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Background: The Voxel-based Specific Regional Analysis System for Alzheimer’s 
Disease (VSRAD), a voxel-based morphometry tool quantifying medial temporal 
lobe atrophy as region-specific Z-scores, is widely used in clinical practice 
for detection of Alzheimer’s disease (AD). However, it typically require high-
resolution 3D T1-weighted MRI, which is often difficult to acquire in elderly or 
cognitively impaired patients. This study aimed to evaluate whether 3D volumes 
generated by SynthSR from 2D T1-weighted MRI can yield volumetric and 
VSRAD-derived indices that are comparable to those from standard 3D images, 
by assessing agreement, rank consistency, and diagnostic performance.
Methods: In this retrospective single-center study, MRI data from 75 patients 
were analyzed using both standard 3D T1-weighted images and SynthSR-
generated 3D volumes reconstructed from 2D T1-weighted sequences. Regional 
brain volumes and four key Z-score indices from VSRAD were compared using 
Wilcoxon signed-rank tests with Bonferroni correction, robust Bland–Altman 
analysis, Spearman’s rank correlation, and receiver operating characteristic 
(ROC) curve analysis focusing on Score 1 “Severity.”
Results: All Z-score indices and segmented volumes showed significant absolute 
differences between the two methods (p < 0.0071), with SynthSR-based data 
generally yielding larger volume estimates. Despite these differences, Spearman’s ρ 
remained consistently high (ρ > 0.7) for brain volume and Score 3 “Ratio,” and other 
clinically relevant indices also demonstrated moderate correlations. ROC analysis 
demonstrated high value of the area under the curve (AUC) values for both standard 
3D volumes (0.90) and SynthSR-generated 3D volumes (0.96), with no statistically 
significant difference between the two methods (Z = 0.009, p = 0.99, DeLong’s test).
Conclusion: Although SynthSR-based images produced systematically different 
absolute values, they preserved rank-order correlations and maintained diagnostic 
performance comparable to that of standard 3D volumes in VSRAD analysis. 
Considering that conventional 3D acquisitions are often difficult to obtain in 
elderly patients undergoing dementia screening, SynthSR-based reconstruction 
may represent a practical alternative in routine clinical practice, particularly for 
Score 1 “Severity,” the most clinically relevant marker of hippocampal atrophy.
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Introduction

According to the World Health Organization, the global 
population aged over 60 is projected to reach 2.1 billion by 2050, while 
the number of individuals over 80 is expected to triple to 426 million 
between 2020 and 2050 (1). Dementia is a prevalent condition, with 
its global incidence steadily increasing in recent years (2, 3). Timely 
diagnosis of conditions such as Alzheimer’s disease (AD) and mild 
cognitive impairment (MCI) is crucial for maintaining patients’ 
quality of life, as early intervention can potentially slow disease 
progression (4–6). Hippocampal atrophy is a characteristic feature of 
AD, making the recognition of this atrophy at an early stage 
particularly useful (7).

One commonly used image analysis tool is VSRAD (Voxel-based 
Specific Regional Analysis System for Alzheimer’s Disease), developed 
by Eisai, a computer-aided diagnostic system designed to support 
theclinical diagnosis of AD at an early stage (8, 9). VSRAD uses 
modified voxel-based morphometry (VBM) software. This software 
combines Statistical Parametric Mapping 8 (SPM8) and 
Diffeomorphic Anatomical Registration Through Exponentiated Lie 
Algebra (DARTEL) algorithm for the detection and quantitative 
assessment of AD to compare a patient’s brain MRI to a normative 
database of healthy individuals (10). Thus, VSRAD primarily 
evaluates atrophy in the medial temporal lobe (including the 
hippocampus and parahippocampal gyrus), visualizing results as 
Z-score maps and quantifying the degree of atrophy in various brain 
regions with high versatility (11, 12). VSRAD is used in over 3,000 
facilities in Japan and has been validated across multiple centers. This 
corresponds to roughly 30–40% of all MRI-equipped facilities 
nationwide. VSRAD ordinarily requires three-dimensional 
T1-weighted volume images, which take about five minutes to 
acquire. However, acquiring such data is often challenging in patients 
with suspected dementia due to poor compliance and motion 
artifacts, which frequently degrade image quality. Consequently, 
routine clinical imaging still relies mainly on two-dimensional 
sequences. However, the relatively large slice thickness of typical 2D 
scans (approximately 4–5 mm) poses a particular challenge for 
quantitative analyses like VBM, especially when analyzing historical 
2D image data.

SynthSR is an image super-resolution technique recently 
implemented in FreeSurfer, a comprehensive open-source software 
package used for processing and analyzing brain MRI images. It has 
been shown to be capable of generating high-quality, high-resolution 
images from low-resolution MRI scans, which ultimately improves the 
accuracy of brain structure analysis (13, 14). Compared to 
conventional interpolation methods, SynthSR has been reported to 
reproduce more detailed brain structures and can complement older, 
low-resolution MRI datasets (15). Furthermore, SynthSR has served 
as a benchmark for newer models such as LoHiResGAN, which 
convert low-field into high-field equivalents (16), and has been 
integrated into workflows for Alzheimer’s disease assessment using 
hippocampal and white matter hyperintensity quantification (17). 
Recent studies have also applied SynthSR to ensure anatomical 
consistency in youth cohorts (18) and to generate cerebrospinal fluid 
(CSF) volumetrics predictive of stroke outcomes (19). These 
applications highlight SynthSR’s potential in both standardizing 
heterogeneous datasets and expanding the utility of legacy MRI data 
or data from resource-limited settings.

In this study, we evaluated the agreement and comparability of 
VSRAD analysis results between 3D volumes generated from 2D 
T1-weighted images and standard 3D T1-weighted volumes, with 
particular focus on between-method agreement, rank-based 
consistency, and diagnostic performance. We  assessed whether 
SynthSR-generated 3D images from 2D inputs could yield results 
comparable to standard 3D images, potentially offering a more 
practical approach for dementia assessment.

Materials and methods

Study design

This single-center, retrospective, observational study was 
conducted using data collected from November 2021 to January 2022. 
The study cohort consisted entirely of patients who underwent head 
MRI because of suspected cognitive decline in routine clinical 
practice. VSRAD analysis was performed on both conventional 2D 
T1-weighted images and standard 3D T1-weighted images. Given that 
the objective of this study was methodological rather than diagnostic, 
the analysis focused exclusively on this clinically relevant elderly 
cohort, without introducing a separate healthy control group or 
stratification by dementia subtype. This design allowed us to directly 
assess the comparability between standard 3D and SynthSR-generated 
3D volumes under real-world clinical conditions.

Image acquisition

The head MRI was performed during a routine clinical 
examination. A 1.5 Tesla MRI system (SIGNA Explorer 1.5 T, GE 
Healthcare Japan, Tokyo, Japan) with 8-channel coil was used. 2D 
T1-weighted images (T1w_2D) were acquired using periodically 
rotated overlapping parallel lines with enhanced reconstruction 
(PROPELLER). The imaging parameters were as follows: the matrix 
size was 224 × 224, slice thickness was 6.00 mm, repetition time (TR) 
was 567 ms, echo time (TE) was 12 ms, flip angle was 90°, field of view 
(FOV) was 24.0 cm. Acquisition time was 105 s. 3D T1-weighted 
images (T1w_3D) were acquired using spoiled gradient recalled 
acquisition in steady state (SPGR) in the sagittal plane. Its parameters: 
the matrix size was 256 × 256, slice thickness was 1.50 mm, TR was 
11.4 ms, TE was 4.48 ms, flip angle was 15°, FOV was 25.6 cm. 
Acquisition time was 232 s. T1w_3D was used for control data. For 
each patient, both 3D and 2D T1-weighted images were acquired on 
the same day during a single MRI session.

Generating 3D volume data

T1w_2D images were converted from DICOM to NIfTI format 
using MRIcroGL (20). The 3D volume data (T1w_2DSR) were 
generated using FreeSurfer’s SynthSR from T1w_2D modified to 
NIfTI file format (13–15). SynthSR was used with default settings, 
except that 4 CPU threads were specified. The 3D volume was output 
as a 1.0 mm MPRAGE-like image with standard contrast, bias 
magnetic field correction, and inpainting of white matter lesions. The 
average time for T1w_2DSR generation was 77 s. The generated 
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T1w_2DSR was in NIfTI format. Since VSRAD required DICOM in 
the sagittal orientation, the image was reoriented from axial to sagittal 
and converted to DICOM format using 3D Slicer (Figure 1) (21). All 
processing was performed under Windows Subsystem for Linux 2 
(WSL2) using a laptop computer ThinkPad X1 Extreme (Lenovo Japan 
LLC, Tokyo, Japan) with the following specifications: Intel Core 
i7-8750H CPU (up to 4.10 GHz), 32 GB RAM (Intel Corp., California, 
USA), and NVIDIA GeForce GTX 1050 Ti with Max-Q Design 
(Nvidia Corp., California, USA).

VSRAD advance analysis

Several versions of VSRAD have been developed. In this study, 
we used “VSRAD advance,” which was based on SPM 8 and incorporated 
DARTEL (11, 22, 23). VBM was performed on both T1w_2DSR and 
T1w_3D, yielding data on segmented white matter (WM), gray matter 
(GM), CSF (Figure 2). Four Z-scores reflecting the degree of atrophy in 
the specific volume of interest (VOI) were automatically calculated and 
provided by VSRAD advance, based on comparing each patient’s data 
with an internal database of 80 healthy volunteers. The Z-score was 
defined as [(control mean)  – (individual value)]/(control standard 

deviation) (11). The Z-scores generated by VSRAD advance visualize 
and quantitatively evaluate the degree of gray matter atrophy in the 
regions of interest, primarily the parahippocampal gyrus including the 
medial temporal lobe, which is closely associated with Alzheimer’s 
disease, by measuring the degree of deviation from the normative brain 
database. The four scores were as follows: Score 1 “Severity”: Z-score 
reflecting the severity of GM atrophy in the VOI. Score 2 “Extent”: the 
extent of GM atrophy in the VOI. Score 3 “Ratio”: the ratio of the extent 
of GM atrophy in the VOI to the whole brain. Score 4 “Maximum”: the 
maximum z-score of the severity of GM atrophy in the VOI of AD 
(24–28). To mitigate volumetric inaccuracies introduced by non-linear 
spatial normalization and Gaussian smoothing in the DARTEL pipeline, 
intermediate WM and GM segmentation files were used for estimating 
native-space volumes. Total brain volume was calculated as the sum of 
the WM and GM volumes (WM + GM). Measurements were performed 
using the Segment Statistics module of 3D Slicer (13).

Statistical analysis

In this study, to compare the standard method and the proposed 
method, statistical analyses were performed using R (version 4.3.3; 

FIGURE 1

T1-weighted images used in the standard and proposed methods. The top row shows 3D T1-weighted images acquired using spoiled gradient recalled 
acquisition in steady state (SPGR) sequence with the standard method. The middle row shows 2D T1-weighted images acquired using periodically 
rotated overlapping parallel lines (PROPELLER), which are commonly used in clinical settings. The bottom row shows 3D volume data generated from 
2D T1-weighted images using FreeSurfer’s SynthSR tool. The red rectangles in the middle and bottom rows indicate that the parietal region was not 
included in the original scan and therefore could not be generated.
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R Foundation for Statistical Computing, Vienna, Austria) and 
RStudio (2023.06.1; Posit, Boston, USA) (29, 30). The normality of 
the data distribution for each variable was assessed using the 
Shapiro–Wilk test. Variables that did not follow a normal 
distribution (p < 0.05) were analyzed using non-parametric methods 
(31). We conducted a Wilcoxon signed-rank test (paired, two-sided) 
to determine if there were statistically significant differences between 
the T1w_3D and T1w_2DSR groups (32). Bonferroni correction 
(significance threshold at α = 0.05/7 ≈ 0.0071) was performed to 
compare several indices simultaneously (33). Given the non-normal 
distribution of differences and the presence of outliers, we  next 
implemented a robust Bland–Altman plot using the median bias and 
interquartile range (IQR), which provides a more reliable 
interpretation of agreement by reducing the influence of skewness 
and extreme values on the summary estimates (34–36). We plotted 
the differences and means of the two methods and calculated the 
95% confidence interval of the differences. Spearman’s rank 
correlation analysis was employed to evaluate monotonic 
relationships between the volume estimates derived from the 
standard method and the proposed method. This non-parametric 
approach was appropriate given the lack of normality and the 
interest in rank-based consistency. The correlation strength was 
interpreted as follows: ρ < 0.3 = weak, 0.3–0.7 = moderate, and > 
0.7 = strong correlation (37). Receiver operating characteristic 
(ROC) curve analyses were conducted to assess the diagnostic 

performance between patients diagnosed AD and cognitively 
normal controls. The final diagnoses were determined by dementia 
specialists based on clinical, neuroimaging, and neuropsychological 
information. The area under the curve (AUC) was calculated for 
both methods (38, 39), and optimal cutoff points were identified via 
the Youden Index (40). ROC curves were compared using DeLong’s 
test implemented in the pROC package in R (41).

Ethical considerations

The study was reviewed by the ethics committee of our institution 
(FY2023-02). An opt-out notice was published on the 
institution’s website.

Results

Seventy-five patients underwent MRI during the study period. 
Of these, 21 (28.0%) were male. The mean age was 83.5 years (range, 
61–107 years). This cohort reflects the typical population undergoing 
dementia screening in Japan. For all cases, 3D volume data 
(T1w_2DSR) were successfully generated from T1w_2D using 
SynthSR. The generated T1w_2DSR did not reconstruct the parietal 
CSF region because it was not imaged in the original T1w_2D. Each 

FIGURE 2

Segmented images obtained by VSRAD. The left panel shows the VSRAD analysis results using the SynthSR-based method (T1w_2DSR). Segmented 
gray matter (GM), white matter (WM), cerebrospinal fluid (CSF) images were successfully generated. The right panel shows the comparison of 
segmented GM, WM and CSF images using the standard method (T1w_3D). These results indicate that the volume data generated by SynthSR 
demonstrated comparable segmentation performance to 3D data from standard methods.
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output image was independently reviewed by two neurosurgeons. 
Cases with obvious motion artifacts and disrupted WM and GM 
segmentation in the control T1w_3D images were excluded from the 
analysis. Among the excluded cases, four (Cases 22, 26, 43 and 63) 
had showed segmentation errors involving the ventricles and GM due 
to brain atrophy (Figure 3), five (Cases 7, 11, 12, 69 and 72) showed 
segmentation failure caused by motion artifacts; and two (Cases 15 
and 39) had structural brain lesions due to stroke (Figure 4). A total 
of 64 cases were analyzed after excluding 11 cases. After VSRAD 
analysis, four scores and three volumes were calculated. For these 

evaluated indices, normality was not met in most cases (Shapiro–
Wilk test, p < 0.05), and thus non-parametric comparisons 
were adopted.

Wilcoxon signed-rank tests were conducted across seven indices. 
As shown in Table 1, all comparisons showed statistically significant 
differences between the two methods. The proposed method tended 
to yield larger volume measurements in most VSRAD scores and 
segmented volumes. After applying Bonferroni correction for multiple 
comparisons (n = 7), all p-values remained below the significance 
threshold of 0.05, confirming the robustness of the findings.

FIGURE 3

Representative excluded cases of atrophy. In Case no. 43, severe brain atrophy led to segmentation failure in both the standard and proposed 
methods, with portions of the ventricles erroneously classified as white matter (red arrowheads).
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Robust Bland–Altman analysis was conducted across seven 
indices. For each measurement pair, the median of the difference 
(Proposed method – Standard method) and the IQR were used to 
estimate robust limits of agreement defined as median ± 1.5 × IQR 
(Table 2). Among all indices, IQRs and derived limits of agreement 
varied across metrics, reflecting higher variability in volume-based 
measures than in Z-scores. Outlier analysis revealed that fewer 
than 10% of cases fell outside the robust limits of agreement for all 
variables, with the highest outlier proportions observed in gray 
matter volume and Score 1, both at 9.4%. Notably, score 3 “Ratio” 
and WM showed the largest absolute median differences, 

suggesting consistent deviations between the two methods 
(Figure 5).

Spearman’s correlation coefficients between the standard and 
proposed methods across all seven indices ranged from 0.40 to 0.74, 
with all values indicating statistically significant positive correlations 
(p < 0.001). Strong correlations (ρ > 0.7) were observed in score 3 
“Ratio” and brain volume, while the remaining indices showed 
moderate correlation (0.3 < ρ < 0.7), indicating consistent ranking 
between the two methods (Figure 6).

Twenty-nine patients were diagnosed with AD, 8 were considered 
cognitively normal, and the rest were diagnosed with other dementias. 

FIGURE 4

Representative excluded cases of stroke. Case no. 39 shows a patient with structural brain lesions due to stroke. In the 3D volume data acquired using 
the standard method, a low-signal area was observed in the left frontal lobe, consistent with cerebral infarction. In contrast, in the 3D volume 
generated by SynthSR, the lesion area appeared artificially filled in (red rectangles).
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ROC curves were drawn for AD and cognitively normal controls 
based on Score 1 “Severity” in VSRAD analysis. For the standard 
method (T1w_3D), AUC = 0.90, Youden Index = 0.72, and for the 
proposed method (T1w_2DSR), AUC = 0.96, Youden Index = 0.84 
(Figure 7). DeLong’s test revealed no statistically significant difference 
between the AUCs of the standard and proposed methods (Z = 0.009, 
p = 0.993), with a 95% confidence interval of −13.85 to 13.97. These 
results indicate that the diagnostic performance was comparable 
between the two methods.

Discussion

This study compared four VSRAD scores and three volumetric 
measurements derived from the standard 3D T1-weighted MRI 
(T1w_3D) and the proposed SynthSR-based method (T1w_2DSR) 
using a multipronged statistical approach. The Wilcoxon signed-rank 
test revealed statistically significant differences across all four VSRAD 
scores and the three segmented brain volumes. The proposed method 
generally yielded larger volumetric estimates, even after Bonferroni 
correction. These differences indicate systematic biases, likely 
attributable to the SynthSR algorithm. Robust Bland–Altman analysis 
provided further insight by showing small median differences in most 
scores and volumes (30–32). These discrepancies may reflect the 
generative behavior of SynthSR. SynthSR likely compensated for 
thinned gray matter in cases of severe parenchymal atrophy, thereby 

increasing the apparent volume in the T1w_2DSR images. This effect 
was particularly evident in cases with ischemic lesions or cortical 
atrophy, where segmentation of GM, WM, and CSF failed. These cases 
were characterized by severe brain atrophy due to aging and enlarged 
ventricles (Figure 3) (42, 43). Furthermore, GM and WM volumes 
were larger in T1w_2DSR than in T1w_3D. The overall stronger 
degree of atrophy may be attributed to the advanced age of our cohort 
(mean age 83.5 years), compared to the VSRAD reference data cohort, 
which consisted of healthy subjects aged 54–86 years (44, 45).

Because Spearman’s ρ captures monotonic associations, several 
metrics such as Score 3 “Ratio” and the total brain volume 
demonstrated strong correlations, underscoring the reliability of 
SynthSR. Other indices showed moderate correlations. Our findings 
are generally consistent with the previous validation studies of 
SynthSR, particularly regarding correlation strength (46–48). Iglesias 
et  al. demonstrated compatibility with morphometric properties 
derived from FreeSurfer and reported minimal bias across various 
brain structures (14). From a technical perspective, the use of 
Spearman’s rank correlation and robust agreement analysis follows 
recent recommendations for comprehensive evaluation of 
segmentation pipelines (49, 50).

The ROC curve analysis demonstrated high diagnostic accuracy 
for both T1w_3D (AUC = 0.90, Youden Index = 0.72) and T1w_2DSR 
(AUC = 0.96, Youden Index = 0.86). These findings suggest that both 
methods effectively differentiate between AD and normal cases. 
Although the proposed method (T1w_2DSR) showed numerically 

TABLE 1  Comparison of seven indices between the standard and proposed methods using the Wilcoxon signed-rank test.

Variable Standard median 
(Q1–Q3)

Proposed median 
(Q1–Q3)

Raw p value Bonferroni-adjusted 
p value

Score 1 “Severity” 1.23 (0.80–1.75) 2.06 (1.22–3.03) 1.59 × 10−8 1.43 × 10−7

Score 2 “Extent” 5.44 (4.74–6.31) 6.91 (4.62–9.64) 7.27 × 10−5 6.54 × 10−4

Score 3 “Ratio” 11.72 (1.81–35.67) 38.87 (9.65–75.85) 2.77 × 10−9 2.49 × 10−8

Score 4 “Maximum” 2.11 (0.37–5.55) 5.18 (1.71–7.82) 4.76 × 10−6 4.28 × 10−5

Volume of GM 482.24 (435.84–537.23) 516.33 (449.53–566.62) 2.08 × 10−6 1.87 × 10−5

Volume of WM 555.18 (518.74–582.94) 578.31 (540.41–602.12) 1.49 × 10−5 1.34 × 10−4

Volume of Brain 1061.69 (973.23–1112.59) 1111.66 (1026.41–1173.98) 5.09 × 10−7 4.58 × 10−6

*All p-values are obtained using the Wilcoxon signed-rank tests.
Bonferroni correction was applied to control for family-wise error rate (α = 0.05, n = 7).
GM, gray matter; WM, white matter.

TABLE 2  Results of Robust Bland–Altman analysis comparing VSRAD scores and volumetric measurements between the standard and proposed 
methods.

Variable Median difference IQR Lower limit Upper limit Outlier count Outlier percent

Score 1 “Severity” 0.62 1.14 −1.09 2.32 6 9.4

Score 2 “Extent” 1.50 4.86 −5.79 8.78 5 7.8

Score 3 “Ratio” 19.07 32.84 −30.20 68.33 3 4.7

Score 4 “Maximum” 1.43 4.27 −4.97 7.83 5 7.8

Volume of GM −28.27 72.27 −136.68 80.14 6 9.4

Volume of WM 128.26 129.53 −66.03 322.54 4 6.2

Volume of Brain −184.60 96.62 −329.53 −39.67 5 7.8

Each row presents the median difference (Pro − Std), the interquartile range (IQR), and the corresponding robust limits of agreement (LoA), calculated as median ± 1.5 × IQR. The number 
and percentage of outliers beyond the robust LoA are also reported.
GM, gray matter; WM, white matter.
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FIGURE 5

Robust Bland–Altman plots for the results of VSRAD analysis. Each plot illustrates the difference between the proposed method (T1w_2DSR) and the 
standard method (T1w_3D), based on VSRAD-derived volume measurements. The differences are plotted against the median of the two methods. The 
solid blue line indicates the median difference (bias), and dashed red lines represent the robust 95% limits of agreement, defined as the median ± 
1.5 × IQR. Outliers beyond the boundaries are marked and quantified. IQR: interquartile range.

higher diagnostic metrics, this difference was not statistically 
significant (DeLong test: Z = 0.009, p = 0.99). Importantly, in clinical 
practice, Score 1 “Severity”—which reflects the degree of gray matter 
atrophy in the medial temporal lobe—is a critical index for early AD 
detection and monitoring. The consistently high AUC and favorable 

diagnostic characteristics of the proposed method support its use as a 
reliable alternative when standard 3D imaging is not feasible. Notably, 
SynthSR has been employed in low-field MRI settings (15, 17) and has 
also been used for segmentation correction in lesioned or incomplete 
scans (50, 51). These prior studies, along with applications in 
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predicting thrombectomy outcomes (19) and tracking cortical lesions 
in traumatic brain injury (52), support the utility of SynthSR-enhanced 
reconstructions not only for advanced neuroimaging workflows but 
also for routine clinical scenarios, especially when standard 3D 
acquisitions are unavailable or degraded.

In DARTEL-based analyses such as VSRAD, the MRI data quality 
is critical, as factors such as head motion can significantly influence 
the results (53–56). In the present study, the quality of image data 

acquisition likely affected the results. Various strategies have been 
proposed to overcome challenges in acquiring 3D T1-weighted 
images. For example, Katayama et al. suggested using scout images for 
positioning to shorten scan time, although they reported significant 
differences in gray matter volume (55, 57, 58).

We suggest that SynthSR-enhanced volumetry is a viable 
alternative to standard 3D acquisitions in both clinical and research 
settings, particularly when scan time constraints or motion artifacts 

FIGURE 6

Spearman’s correlation coefficients between VSRAD analysis and volumetric measurements from the standard method and the proposed method. 
Scatter plots illustrate the rank-order association between measurements obtained from the standard method with 3D T1-weighted images (T1w_3D) 
and SynthSR-generated 3D volumes from 2D T1-weighted images (T1w_2DSR). Spearman’s correlation coefficients (ρ) and corresponding p-values are 
displayed in each plot. Correlation strength was interpreted as follows: ρ < 0.3 = weak, 0.3–0.7 = moderate, and > 0.7 = strong correlation. Score 3 
“Ratio” and brain volume showed strong correlations and the other indices showed moderate correlations.

https://doi.org/10.3389/fneur.2025.1645891
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Koike et al.� 10.3389/fneur.2025.1645891

Frontiers in Neurology 10 frontiersin.org

FIGURE 7

The receiver operating characteristic (ROC) curves of VSRAD Score 1 “Severity.” The ROC curve, area under the curve (AUC), and Youden index were 
compared between the standard method (T1w_3D) and the proposed method (T1w_2DSR). The standard method showed an AUC of 0.90 and a 
Youden index of 0.72, while the proposed method showed an AUC of 0.96 and a Youden index of 0.86.

are of concern. In our cohort, T1w_2DSR reduced scan time to less 
than half (105 vs. 232 s). This reduction likely helped mitigate 
motion artifacts. Nevertheless, five T1w_3D cases had to 
be excluded due to motion artifacts. It is worth noting that our 
cohort was older than the typical target population for VSRAD, and 
the absence of parietal regions in the 2D images precluded 
intracranial volume comparisons. While this limitation restricts 
direct volume ratio analyses, Z-score-based assessments, such as 
those used in VSRAD, may still benefit from SynthSR-derived 
inputs. Moreover, this approach may also be  applicable for 
longitudinal monitoring of individual patients. Previous studies 
have reported that SynthSR can improve the quality of low-field or 
heterogeneous MRI datasets, and it has been applied for 
segmentation correction in lesioned brains, harmonization across 
scanner types, and enhancement of legacy datasets (15, 17, 19). 
However, to our knowledge, its direct application to generate 
3D-equivalent volumes from 2D T1-weighted inputs for VSRAD 
analysis in Alzheimer’s disease has not been systematically 
evaluated. The innovative aspect of this study lies in leveraging 
paired 2D and 3D acquisitions obtained on the same day to validate 
the feasibility of SynthSR-based reconstructions specifically for 
VSRAD indices, which are widely used in clinical practice in Japan. 
This approach demonstrates that retrospective 2D scans can 
be  repurposed for quantitative dementia assessment, potentially 
expanding access to VSRAD analysis in settings where 3D scans are 
unavailable or degraded.

The greatest strength of this study lies in its comprehensive and 
robust statistical evaluation framework. However, several limitations 
must also be  acknowledged. These include the lack of manual 
segmentation as ground truth, the generally older age of subjects, and 
the use of single-center data. Another important limitation of this 
study is that our cohort consisted predominantly of elderly 
individuals. This reflects the real-world demographics of patients 
undergoing dementia screening in Japan, where most individuals 
referred for MRI are already in advanced age. While this population 

is clinically relevant, the advanced age makes it challenging to fully 
disentangle age-related brain atrophy from Alzheimer’s disease–
related neurodegeneration. Validation in younger subjects within the 
typical age range of AD onset would therefore be desirable. However, 
such a dataset was not available for the present retrospective single-
center study. Future multicenter investigations that include younger 
cohorts and a broader age distribution will be essential to confirm the 
generalizability of our findings. Detailed clinical or biomarker 
characterization was not systematically available and was not the 
primary aim of this methodological validation study. Our primary 
aim was to assess comparability between standard and SynthSR-
derived 3D volumes, independent of clinical diagnosis. Future studies 
should include multicenter validation across diverse populations, 
along with manual labeling to establish a reliable reference standard. 
Furthermore, although SynthSR revealed significant differences in 
many indices, the correlation coefficients remained relatively strong. 
This suggests that further optimization is warranted for specific brain 
structures and pathological conditions. Notably, the retrospective use 
of archival 2D images enabled by SynthSR may facilitate large-scale 
longitudinal studies. This approach holds promise for uncovering 
novel insights into neurodegeneration and its potentially modifiable 
risk factors.

Conclusion

This study focused on methodological validation rather than on 
diagnostic accuracy. Specifically, we evaluated whether 3D volumes 
generated using SynthSR from conventional 2D inputs yielded results 
comparable to standard 3D acquisition in a clinically relevant cohort 
of elderly individuals undergoing MRI for suspected cognitive decline. 
Considering that conventional 3D images are often difficult to obtain 
in this population, our findings suggest that SynthSR-based 
reconstruction may represent a practical alternative for VSRAD 
analysis in daily clinical practice.
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