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Angiographic assessment of 
lenticulostriate artery sign to 
predict clinical outcomes after 
thrombectomy in patients with 
stroke
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Objective: Lenticulostriate artery (LSA) reperfusion is critical for basal ganglia 
blood supply. Basal ganglia infarction (BGI) inconveniencing patients with large 
artery occlusion and occluded perforators may influence clinical outcomes. 
This study aims to investigate the association between LSA recanalization, BGI, 
and long-term outcome after thrombectomy in the ischemic hemisphere.
Methods: In total, 158 stroke patients who underwent thrombectomy were 
included in this study. Clinical and imaging variables were retrospectively 
analyzed. LSA signs were categorized as presence (LSA+) or absence (LSA−) 
of clear vascular patency in the ischemic hemisphere at on-going and post 
recanalizations. Logistic regression was used to test the relationship between 
baseline clinical and imaging variables and BGI (primary outcome). The 
secondary outcome was 90-day modified Rankin Scale (mRS) >2.
Results: Good functional outcome (mRS ≤2, 41.8%) varied among LSA sign 
patterns. In the multivariate analysis, LSA sign patterns were significantly 
associated with both BGI and 90 days mRS >2. The odds ratios of LSA−/− and 
LSA+/LSA− patterns in BGI and long-term outcome remained significant after 
adjustment of confounders. Models comprising LSA patterns achieved AUC of 
0.74 for BGI and 0.91 for long-term outcome.
Conclusion: LSA signs before and after thrombectomy were significantly 
associated with BGI and long-term functional outcome. This may be a potential 
predictor of regional ischemic vulnerability and long-term recovery in patients 
with stroke.
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1 Introduction

Ischemic stroke is the leading cause of disability and mortality worldwide (1). Therefore, 
rapid restoration of blood flow by interventional treatment in the ischemic area is crucial to 
minimize brain injury and improve clinical outcomes (2, 3). Mechanical thrombectomy has 
emerged as the standard intervention of choice for the recanalization of large-vessel occlusions 
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(2, 4). However, the success of endovascular treatment is not uniform, 
and various factors contribute to the variability in long-term clinical 
outcomes (5, 6).

Accurate prognosis assessment following mechanical 
thrombectomy is crucial to ensure successful recanalization and guide 
subsequent management strategies (4). Despite successful 
recanalization, quite a few patients still experience unfavorable 
outcomes due to microvascular reperfusion failure and basal ganglia 
injury (BGI). The modified Rankin Scale (mRS), which evaluates the 
degree of functional recovery, is widely applied as a standard outcome 
measure in stroke trials, with the time point of 90 days after therapy 
being the most commonly adopted approach for assessing long-term 
disability (2, 4). However, long-term outcome assessment in stroke is 
inherently delayed, and irreversible complications or disabilities may 
occur before such evaluations are made. Therefore, the identification 
of early-phase imaging biomarkers is warranted to enable timely risk 
stratification and to guide post-treatment management decisions.

Lenticulostriate arteries (LSAs) are small perforating arterioles 
<1 mm in diameter that arise from the middle cerebral artery (MCA) 
(7). They supply critical regions involved in motor and sensory 
functions, such as the basal ganglia and internal capsule (8, 9). 
Therefore, recanalization of the MCA toward the LSA is crucial for 
predicting the risk of BGI (10). Angiographic features of LSAs have 
recently emerged as a feasible strategy for predicting clinical outcomes 
following MCA recanalization treatment (11, 12). However, most of 
these studies only considered LSA status before treatment (13–16).

Digital subtraction angiography (DSA) is a real-time 
neuromonitoring technique used to detect brain vasculature, 
including small perforators. Studies have suggested several 
intraoperative angiographic signs observed on DSA during 
endovascular thrombectomy that are associated with prognosis after 
discharge (17–19). Several researchers have emphasized the LSA 
territory, basal ganglia, and its association with the outcome of 
ischemic stroke (15–20). Nevertheless, the effect of LSA angiographic 
signs at the pre- and post-treatment stages on clinical outcomes 
warrants validation.

Therefore, this study aimed to elucidate the impact of LSA 
reperfusion status on the clinical outcomes of patients with large-
vessel occlusions and develop prediction models to guide follow-up 
management strategies for patients with stroke. We hypothesized that 
combined assessment of pre- and post-thrombectomy LSA patterns 
would predict clinical outcomes in patients with large-
vessel occlusion.

2 Materials and methods

2.1 Study enrollment and ethics

We performed a retrospective cohort study involving patients 
with anterior circulation stroke who underwent thrombectomy 
between 2020 and 2022. The patient selection flowchart is shown in 
Figure 1. The inclusion criteria were as follows: 1. Anterior circulation 
large-vessel occlusion confirmed by computed tomography (CT) 
angiography or DSA; 2. Presence of core infarction within 24 h of 
symptom onset on perfusion CT; 3. Underwent thrombectomy; 4. 
Achieved satisfactory recanalization, deemed as modified 
Thrombolysis in Cerebral Infarction (mTICI) score of 2c-3; and 5. 
Complete follow-up examination with magnetic resonance imaging 
(MRI) or non-enhanced CT. The exclusion criteria were as follows: 1. 

FIGURE 1

Flowchart of study inclusion and exclusion criteria. MCA, middle cerebral artery. ICA, internal carotid artery; LSA, lenticulostriate artery.

Abbreviations: AUC, Area under the curve; BGI, Basal ganglia infarction; CT, 

Computed tomography; DSA, Digital subtraction angiography; LSA, Lenticulostriate 

arteries; MCA, Middle cerebral artery; MRI, Magnetic resonance imaging; mRS, 

Modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; OR, Odds 

ratio; ROC, Receiver operating characteristic; mTICI, modified Thrombolysis in 

Cerebral Infarction.
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Incomplete medical and surgical records; 2. Poor image quality or 
severe artifacts; and 3. Lost to follow-up. This study was approved by 
the Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong 
University School of Medicine Institutional Ethics Committee [IRB: 
2022-KY-130(K)]. Consent for publication was obtained from 
all participants.

2.2 Clinical information

The National Institutes of Health Stroke Scale (NIHSS) on 
admission and discharge were recorded. The long-term neurological 
outcomes were assessed using the mRS at discharge and on 90th day. 
Good and poor clinical outcomes were defined as mRS scores of 0–2 
and ≥3, respectively. Patients who died during hospitalization were 
assigned an NIHSS score of 42 or mRS score of 6. The two outcome 
endpoints were chosen as BGI at follow-up and 90 days mRS >2.

2.3 Imaging protocol and assessment

All patients underwent multimodal stroke-admission CT imaging 
using a 640-slice multi-detector CT scanner (United Imaging, 
Shanghai, China). Standard imaging protocols were employed to 
evaluate the cerebral vascular status. Admission protocols included 
noncontrast CT, perfusion CT imaging, and CT angiography with the 
following parameters: tube voltage, 70–90 kV; and tube current, 
100–250 mA. A 45 mL iopromide bolus was injected at a flow rate of 
4 mL/s, followed by 30 mL saline. The occlusion site was confirmed 
on CT angiography. The Alberta Stroke Program Early CT Score was 
assessed using early noncontrast CT. Perfusion CT imaging was used 
to confirm the core infarction volume using quantitative software. 
Follow-up noncontrast CT images were obtained using the same scan 
parameters. Follow-up MRI was performed using a 3.0 T MRI 
scanner. The MRI sequences included axial T1-weighted, axial 
T2-weighted, axial fluid-attenuated inversion recovery, and axial 
diffusion-weighted images with b values of 0 and 1,000 s/mm2, as well 
as automatically calculated apparent diffusion coefficient maps. On 
follow-up CT or diffusion-weighted images, the BGI final volume was 
quantified using semi-automated software (uAI workstation). 
Hemorrhagic transformation was defined as parenchymal hemorrhage 
or hemorrhagic infarction. Parenchymal hemorrhage was 
demonstrated as a dense blood clot with a substantial to mild space-
occupying effect on the infarction core. Hemorrhagic infarction was 
defined as sparse hyperdensities within the infarction core or along its 
margins (21).

2.4 Endovascular treatment and 
angiographic evaluation

Endovascular treatment was performed in the Neuroangiography 
Suite using a biplane digital angiography machine (Artis Zee; Siemens 
Healthcare). Patients were treated under conscious sedation or general 
anesthesia before the procedure. Angiographic features of the LSA 
were evaluated before and after thrombectomy. The Yaşargil (22) 
classification was used to classify the LSAs. The morphology of the 
LSA, including its patency and length, was compared as described in 

Figures 2A–C; when vessels appeared as continuous dense lines in 
contrast to adjacent areas, they were classified as LSA+; otherwise, 
they were classified as LSA−. The pre- and post-thrombectomy LSA 
sign patterns, from fine to worst, were graded as 1. LSA+/+, 2. 
LSA−/+, 3. LSA+/−, 4. LSA−/−. LSA+/+ or LSA−/+ were considered 
favorable LSA patterns. Conversely, LSA+/− and LSA−/− were 
considered unfavorable patterns. Collateral flow in the ipsilateral 
ischemic region was assessed based on the American Society of 
Interventional and Therapeutic Neuroradiology collateral score. 
Levels 3 and 4 were defined as good collaterals, whereas levels 0–2 
were defined as poor. Two board-certified neuroradiologist and 
neurointerventionalist independently assessed LSA sign patterns and 
collateral circulation. Discrepancies were resolved through a 
consensus review. The mTICI grade were assessed at the end of the 
intervention. The mTICI score of 3 deemed as complete 
recanalization (23).

2.5 Statistical analysis

Continuous variables were described as mean ± standard 
deviation or median (interquartile range). Student’s t-test, Mann–
Whitney U test, or Fisher’s exact test was used depending on the data 
normality. The Kruskal–Wallis H test and chi-square test were used 
for multi-group comparisons as well as post hoc pairwise comparisons. 
Univariate and multivariate logistic analyses were performed to 
identify independent parameters after comparing the degrees of 
collinearity between the two variables. Confounders were selected a 
priori based on existing literature and clinical consensus (24). 
Multivariable logistic regression models were used to estimate 
associations and adjust confounders. Sensitivity analyses were 
conducted by comparing LSA patterns with adjustment of 
confounders. All logistic regression results were expressed as odds 
ratios (OR) or adjusted OR with corresponding 95% confidence 
intervals. Prediction performance was assessed using receiver 
operating characteristic (ROC) curve analysis. Goodness of fit was 
assessed using the Hosmer–Lemeshow test. The area under the curve 
(AUC) of nested models with and without confounders. Internal 
validation was performed using 1,000 bootstrap samples. The 
agreement between observed and predicted outcomes was assessed 
using calibration plots. Statistical significance was set at two-tailed 
p-values of <0.05. All statistical analyses were performed using SPSS 
and R software.

3 Results

3.1 Demographic and clinical 
characteristics

Initially, 251 participants were enrolled to our cohort. Patients were 
excluded for posterior circulation occlusion (n = 32), missing follow-up 
imaging (n = 29), unsatisfactory recanalization or mTICI less than 2c 
(n = 11) and incomplete medical record (n = 21). In total, 158 patients 
fulfilled the inclusion criteria. The demographic and procedural 
characteristics of the participants are shown in Table 1. The mean age was 
64 ± 14.5 years, and 60.8% (96) participants were male. On admission, 
hypertension was prevalent in 63.9% (101) of the study cohort. In the 
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FIGURE 2

Pre-thrombectomy and post-thrombectomy images of representative LSA recanalization cases. The upper right circle demonstrates LSA perfusion 
details. Yellow arrows marked the anatomical positions of LSAs and MCA. Case 1 (A). An 80-year-old female patient with proximal M1 occlusion 
showed faint LSA visualizations on preoperative angiography, which remarkably improved angiographic opacification after mechanical thrombectomy. 
Case 2 (B). A 59-year-old male patient with distal M1 occlusion exhibited clearly visible LSAs on preoperative angiography, which showed near-
complete LSA occlusion with loss of angiographic delineation on post-thrombectomy scan. (C) The coronal anatomical illustration of the basal ganglia 
region, including the MCA perforators, which supplies the nucleus in this region. LSA, lenticulostriate artery; MCA, middle cerebral artery.
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study cohort, 25.3% (40) of patients had no BGI and 41.8% (66) achieved 
good long-term outcome (90-day mRS ≤2). Good long-term outcomes 
were more prevalent among younger adults and male populations 
(p < 0.001 and p = 0.023, respectively). (Supplementary Tables 1, 2). 
Hypertension, diabetes mellitus, stroke, and atrial fibrillation were 
associated with poor long-term outcome. The M1 segment was the most 
frequent occlusion site (54.4%), significantly more common than both 
M2 and internal carotid artery occlusions (10.1%) in the BGI group 
(p = 0.027). The elevated blood pressure and use of antiplatelets/
anticoagulants therapy were more common in BGI and worse long-term 
outcome. Baseline, discharge NIHSS and discharge mRS scores 
significantly differ in BGI and 90-day mRS scores. Significantly higher 
rates of hemorrhagic transformation were observed in patients with BGI 
(44.9% vs. 15.0%, p = 0.001). Additionally, hemorrhagic transformation 
was significantly associated with both short- and long-term outcomes 
(p = 0.001 and 0.005, Supplementary Figure 1).

3.2 LSA sign patterns with clinical 
outcomes

The LSA sign patterns significantly impacted clinical outcomes 
in intergroup comparison, as shown in Table 2. Among the patients 
with patent LSA post-thrombectomy, 36 and 79 were of the LSA+/
LSA+ and LSA−/LSA+ groups. The median 90-day mRS scores were 
1 and 3, respectively. LSA+ pre- and post-thrombectomy were 
significantly associated with the absence of BGI after treatment 
(p = 0.026 and 0.023, respectively; Supplementary Table  1). The 

LSA+/LSA− and LSA+/LSA+ groups demonstrated significantly 
higher rates of insular lobe infarction than the LSA−/LSA+ group (60 
and 63.9% vs. 26.6%, p = 0.001). The LSA−/LSA− group showed a 
greater median infarction volume than the LSA+/LSA+ group 
(7,732 mm3 vs. 620 mm3). In intergroup comparison, indistinct LSA 
post-thrombectomy (LSA−/LSA− and LSA+/LSA−) was associated 
with more severe long-term outcomes (Figure  3). Good clinical 
outcomes were observed in the LSA+/LSA+ compared to the LSA+/
LSA− group (66.7% vs. 30.0%, p = 0.004).

3.3 Associations of LSA patterns for BGI 
and 90-day mRS score according to the 
different multivariate models

All variables with statistical significance were included into 
univariate and multivariate regression analysis 
(Supplementary Tables 3, 4). Four multivariate regression models 
were constructed to adjust for potential confounders. In the 
unadjusted crude model, LSA patterns were positively associated 
with BGI (p = 0.008) as shown in Table 3. In model 1 that adjusted 
for gender, NIHSS on admission, and occlusive vessel site, LSA 
patterns remained positively associated with BGI (p = 0.030). In 
model 2, after additional adjustment of peri-procedural variables, 
LSA patterns remained positively associated with BGI (p = 0.037). 
In Table 4, model 3 adjusted for age, gender, hypertension, diabetes 
mellitus, stroke history, atrial fibrillation, and NIHSS on admission. 
Model 4 adjusted for peri-procedural variables. After adjusting all 
confounders, LSA sign patterns and discharge mRS score remained 
independent predictors for 90 day mRS >2 (p = 0.001 and 0.008).

3.4 ROC analysis

The AUC the nested models for BGI ranged between 0.74–0.92, 
with or without adjustment for confounders (Supplementary Table 5). 
Regarding long-term outcome prediction, the AUC of the predictive 
models ranged between 0.91–0.96. The ROC curves of the prediction 
models combining LSA patterns were compared with prediction models 
without LSA patterns, shown in Figure 4. Prediction models without 
LSA patterns had lower AUC than models combining LSA patterns 
(AUC: 0.74 vs. 0.69 and 0.91 vs. 0.89). The bootstrap C-index values of 
the prediction models for BGI and 90-day mRS score were 0.78 and 
0.97, respectively. Both prediction models exhibited better calibration 
and discrimination ability (Hosmer–Lemeshow test χ2 = 4.59, p = 0.830).

4 Discussion

To the best of our knowledge, this is the first study to 
characterize pre- and post-thrombectomy LSA angiographic signs 
in patients with large-vessel occlusion. Our study suggests that LSA 
sign patterns are significantly associated with BGI and long-term 
functional independence. Our models comprising clinical and 
imaging markers demonstrated good prediction performance for 
both BGI and 90-day mRS scores (AUCs, 0.74 and 0.91, 
respectively) and may thereby play a promising role in facilitating 
treatment strategies following thrombectomy.

TABLE 1  Baseline characteristics of study’s cohort.

Characteristics Datum

Age (years) 64 ± 14.5

Male 96 (60.8)

Left lesioned side 75 (47.5)

Height (cm) 165 (150, 181)

Weight (kg) 65 (45, 130)

Illness history

Hypertension 101 (63.9)

Diabetes mellitus 48 (30.4)

Coronary disease 27 (17.1)

Stroke history 38 (24.1)

Atrial fibrillation 43 (27.4)

NIHSS on admission 10 (0,37)

Occlusive vessel site

M1 106 (67.1)

M2 25 (15.8)

ICA 27 (17.1)

Complete recanalization (mTICI ≥3) 138 (87.3)

Time from angiography to puncture (min) 5 (5, 40)

Time from puncture to recanalization (min) 36 (22, 67)

Data are presented as means ± standard deviations, medians with interquartile ranges in 
parentheses, or numbers of patients with percentages in parentheses.
ICA, internal carotid artery; mTICI, modified thrombolysis in cerebral infarction.
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While a number of studies have explored the prognostic value of 
LSA visualization in stroke triage. Kaesmacher et al. (12) reported that 
the appearance of LSAs on magnetic resonance angiography after 
thrombectomy was associated with favorable outcomes. Horie et al. 
(25) suggested that the basal ganglia fate was associated with the 
involvement of LSA. In contrast, other studies have shown that 
pre-thrombectomy LSA visualization or MCA occlusion involving 
LSA also correlates with prognosis (11, 16, 26). In the current study, 
we  characterize the LSA dynamic change during thrombectomy, 
integrating both pre- and post-treatment imaging to identify patterns. 
Notably, this method relies on standard DSA during the intervention 
course, avoiding additional appointment registration or scheduling 
delays. Despite its clinical convenience, the utility of the dynamic LSA 
patterns for prediction purpose remained underexplored. Our 
findings address this gap by using LSA status as independent predictor 
for both BGI and 90-day functional outcomes, even after adjusting for 
multiple clinical and radiological confounders. After adjustment risk 
factor of age, gender, medical history, admission NIHSS, occlusion 
site and peri-procedural factors, the associations between LSA 
patterns and predicting BGI as well as long-term mRS outcomes 
remained statistically significant, confirming its independent 
prognostic value.

Our intergroup comparison found that imaging and clinical 
outcomes varied widely based on LSA sign patterns, with favorable 
post-thrombectomy LSA patterns associated with a good long-
term prognosis. For instance, patients with patent LSA throughout 
the intervention (LSA+/LSA+ group) demonstrated a median 
90-day mRS score of 1, which is lower than the median 90-day 
mRS score of those with unfavorable LSA patterns after 
thrombectomy (LSA−/LSA− and LSA+/LSA− groups). Regarding 
the unfavorable LSA patterns before and after treatment, the 
lentiform nucleus was found to be most vulnerable to ischemia, 
followed by the insular lobe, caudate nucleus, and internal capsule. 
As previously described, this is due to the differences in the 
cellular constituents and metabolic demands of the regional 
territories. The caudate nucleus, lentiform nucleus, and insular 
lobes, which are composed of gray matter, are relatively more 
sensitive to anoxic environments. Conversely, the internal capsule, 
which is composed of white matter (27), is less vulnerable to 
ischemia after thrombectomy (28, 29).

The phenomenon of unfavorable LSA vascular patterns during 
thrombectomy result in poor prognosis could be interpreted. Certain 
neuroimaging markers of LSA morphology have been proposed to 
reflect vascular vulnerability (12, 29, 30). Because of the congenital 

TABLE 2  Intergroup comparison of post-treatment clinical outcomes among different LSA patterns.

Variables LSA sign patterns

LSA−/LSA+ 
(n = 79)

LSA−/LSA− 
(n = 23)

LSA+/LSA− 
(n = 20)

LSA+/LSA+ 
(n = 36)

p

Hemorrhage transformation 

(n = 59)
31 (39.2) 11 (47.8) 8 (40.0) 9 (25.0) 0.307

Parenchymal hemorrhage 

(n = 13)
7 (8.9) 3 (13.0) 2 (10.0) 1 (2.8)

Hemorrhagic infarction 

(n = 46)
24 (30.3) 8 (34.8) 6 (30.0) 8 (22.2)

Discharge NIHSS 4 (0, 42) 8 (0, 42) 10 (0, 42) 4 (0, 32) 0.094

Discharge mRS 2 (0, 6) 3 (0, 6) 4 (0, 6) 2 (0, 6) 0.204

BGI volume/mm3 4,178 (0, 50,310) 7,732 (0, 33,078)a 7,050 (0,28,040) 620 (0, 48,873) 0.004*

BGI evolution <0.001*

Progression (n = 26) 5 (6.3)a 1 (4.3)a 2 (10.0)a 18 (50.0)

Persistent infarction (n = 81) 47 (59.5)a 15 (65.2)a 9 (45.0) 10 (27.8)

Regression (n = 31) 14 (17.7) 5 (21.7) 7 (35.0) 5 (13.9)

Remained normal (n = 20) 13 (16.5) 2 (8.7) 2 (10.0) 3 (8.3)

Infarction of the LSA territory

Caudate nucleus (n = 43) 16 (20.3) 11 (47.8) 6 (30.0) 10 (27.8) 0.074

Internal capsule (n = 52) 25 (31.6) 12 (52.2) 8 (40.0) 7 (19.4) 0.072

Lentiform nucleus (n = 114) 60 (75.9)a 20 (87.0)a 16 (80.0) 18 (50.0) 0.006*

Insular lobe (n = 65) 21 (26.6) 9 (39.1) 12 (60.0)b 23 (63.9)b 0.001*

Long-term functional 

outcome (90 days mRS)
3 (0, 6) 5 (0, 6) 5 (0, 6) 1 (0, 6) 0.023*

Good functional outcome 

(90 days mRS ≤2)
30 (37.9)a 6 (26.1)a 6 (30.0) 24 (66.7) 0.004*

Data are presented as means ± standard deviations, medians with interquartile ranges in parentheses, or numbers of patients with percentages in parentheses. In post hoc pairwise comparisons: 
a, significant compared to LSA+/LSA+ group. b, significant compared to LSA−/LSA+ group.
*p-values indicate the significance of predictors with a threshold of <0.05.
NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin scale; LSA, lenticulostriate artery; BGI, basal ganglia infarction; ICA, internal carotid artery.
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absence of anastomotic branches of perforating arteries, this vascular 
anatomy is inherently predisposed to lenticulostrate infarction 
depending on occlusion site of perforating arteries (31). In addition, 
microvascular hemodynamic changes may contribute to this 
vulnerability. Studies have shown that lack of dilated or preserved 
LSAs on follow-up MRA may associated with less favorable functional 
outcomes, possibly impacting microvascular integrity and more 
extensive reperfusion injury (12, 30). Prolonged hypoperfusion or 
delayed reperfusion following large-vessel occlusion damage the 
cerebral autoregulatory mechanisms in small perforating arteries, lead 
to infarction in ischemia-prone territories such as the striatocapsular 
region. Other factors such as inflammatory responses and thrombus 

migration have also been implicated as mechanisms that may impair 
vascular response to ischemia (32, 33).

Moreover, we found that hemorrhagic transformation was not 
associated with LSA patency. However, its incidence was higher with 
BGI. After spontaneous reperfusion, a series of changes including 
activation of the endothelium and excessive production of oxygen-
free radicals can compromise the integrity of the blood–brain barrier 
within infarcted areas (34). Despite successful recanalization, 
hyperperfusion and hemodynamic changes in the infarcted tissue 
may occur. These hemodynamic changes, especially in the LSA 
territory where leptomeningeal collaterals are scarce, are associated 
with a higher risk of hemorrhagic transformation (35). Nevertheless, 

FIGURE 3

Bar graph depicting the distribution of 90 days mRS in terms of LSA patterns. LSA, lenticulostriate artery; 90 days mRS, 90 days modified Rankin scale.

TABLE 3  Association of LSA patterns with BGI.

Primary 
outcome: BGI

Crude Model 1 Adjusted Model 1 Adjusted Model 2

Variables Unadjusted OR p Adjusted OR p Adjusted OR p

LSA patterns 0.008* 0.030* 0.037*

LSA−/LSA+ 1 1 1

LSA−/LSA− 3.88 (0.55, 45.77) 1.96 (0.41, 14.72) 2.95 (0.72, 20.16)

LSA+/LSA− 1.07 (0.21, 6.06) 1.02 (0.23, 4.77) 0.97 (0.28, 3.92)

LSA+/LSA+ 0.17 (0.04, 0.61) 0.34 (0.11, 0.88) 0.39 (0.16, 0.94)

Hemorrhagic 

transformation
5.29 (1.64, 20.27) 0.008* 4.25 (1.49, 14.12) 0.012* 3.62 (1.22, 10.48) 0.009*

Discharge mRS 0.97 (0.71, 1.31) 0.852 1.07 (0.85, 1.36) 0.563 1.19 (0.98, 1.46) 0.081

Crude model 1 adjusted for none.
Adjusted Model 1: adjusted for gender, NIHSS score on admission, and occlusive vessel site.
Adjusted Model 2: adjusted for SBP and DBP in addition to the variables in Adjusted Model 1.
Data are presented as odds ratio with 95% confidence interval in parentheses.
*p-values indicate the significance of predictors with a threshold of <0.05.
BGI, basal ganglia infarction; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; LSA, lenticulostriate artery; OR, odds ratio.
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the neurological status at discharge could have more impact long-
term outcomes than BGI and hemorrhagic transformation. BGI is 
more closely associated with cognitive impairment (10). The 
incorporation of discharge NIHSS and discharge mRS scores into the 
second model aligns with previous research (10, 25). The early 
neurological exam could predict long-term neurological function 
status and the daily activities rehabilitation.

Importantly, our finding regarding LSA signs was consistent with 
previous studies, supporting the use of LSA patterns for predicting 
outcomes in the striatocapsular region and prognostication after 
endovascular therapy (12, 26). Moreover, its predictive accuracy was 

on par with existing models that rely on angiography imaging for 
prognosis (36). Our findings are consistent with recent studies, and 
our investigation of vascular imaging markers further supports 
current systematic review evidence. Our investigation of vascular 
imaging markers further supports current systematic review evidence 
(17). This underscore the pragmatical use of intra-procedural 
angiographic signs, such as LSA patterns, to guide prognosis without 
the need for costly additional imaging or waiting for long-
term evaluation.

This study has several limitations. First, this was a retrospective 
study with a relatively small sample size. Large-sample prospective 

TABLE 4  Association of LSA patterns with long-term outcome.

Secondary 
outcome: 
90 days mRS >2

Crude Model 2 Adjusted Model 3 Adjusted Model 4

Variables Unadjusted OR p Adjusted OR p Adjusted OR p

LSA patterns 0.002* 0.002* 0.001*

LSA−/LSA+ 1 1 1

LSA−/LSA− 1.98 (0.39, 11.64) 2.61 (0.58, 13.42) 1.68 (0.42, 7.02)

LSA+/LSA− 0.31 (0.03, 3.81) 0.34 (0.06, 1.78) 0.39 (0.08, 1.80)

LSA+/LSA+ 0.07 (0.01, 0.35) 0.09 (0.02, 0.39) 0.10 (0.02, 0.36)

Hemorrhagic 

transformation
1.79 (0.51, 6.74) 0.372 1.20 (0.42, 3.39) 0.743 1.52 (0.58, 4.05) 0.382

Discharge NIHSS 1.14 (1.01, 1.34) 0.063 1.13 (1.01, 1.30) 0.052 1.18 (1.05, 1.35) 0.010*

Discharge mRS 1.81 (1.05, 3.24) 0.032* 1.91 (1.25, 3.01) 0.003* 1.70 (1.14, 2.53) 0.008*

Crude Model 2 adjusted for none.
Adjusted Model 3: adjusted for age, gender, hypertension, diabetes mellitus, stroke history, atrial fibrillation, and NIHSS score on admission.
Adjusted Model 4: adjusted for SBP and antiplatelet/anticoagulant therapy in addition to the variables in Adjusted Model 3.
Data are presented as odds ratio with 95% confidence interval in parentheses.
*p-values indicate the significance of predictors with a threshold of <0.05.
NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; LSA, lenticulostriate artery; OR, odds ratio.

FIGURE 4

Comparison of prediction models with versus without LSA combination. Blue curves represent models without LSA patterns. Red curves represent 
models with LSA patterns [(A) BGI; (B) Long-term outcome]. Shaded area indicates confidence intervals. LSA, lenticulostriate artery; AUC, area under 
the receiver operating characteristic curve.
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studies are warranted for external validation of the clinical 
applicability of the proposed predictive model. Second, 
heterogeneity in the clinical background and management of the 
patients, including discharge medication, was not controlled and 
may have influenced the prognosis and, thus, the performance of 
our model. Finally, a longer follow-up period should be considered 
to assure more accurate evaluation of the long-term predictive 
performance of the model.

In conclusion, our findings underscore the importance of 
routine monitoring of the LSA sign in patients with large-vessel 
occlusion undergoing thrombectomy. Our proposed models 
demonstrated good predictive performance for both BGI and 
90-day mRS scores following mechanical thrombectomy. Further 
clinical studies are warranted to validate our findings and explore 
the role of LSA sign patterns in predicting interventional surgical 
outcomes in large-vessel occlusions.
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