes in the striatocapsular region and prognostication after
endovascular therapy (12, 26). Moreover, its predictive accuracy was
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on par with existing models that rely on angiography imaging for
prognosis (36). Our findings are consistent with recent studies, and
our investigation of vascular imaging markers further supports
current systematic review evidence. Our investigation of vascular
imaging markers further supports current systematic review evidence
(17). This underscore the pragmatical use of intra-procedural
angiographic signs, such as LSA patterns, to guide prognosis without
the need for costly additional imaging or waiting for long-
term evaluation.

This study has several limitations. First, this was a retrospective
study with a relatively small sample size. Large-sample prospective
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studies are warranted for external validation of the clinical
applicability of the proposed predictive model. Second,
heterogeneity in the clinical background and management of the
patients, including discharge medication, was not controlled and
may have influenced the prognosis and, thus, the performance of
our model. Finally, a longer follow-up period should be considered
to assure more accurate evaluation of the long-term predictive
performance of the model.

In conclusion, our findings underscore the importance of
routine monitoring of the LSA sign in patients with large-vessel
occlusion undergoing thrombectomy. Our proposed models
demonstrated good predictive performance for both BGI and
90-day mRS scores following mechanical thrombectomy. Further
clinical studies are warranted to validate our findings and explore
the role of LSA sign patterns in predicting interventional surgical
outcomes in large-vessel occlusions.
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