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Background: Post-stroke sleep disorders are common chronic complications 
that can severely impair patient recovery. Although post-stroke sleep disorders 
have been effectively treated using repetitive transcranial magnetic stimulation 
(rTMS), the relative efficacy of varied rTMS modalities remains unclear.
Methods: We conducted a comprehensive search of the Cochrane Library, 
PubMed, Embase, Web of Science, Scopus, China National Knowledge 
Infrastructure, and Wanfang Data databases up to July 2024. Two investigators 
independently selected and analyzed the relevant studies, as well as evaluated 
the risk of bias, indirectness, and overall confidence in the network. A frequentist 
network meta-analysis was conducted to compare differences in the Pittsburgh 
Sleep Quality Index (PSQI) scores, sleep efficiency, and Hamilton Depression 
Scale (HAMD-17) scores following treatment with various rTMS modalities.
Results: A total of 15 randomized controlled trials involving 1,113 patients with 
post-stroke sleep disorders were included. The rTMS protocols comprised 
low-frequency stimulation of the right dorsolateral prefrontal cortex (DLPFC), 
low-frequency stimulation of the bilateral DLPFC (b-DLPFC), and high-
frequency stimulation of the left DLPFC. Compared with pharmacotherapy 
alone, low-frequency rTMS of the right DLPFC significantly improved PSQI 
scores, HAMD-17 scores, and sleep efficiency. Additionally, low-frequency 
rTMS of the b-DLPFC significantly improved PSQI scores and sleep efficiency 
compared with pharmacotherapy alone. In contrast, high-frequency rTMS of 
the left DLPFC showed no significant improvements in the PSQI scores, HAMD-
17 scores, or sleep efficiency in comparison with pharmacotherapy alone. 
Moreover, no significant differences in efficacy were observed among the three 
rTMS modalities. Finally, probabilistic ranking suggested that low-frequency 
rTMS of the right DLPFC was optimal for enhancing PSQI scores, low-frequency 
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rTMS of the b-DLPFC was most effective for improving sleep efficiency, and 
low-frequency rTMS of the right DLPFC was the most beneficial for reducing 
HAMD-17 scores.
Conclusion: Low-frequency rTMS targeting the right DLPFC offers superior 
overall effectiveness in improving sleep function and alleviating depression in 
patients with post-stroke sleep disorders.
Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024589437, identifier CRD42024589437.

KEYWORDS

repetitive transcranial magnetic stimulation, post-stroke sleep disorders, sleep 
function, depression, network meta-analysis

1 Introduction

Stroke, also known as cerebrovascular accident, is an acute disease 
characterized by the rapid onset of localized brain function loss. 
According to the Global Burden of Disease Study 2019, stroke remains 
the second-leading cause of global mortality and the third-leading 
cause of disability-adjusted life years (DALYs) worldwide (1). Globally, 
stroke imposes an annual economic burden of approximately 
US$900 billion, encompassing both direct healthcare expenditures 
and indirect costs attributable to productivity losses from disability-
adjusted life years (DALYs) and premature mortality (2). Post-stroke 
sleep disorders (PSSD), which include insomnia, sleep apnea, and 
circadian rhythm disturbances, are defined as disruptions in sleep 
quality, quantity, or timing following a stroke. These disorders may 
either emerge for the first time after the stroke or worsen if 
pre-existing, leading to clinically significant sleep disturbances that 
meet diagnostic criteria for sleep disorders (3). Furthermore, PSSD is 
a prominent issue during stroke recovery, with up to 75% of patients 
experiencing sleep-related problems after a stroke (4).

PSSD not only reduces the quality of life but also hinders post-
stroke recovery. It is associated with higher rates of functional decline, 
long-term disability, and an increased risk of stroke recurrence (5). 
This post-stroke condition has also been found to be associated with 
prolonged hospitalization, impaired rehabilitation outcomes, and an 
elevated risk of long-term disability (6, 7). Additionally, patients with 
PSSD are at an increased risk of developing post-stroke depression 
(PSD), with depression affecting about one-third of these individuals 
(8, 9). PSD is a mood disorder characterized by persistent depressive 
symptoms and a loss of interest following a stroke. In severe cases, it 
may also involve difficulties with concentration, reduced self-esteem, 
and even suicidal ideation (10). PSD can substantially complicate the 
rehabilitation process by diminishing motivation, treatment 
adherence, and emotional well-being, ultimately worsening outcomes 
and delaying recovery (11). Moreover, depression and sleep have a 
bidirectional relationship, where poor sleep quality exacerbates 
depressive symptoms, while untreated depression escalates sleep 
problems. This vicious cycle between depression and sleep severely 
hinders the post-stroke recovery process (12, 13).

The importance of addressing sleep disorders and depression is 
underscored by several studies that have established a clear link 
between these conditions and worsened stroke recovery outcomes (8, 
9). However, research on this topic has primarily focused on motor 
function recovery in patients with stroke, with relatively scarce clinical 
evidence on the management of sleep disorders and depression (11, 

14). Given the significant impact of PSSD on recovery, novel treatment 
strategies, such as repetitive transcranial magnetic stimulation 
(rTMS), have gained attention as potential solutions. rTMS is a 
non-invasive brain stimulation technique that applies magnetic pulses 
to specific brain regions to modulate neural activity and enhance 
neuroplasticity (15). Recent studies have also highlighted the potential 
of rTMS in improving sleep quality (16). rTMS modulates cortical 
activity, promotes neuroplasticity, and improves sleep quality in stroke 
patients by reducing cortical hyperexcitability (17). Additionally, 
rTMS has been shown to effectively treat PSD by targeting the left 
dorsolateral prefrontal cortex (l-DLPFC), a brain region crucial for 
mood regulation and exhibiting reduced activity in individuals with 
depression (18).

Although rTMS has demonstrated positive effects on sleep quality 
and depression in patients with stroke, its role in managing PSSD 
requires further exploration. However, the efficacy of rTMS can vary 
depending on treatment duration, patient characteristics, and the 
specific rTMS protocol used, highlighting the need for further studies 
to optimize treatment strategies. Current rTMS protocols include 
high-frequency stimulation of the l-DLPFC, low-frequency 
stimulation of the bilateral DLPFC (b-DLPFC), and low-frequency 
stimulation of the right DLPFC (r-DLPFC) (19). However, additional 
research is necessary to determine the optimal rTMS protocol for 
treating patients with PSSD (20–22). This study aims to evaluate the 
comparative efficacy of different rTMS protocols in treating PSSD. A 
network meta-analysis is the appropriate method as it allows for the 
comparison of multiple treatments across various studies, providing a 
more comprehensive understanding of the relative effectiveness of 
each protocol (23).

2 Materials and methods

2.1 Selection criteria

A total of nine databases were searched for studies published in 
Chinese or English from their inception until July 31, 2024. These 
databases included the Cochrane Library, PubMed, Embase, Web of 
Science, Scopus, China National Knowledge Infrastructure (CNKI), 
and Wanfang Data. Within these databases, we  will conduct a 
thorough search for gray literature and trial registries to ensure 
comprehensive coverage of all relevant studies. The retrieval strategy, 
which combined MeSH terms and entry terms, was finalized after 
three rounds of pre-retrieval. During these rounds, the search terms 
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were adjusted based on their relevance, specificity, and 
comprehensiveness, ensuring they captured all relevant studies. 
We  consulted with an information specialist to refine the search 
strategy and ensure its alignment with best practices.

The search terms used for both English and Chinese studies 
included repetitive transcranial magnetic stimulation (重复经颅磁刺

激), stroke (脑卒中), cerebrovascular accident (脑血管意外), sleep (
睡眠), sleep disorder (睡眠障碍), dyssomnias (睡眠异常), and 
insomnia (失眠). The Boolean search structure used across databases 
was as follows: (stroke OR cerebrovascular accident OR apoplexy) 
AND (sleep OR insomnia OR dyssomnias) AND (transcranial 
magnetic stimulation OR repetitive transcranial magnetic stimulation 
OR rTMS).

Taking Pubmed as an example, our literature search formula is 
as follows:

(((cerebral hemorrhage[Title/Abstract]) OR (((((stroke[Title/
Abstract]) OR (cerebrovascular accident[Title/Abstract])) OR 
(apoplexy[Title/Abstract])) OR (cerebral in farction[Title/Abstract]))) 
AND (((sleep[Title/Abstract]) OR (insomnia[Title/Abstract])) OR 
(dyssomnias[Title/Abstract]))) AND (((transcranial magnetic 
stimulation[Title/Abstract]) OR (repetitive transcranial magnetic 
stimulation[Title/Abstract])) OR (rTMS[Title/Abstract]))).

This research has been registered with the PROSPERO 
International Systematic Review Registration Platform, and no 
deviations from the registered protocol occurred during the study. Full 
details of the protocol are available under Registration No. 
CRD42024589437, which can be accessed at https://www.crd.york.
ac.uk/PROSPERO. The review adheres to the PRISMA 2020 guidelines 
(24), and the risk of bias was evaluated in accordance with the 
PRISMA extensions for network meta-analysis.

2.2 Selection variables

The Pittsburgh sleep quality index (PSQI) is a self-reported 
questionnaire used to measure sleep quality and disturbances over a 
one-month period. It has been validated in post-stroke populations, 
confirming its reliability and suitability for use in this cohort (25). The 
Pittsburgh Sleep Quality Index (PSQI) is composed of multiple 
components, with a total of 19 items distributed across seven domains, 
providing a global score to evaluate overall sleep quality. Each domain 
reflects a distinct aspect of sleep quality, including subjective sleep quality, 
sleep latency, sleep duration, sleep efficiency, sleep disturbances, use of 
sleep medication, and daytime fatigue, performance, or alertness. Scoring: 
Each component is scored on a scale from 0 to 3, with a global score 
ranging from 0 to 21. Higher scores indicate poorer sleep quality, with a 
global score above 5 typically suggesting significant sleep problems; 
however, this cut-off may vary depending on the clinical context and 
population norms (26).

While the PSQI provides valuable subjective insights into sleep 
quality, the inclusion of sleep efficiency, an objective measure derived 
from polysomnography, allows for a more comprehensive assessment 
of sleep quality, capturing both subjective experiences and objective 
sleep metrics. Sleep efficiency refers to the percentage of time spent 
asleep relative to the total time spent in bed (27). Polysomnography 
provides an accurate assessment of sleep efficiency by measuring the 
time spent asleep in comparison to the total time in bed. It is calculated 

as the total sleep time divided by the time in bed, multiplied by 100. 
Higher sleep efficiency indicates better sleep quality, as more time in bed 
is spent sleeping rather than awake (28). However, it is important to note 
that sleep efficiency derived from polysomnography can differ 
significantly from the self-reported estimates obtained from the 
PSQI. Polysomnography provides an objective, direct measure of sleep 
duration and disturbances, while the PSQI relies on subjective reports 
from the patient, which may lead to discrepancies between the two 
measures due to individual perceptions of sleep quality. Therefore, PSQI 
and sleep efficiency have been included in the meta-analysis to represent 
the impact on sleep quality following rTMS, providing a comprehensive 
assessment of both subjective and objective measures.

The Hamilton Depression Scale (HAMD-17) is a clinician-
administered scale used to assess the severity of depressive symptoms. The 
17-item version is preferred due to its wide use in clinical settings, 
particularly for stroke populations (29). It contains 17 items that measure 
various aspects of depression, including mood, guilt, insomnia, anxiety, 
and somatic symptoms. Each item is scored on a scale of 0 to 4 for 
symptoms such as depressive mood, guilt, suicidal tendencies, work and 
interest, slow thinking and speech, agitation, mental anxiety, somatic 
anxiety, and hypochondriasis. For symptoms like insomnia, shallow sleep, 
early awakening, gastrointestinal symptoms, general symptoms, sexual 
symptoms, weight loss, and insight, the scoring scale ranges from 0 to 2. 
The total possible score ranges from 0 to 52. Higher scores indicate more 
severe depression. A HAMD-17 score of 8 or above indicates the presence 
of depression, with severity categorized as follows: 0–7 (normal), 8–16 
(mild), 17–23 (moderate), and ≥24 (severe) (30). Therefore, the 
HAMD-17 assesses the severity of depressive symptoms and serves as a 
tool for monitoring mood changes in post-stroke patients.

2.3 Selection criteria

We selected randomized controlled trials of the application of TMS 
in post-stroke sleep disorders patients. To be  eligible for inclusion, 
studies needed to satisfy the following conditions: (1) The study subjects 
were patients with sleep disorders after stroke, all were aged>18 years, 
and all had stable vital signs.; (2) Diagnostic criteria for sleep disorders 
post-stroke were based on the International Classification of Sleep 
Disorders (ICSD-3) or The Diagnostic and Statistical Manual of Mental 
Disorders Fourth Edition (DSM-V), depending on the study.; (3) All 
participants had an MMSE score greater than 27, ensuring appropriate 
cognitive function.; (4)The experimental group received rTMS 
treatment with detailed standardized reporting, including coil type, 
stimulation protocol, stimulation intensity expressed as a percentage of 
the resting motor threshold, and other relevant parameters.; (5) In the 
control group, participants received conventional therapy (defined as a 
combination of pharmacological, behavioral, and/or physiotherapy 
interventions depending on the study), sham rTMS (no stimulation), 
conventional therapy combined with sham rTMS, or other treatments 
such as medication or acupuncture.; (6) outcomes comprising valid tests 
and measures of Pittsburgh Sleep Quality Index (PSQI), Sleep Efficiency, 
and Hamilton Depression Rating Scale-17 (HAMD-17); and (7) 
reporting the number of participants and all essential data for effect size 
calculations. Studies were excluded if they reported results from a 
previously published source (duplicated data). Our study protocol 
adhered to the Quality of Reporting of Meta-analyses (QUOROM) 
guidelines (31) and the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statements (24). All included 
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studies were analyzed exclusively using the data reported in the 
published articles. The study adhered to the PRISMA checklist, ensuring 
transparency in the search strategy and the assessment of risk of bias, 
with the full checklist available in the Supplementary materials. The 
exclusion criteria are detailed in the figure.

2.4 Screening and data extraction

We extracted information on participants and trial characteristics 
using a structured form (Table  1) to ensure consistency, enable 

cross-study comparison, and reduce extraction bias. Specifically, this 
included participants’ mean age, sex, and baseline symptom severity, 
as well as trial characteristics such as first author, publication date, 
type of intervention, type of control, outcome assessment, and 
intervention duration.

2.5 Risk of bias

Two researchers (CF and WZ) assessed the risk of bias in the 
included studies using the risk of bias assessment tool for RCTs as 

TABLE 1  Characteristics of TMS parameters included in the study.

Studies 
and 
year

rTMS parameters Comparison 
measure

Duration(wk) outcomes

Stimulation 
locations

Stimulation 
frequency(Hz)

Stimulation 
intensity

rTMS frequency

Dong et al. 

(34)
r-DLPFC 1 80%MT

30 min × 1session × 7d/

wk
M 3

PSQI, SE

Hua et al. 

(35)
r-DLPFC 1 80-120%RMT

15 min × 1session × 5d/

wk
M 3

PSQI, SE, SRSS

Zheng et al. 

(36)
r-DLPFC 1 unclear 1session × 7d/wk M 4

PSQI

Xu et al. 

(37)
r- DLPFC 1 80% ~ 120%MT

20 min × 1session × 6d/

wk
M 4

PSQI, NIHSS

Wang et al. 

(38)
r- DLPFC 1 100%RMT

20 min × 1session × 6d/

wk
A 4

PSQI, SE, 

HAMA

Chen et al. 

(39)
l-DLPFC 10 90%RMT

20 min × 1session × 5d/

wk
SS + M 4

HAMD-17, SE

Ding et al. 

(40)
b-DLPFC 1 80%RMT 1session × 7d/wk SS + M 2

PSQI, SE, 

BDNF

He et al. 

(25) l-DLPFC 5 80%RMT
28 min × 1session × 5d/

wk
M 8

HAMD-17, 

PSQI, CSS, 

MBI

Ma et al. 

(42)
l-DLPFC 5 90%RMT

28 min × 1session × 5d/

wk
SS + M 4

HAMD-17, 

PSQI, SDS

Qi et al. 

(43)
r- DLPFC 1 80-120%RMT

20 min × 1session × 5d/

wk
M 4

PSQI, NIHSS, 

SDS, SAS

Cao et al. 

(44) l-DLPFC 0.5 unclear 1session × 5d/wk M 6

SE, MMSE, 

MoCA, MBI, 

HAMD, BDNF

Li et al. 

(45)
r- DLPFC 1 80%RMT 1session × 5d/wk M 6

PSQI, HAMA, 

HAMD-17

Yanget al 

(46). l-DLPFC 1 90%RMT
20 min × 1session × 7d/

wk
A 4

PSQI, HAMA, 

HAMD-17, 

GABA, 5-HT

Ma et al. 

(47)
r- DLPFC 1 80%RMT

10 min × 1session × 5d/

wk
M 3

SAS, SE, SRSS

Hu et al. 

(48)
l-DLPFC 5 90%RMT

20 min × 1session × 5d/

wk
A 4

HAMD-17, 

PSQI

C: control, E: experiment. Stimulation locations: r-DLPFC: right dorsolateral prefrontal cortex, l-DLPFC: left dorsolateral prefrontal cortex, b-DLPFC: bilateral DLPFC. Stimulation intensity: 
RMT: resting motor threshold, MT: motor threshold. Comparison measure: M: Medication, A: Acupuncture, SS: sham stimulation. Outcomes: PSQI: Pittsburgh sleep quality index, Sleep 
efficiency: SE, SRSS: self- rating scale of sleep, NIHSS: National Institute of Health stroke scale, HAMA: Hamilton Anxiety Scale, BDNF: brain-derived neurotrophic factor, CSS: chinese stroke 
scale, MBI: Modified Barthel Index, SDS: Self-rating depression scale, SAS: Self-rating Anxiety Scale, MMSE: Mini-Mental State Examination, MoCA: Montreal Cognitive Assessment, GABA: 
γ-aminobutyric acid, 5-HT: serotonin, SRSS: Self- Rating Scale of Sleep.
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outlined in the Cochrane Handbook (24). The identity and role of 
researchers are clearly stated, and independent assessments and cross-
validation were performed to ensure high inter-rater reliability. The 
evaluation criteria included the following domains: random sequence 
generation; allocation concealment; blinding of participants and 
personnel; blinding of outcome assessors; completeness of outcome data; 
selective reporting; and other potential sources of bias. Each domain was 
rated as ‘low risk’, ‘high risk’, or ‘unclear risk’ of bias based on the 
guidelines of the Cochrane Handbook (24), which provide specific 
criteria for judgment. To ensure reliability, two reviewers independently 
performed the risk of bias assessment, and any disagreements were 
resolved through discussion or consultation with a third reviewer.

Publication bias was evaluated using a comparison-adjusted funnel 
plot and Egger’s test. In the comparison-adjusted funnel plot, study-
specific effect sizes were plotted against their standard errors while 
adjusting for different comparisons within the treatment network, 
under the assumption of transitivity and consistency across the network 
(23). Egger’s test was applied to assess funnel plot asymmetry, with a 
p-value <0.05 indicating potential small-study effects or publication 
bias (32). This approach accounts for the multi-arm structure of the 
treatment network and incorporates heterogeneity across studies.

2.6 Data synthesis and analysis

A frequentist network meta-analysis (NMA) using a random-effects 
model was employed to synthesize both direct and indirect evidence 
concurrently. All analyses were conducted using Stata statistical software 
version 16.0 and Review Manager software version 5.3 (provided in the 
Supplementary materials) (23). The effect size for continuous variables 
was assessed using mean difference (MD) with a 95% confidence 
interval (CI). CIs were computed using normal approximations from 
random-effects models, with between-study variance (τ2) estimated via 
restricted maximum likelihood (REML), under the assumption of 
approximately normal sampling distributions of study-level effect 
estimates. In cases where a closed loop existed, statistical inconsistency 
between direct and indirect evidence was evaluated through local 
(node-splitting method) and global (design-by-treatment interaction 
model) approaches (32). If the p-value exceeded 0.05, it indicated no 
statistically significant inconsistency, and the consistency model was 
applied for further analysis. A network plot was generated to illustrate 
the relationships among the different interventions, where the size of the 
nodes represented the sample size of each intervention, and the line 
thickness indicated the number of randomized controlled trials (RCTs) 
with direct comparisons. The SUCRA probabilities were calculated to 
assess the efficacy of various treatment strategies, with higher SUCRA 
values indicating a more favorable outcome (33). Cumulative rank-
probability curves were derived by summing rank probabilities across 
categories, with surface under the cumulative ranking curve (SUCRA) 
corresponding to the normalized area under these cumulative curves.

3 Results of the network meta-analysis

3.1 Characteristics of the included studies

Seven databases were searched utilizing the designated search 
strategy, yielding 389 papers during the initial screening. Among 

them, seven papers were retrieved from Cochrane Library, 22 from 
PubMed, 20 from Scopus, 199 from Embase, 63 from China National 
Knowledge Infrastructure, and 78 from the Wanfang Data databases. 
After removing duplicates, reviewing the titles, abstracts, and full 
texts, and conducting a quality assessment, 15 papers (34–48) were 
ultimately included. The detailed screening process, including the 
reasons for excluding the papers, is presented in Figure 1. Furthermore, 
the main characteristics of the included studies are summarized in 
Tables 2, 1.

A total of 15 randomized controlled trials (RCTs) involving 
1,113 patients with PSSD were selected, with the patients having an 
average age range of 43–74.34 years. The frequency, target location, 
and intensity of rTMS differed across the included studies. Eleven 
studies employed low-frequency stimulation (≤1 Hz) (34–38, 40, 
43–47), while four utilized high-frequency stimulation (≥5 Hz) (39, 
41, 42, 48). The commonly targeted brain region was the DLPFC, 
with three localization methods: right, left, and bilateral. In 
particular, eight studies targeted the r-DLPFC (34–38, 43, 45, 47), 
six targeted the l-DLPFC (39, 41, 42, 44, 46, 48), and only one 
targeted the b-DLPFC (40). The stimulation intensity of rTMS is 
determined by the motor threshold of each patient. During the 
assessment of the motor threshold, patients are seated or placed in a 
supine position, and a single-pulse stimulation is applied to the 
motor cortex area controlling the thumb of the dominant hand. The 
motor threshold is established as the intensity at which thumb 
abduction is induced in 5 out of 10 stimulations (19). The motor 
threshold percentages varied across different studies. Five studies 
applied 80% of the motor threshold (34, 40, 41, 45, 47), four 
employed 90% (39, 42, 46, 48), three utilized an 80–120% range (35, 
37, 43), and one used 100% (38). Only two studies did not specify 
the motor threshold (36, 44). The rTMS treatments were 
administered within a range of 2 to 8 weeks, with a frequency of 
once per day, 5–7 times per week, and a session duration ranging 
from 10 to 30 min (Table 1).

3.2 Risk of bias

Among the 15 included studies, 14 explicitly described the 
methods used for random sequence generation, such as computer-
based randomization or random number tables; thus, they were 
assessed as having a low risk of bias for random sequence generation. 
However, the remaining study merely mentioned using 
randomization without providing details, leading to an unclear risk 
of bias for the randomization process. Furthermore, none of the 
studies provided information on allocation concealment or blinding 
of experimental staff. Consequently, all studies were considered to 
have an unclear risk of bias for allocation concealment and blinding 
of experimental staff. Moreover, all studies were evaluated as having 
a low risk of reporting bias. Patient dropouts were reported in five 
studies, indicating a low risk of bias for data completeness in those 
studies. Conversely, five other studies did not provide details on 
patient dropout, resulting in an unclear risk of bias for data 
completeness in those studies. Lastly, all studies were determined to 
have an unclear risk of bias for selective reporting of results and other 
sources of bias. The overall risk of bias for the included studies is 
illustrated in a risk-of-bias graph (Figure  2A) and a risk-of-bias 
summary (Figure 2B).
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3.3 The results of the network 
meta-analysis

3.3.1 PSQI scores
Thirteen studies involving 906 patients reported on PSQI scores, 

and the network plot of these studies is presented in Figure 3A. As 
illustrated in Figure  4A, compared with pharmacotherapy alone, 
low-frequency rTMS targeting the r-DLPFC (SMD: −1.14; 95% CI: 
−1.61 to −0.68) and low-frequency rTMS targeting the b-DLPFC 
(SMD: −1.95; 95% CI: −3.18 to −0.72) led to significant differences in 
the PSQI score (p < 0.05). However, high-frequency rTMS targeting 
the l-DLPFC (SMD: −0.60; 95% CI: −1.34 to 0.14) did not result in a 
significant difference in the PSQI score compared with 
pharmacotherapy alone (p > 0.05). Moreover, no significant 
differences were detected among the different rTMS modalities 
(p > 0.05).

As depicted in Figure  4B, the surface under the cumulative 
ranking curve analysis (SUCRA) revealed the rankings of the 
different treatment methods according to their optimal probabilities 

as follows: low-frequency rTMS targeting the r-DLPFC 
(81.8%) > low-frequency rTMS targeting the b-DLPFC 
(73.8%) > high-frequency rTMS targeting the l-DLPFC 
(43%) > pharmacotherapy alone (1.3%). A symmetrical funnel plot 
presented in Figure  4C indicates no significant publication bias 
among these 13 studies.

3.3.2 Sleep efficiency assessment
Six studies comprising 512 patients examined sleep efficiency, and 

the network plot of these studies is shown in Figure 3B. As shown in 
Figure 5A, compared with pharmacotherapy alone, low-frequency 
rTMS targeting the r-DLPFC (SMD: 1.31; 95% CI: 0.71–1.91) and the 
b-DLPFC (SMD: 1.69; 95% CI: 0.50–2.88) yielded significant 
differences in sleep efficiency (p < 0.05). However, high-frequency 
rTMS targeting the l-DLPFC (SMD: 0.02; 95% CI: −1.18 to 1.21) did 
not produce a significant difference in sleep efficiency compared with 
pharmacotherapy alone (p > 0.05). Additionally, no significant 
differences in sleep efficiency were found among the different rTMS 
modalities (p > 0.05).

FIGURE 1

Screening process for the study’s literature selection.
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As presented in Figure  5B, the SUCRA analysis exhibited the 
rankings of the varied treatment techniques based on their optimal 
probabilities as follows: low-frequency rTMS targeting the b-DLPFC 
(98.9%) > low-frequency rTMS targeting the r-DLPFC (67.8%) > high-
frequency rTMS targeting the l-DLPFC (17.4%) > pharmacotherapy 
alone (16%). A symmetrical funnel plot shown in Figure 5C reveals 
the potential presence of publication bias and small sample size effects.

3.3.3 HAMD-17 scores
Seven studies including 422 patients investigated the HAMD-17 

scores, and the network plot of these studies is depicted in 
Figure  3C. As demonstrated in Figure  6A, compared with 
pharmacotherapy alone, low-frequency rTMS targeting the r-DLPFC 
(SMD: −1.55; 95% CI: −3.01 to −0.09) led to a significant difference 
in the HAMD-17 score (p < 0.05). In contrast, high-frequency rTMS 
targeting the l-DLPFC (SMD: −0.97; 95% CI: −2.18 to 0.24) did not 
result in a significant difference in the HAMD-17 score compared 
with pharmacotherapy alone (p > 0.05). Furthermore, no significant 
differences were observed between these two modalities (p > 0.05).

As shown in Figure 6B, the SUCRA analysis demonstrated the 
rankings of the various treatment methods according to their optimal 
probabilities as follows: low-frequency rTMS targeting the r-DLPFC 
(83.2%) > high-frequency rTMS targeting the l-DLPFC 
(62.7%) > pharmacotherapy alone (4.2%). A symmetrical funnel plot 
illustrated in Figure 6C shows the potential presence of publication 
bias and small sample size effects.

4 Discussion

Here, we  systematically evaluated three rTMS modalities 
-low-frequency stimulation of the right DLPFC, low-frequency 
stimulation of the b-DLPFC, and high-frequency stimulation of the 
left DLPFC- or their efficacy in improving sleep function and 
alleviating depression in patients with PSSD. A total of 15 RCTs 
involving 1,113 patients with PSSD were included in the analysis. Our 
results revealed that low-frequency rTMS targeting the r-DLPFC and 
b-DLPFC significantly improved PSQI scores, sleep efficiency, and 
HAMD-17 scores. A forest plot of the pairwise comparisons revealed 
no statistically significant differences among the three rTMS 
modalities. The cumulative probability line chart indicated a rank-
order preference for specific outcomes, consistent with the SUCRA 
values and rank probabilities shown in Figures  4B, 5B, 6B, and 
Supplementary materials. In particular, low-frequency rTMS of the 
r-DLPFC was optimal for enhancing PSQI scores, low-frequency 
b-DLPFC stimulation was most effective for augmenting sleep 
efficiency, and low-frequency r-DLPFC stimulation ranked highest for 
reducing HAMD-17 scores. The previous systematic review found that 
rTMS may have positive effects on sleep quality and mood in patients 
with PSSD (49). This aligns with our study in assessing the 
effectiveness of rTMS on PSSD. However, our study differs by 
incorporating a network meta-analysis to compare multiple rTMS 
modalities. Thereby Our findings provide additional comparative 
evidence on the relative efficacy of different rTMS modalities.

TABLE 2  Basic characteristics of the included studies.

Studies and 
year

Diagnostic criteria Age (years) Duration (d/w/m) Sample (n)

Stroke Sleep 
disorders

C T C T C T

Dong et al. (34) ①⑧ CCMD-3 56.72 ± 11.08 55.43 ± 10.49 16.87d ± 6.07d 17.52d ± 5.42d 50 50

Hua et al. (35) ①④ CCMD 60.33 ± 9.35 61.02 ± 9.81 33.96 ± 7.84d 35.40 ± 9.63d 45 45

Zheng et al. (36) ⑤ CDTI 57.51 ± 4.81 58.10 ± 5.10 8.93 ± 3.02w 9.04 ± 2.86w 50 50

Xu et al. (37) ①④ CCMD 64.2 ± 5.9 65.7 ± 6.1 37.6 ± 3.2d 39.4 ± 3.5d 28 30

Wang et al. (38) ① CCMD-3 55.9 ± 7.1 59.6 ± 9.5 3.5 ± 2.7 m 3.8 ± 2.2 m 30 30

Chen et al. (39) ①④ CCMD-3 65.16 ± 9.18 64.06 ± 6.82 unclear 31 32

Ding et al. (40) ①④ PSQI 72 ± 4 70 ± 4 2.1 ± 0.5 m 2.2 ± 0.3 m 46 46

He et al. (25) ①④ PSQI 54.61 ± 9.81 58.52 ± 10.62 25.63 ± 6.81 24.75 ± 8.53 30 30

Ma et al. (42) ① DSM-IV 56.9 ± 8.2 54.5 ± 8.3 15.0 ± 1.4d 14.9 ± 1.8d 20 20

Qi et al. (43) ①④ CDTI-2017 63.75 ± 5.92 63.12 ± 6.07 6.37 ± 1.09 m 6.44 ± 1.13 m 45 46

Cao et al. (44) ①③ PSQI 68.51 ± 3.87 68.76 ± 3.45 8.24 ± 1.67 m 8.43 ± 1.54 m 48 59

Li et al. (45) ⑥ PSQI 61.56 ± 7.60 60.53 ± 7.89 22.67 ± 4.96d 22.47 ± 4.64d 30 30

Yang et al. (46) ① CDTI-2012 58.20 ± 5.03 58.10 ± 4.90 32.68 ± 15.53d 34.65 ± 15.58d 20 20

Ma et al. (47) ⑦ PSQI 58.41 ± 6.38 58.73 ± 7.29 9.15 ± 1.24 m 9.24 ± 1.39 m 50 50

Hu et al. (48) ⑥ Unclear 53 ± 10 50 ± 10 5.78 ± 3.04 m 5.32 ± 3.08 m 27 25

C control, E experiment. Diagnostic Standard for Stroke: ① CT/MRI; ② Chinese guidelines for diagnosis and treatment of acute ischemic stroke (version 2018); ③ China Expert Consensus on 
Clinical Practice of Post-stroke Depression; ④ Diagnostic criteria for cerebrovascular diseases in China (version 1995); ⑤ Guidelines for Early Rehabilitation and Treatment of Stroke in China; 
⑥ Diagnostic essentials of various major cerebrovascular diseases in China (version 2019);⑦ Chinese guidelines for diagnosis and treatment of acute ischemic stroke (version 2014); ⑧ Chinese 
guidelines for cerebrovascular disease prevention and cure (version 2008). Diagnostic Standard for Sleep Disorders: PSQI=Pittsburgh sleep quality index; CCSSD=Chinese expert consensus on 
the assessment and management of stroke-related sleep disorders; CCMD-3 = Chinese classification and diagnostic criteria of mental disorders-third edition; CCMD=Chinese classification 
and diagnostic criteria of mental disorders; CDTI-2012 = Chinese guidelines for diagnosis and treatment of insomnia in adults (version 2012); CDTI-2017 = Chinese guidelines for diagnosis 
and treatment of insomnia in adults (version 2017); CCMD 2R = Chinese classification and diagnostic criteria of mental disorders-second revision edition; DSM-IV = The Diagnostic and 
Statistical Manual of Mental Disorders Fourth Edition.
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4.1 Understanding PSSD: prevalence, 
mechanisms, and impact

PSSD is a prevalent and critical barrier to recovery in stroke 
survivors, manifesting as abnormalities in the quality, quantity, or 
timing of sleep. Symptoms of PSSD commonly encompass nighttime 
awakenings, excessive daytime sleepiness, and disrupted sleep–wake 
rhythms (50), with stroke severity, age (51), and gender (52) serving 
as the contributing factors. Insomnia affects nearly 75% of stroke 

survivors, representing a significantly higher proportion than in the 
general population (25). Moreover, PSSD can exacerbate cognitive 
deficits, further impairing rehabilitation outcomes (53). The interplay 
between sleep disorders and depression after stroke is of major 
concern. PSSD often leads to fatigue, tension, and anxiety, which can 
compound the psychological burden, reduce the quality of life, and 
hinder recovery motivation of the affected patients (54). Poor sleep 
quality has been linked to greater depressive symptoms, and 
depression, in turn, is associated with worsened sleep disturbances, 

FIGURE 2

Assessment graph of risk-of-bias. B Summary of study quality and risk-of-bias. Except for 2 studies at high risk-of-bias for incomplete outcome data 
and selective reporting, respectively, others were rated as low or unclear.
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suggesting a bidirectional relationship between the two conditions 
after stroke (55). Along with psychological effects, PSSD exerts 
detrimental effects on the nervous and cardiovascular systems, 
thereby increasing the risk of recurrent cerebrovascular events and 
even mortality (56).

4.2 Neurophysiological insights into the 
mechanisms of PSSD

Although the stroke-induced effects on brain tissue are well-
documented, the specific mechanisms underlying PSSD remain 
unclear. Furthermore, stroke-related changes in the upper airway 
anatomy and function may contribute to sleep-disordered breathing, 
a primary cause of these sleep disturbances (50). Previous research 
suggests that the disruption of the cerebellar neural circuits 
coordinating the upper airway and diaphragm can diminish the 
function of the upper airway muscles, ultimately contributing to sleep 
apnea (57). Moreover, damage to the brainstem nuclei involved in 
sleep–wake regulation may contribute to sleep disorders following a 
stroke. For example, stroke lesions in the hypothalamus have been 
associated with sleep disorders primarily characterized by reduced 
non-rapid eye movement (non-REM) sleep (58). In line with this 
finding, studies using animal models of middle cerebral artery 
occlusion have demonstrated a significant reduction in non-REM 
sleep duration, along with elevated levels of orexin and orexin receptor 
1 (59). Orexin neurons in the hypothalamus play a crucial role in sleep 

inhibition, particularly during wakefulness (60). Apart from lesion 
location, post-stroke sleep-disordered breathing is also affected by 
several other factors. Studies have revealed higher rates of sleep-
disordered breathing following strokes in the brainstem or bilateral 
hemispheres (61, 62). Conversely, Stahl (63) have found that the 
incidence and severity of obstructive sleep apnea syndrome following 
stroke were not significantly correlated with specific lesion locations. 
The pathogenesis of sleep disorders can also involve psychological 
factors. For instance, external environmental changes and 
psychological stress, such as those arising from stroke, may exacerbate 
sleep problems. In certain individuals, this worsening of sleep issues 
can lead to the progression from transient insomnia to persistent sleep 
disorders, particularly among those who are unable to regulate the 
stress caused by their condition. Our findings showed that 
Low-frequency rTMS targeting the right and bilateral DLPFC not only 
significantly improved sleep function in patients with stroke but may 
also alleviate depression.

Sleep is vital in the processes of neural repair and regeneration. 
Experimental studies have demonstrated that sleep deprivation 
reduces the proliferation of neurons and vascular cells and inhibits 
axonal growth, ultimately impeding neuroplasticity and recovery. This 
result highlights that sleep disturbances can significantly affect the 
restoration of neurological function (64). However, in clinical settings, 
neuroplasticity outcomes may also be  affected by factors such as 
rehabilitation intensity, comorbidities, and individual variability. 
Moreover, sleep disorders can affect the brain’s autoregulatory 
mechanisms of cerebral blood flow, thus increasing the susceptibility 

FIGURE 3

The network plots. (A) PSQI scores; (B) Sleep efficiency assessment; (C) HAMD-17 scores abbreviate: r-DLPFC: right dorsolateral prefrontal cortex, 
l-DLPFC: left dorsolateral prefrontal cortex, b-DLPFC: bilateral DLPFC, M: Medication.
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of the brain to hypoxic damage. This oxidative stress environment also 
activates inflammatory pathways, leading to the release of 
inflammatory cytokines and further exacerbating neuronal injury 
(65, 66).

4.3 rTMS in PSSD: mechanisms and clinical 
implications

rTMS is an innovative, non-invasive neuroregulation technique. 
This stimulation method involves placing a coil perpendicular to the 
brain surface and passing an electric current through the coil to 
generate a pulsed magnetic field. Based on electromagnetic induction 
principles, this magnetic field induces a reverse current in the cortical 
tissue, which depolarizes local neurons, modulates cortical excitability, 
and influences neurotransmitter activity within targeted neural 
circuits. Such repeated, continuous, and rhythmic stimulations result 
in the modulation of the neural networks, eventually facilitating 
neuroplasticity (67). rTMS may treat PSSD through the 
following mechanisms:

	(1)	 Synaptic Plasticity: Synaptic plasticity, the activity-dependent 
modulation of synaptic efficacy, is a key mechanism by which 
rTMS may promote neural recovery. In stroke model rats, 
rTMS of the primary motor cortex reduced neuronal 

degeneration and synaptic loss, as shown by electrophysiological 
recordings and histological analyses (68). It also increased 
dendritic density and branching, supported by molecular 
markers such as dendritic spine morphology and BDNF 
expression (69).

	(2)	 Neurogenesis Modulation: rTMS has also been suggested to 
influence neurogenesis. After stroke, endogenous neural stem 
cells can contribute to the formation of neuroglial scars that 
impede neuronal regeneration, a phenomenon demonstrated 
primarily in preclinical studies (70). The application of rTMS 
in the infarcted side of the M1 cortex in ischemic stroke rats 
has been demonstrated to activate the expression of stromal 
cell-derived factor 1-alpha and the CXC chemokine receptor 4 
axis in the perilesional cortex, which promotes neuronal 
regeneration (71). rTMS has also been reported to induce the 
neural differentiation of human embryonic stem cells in the 
forebrain (72).

	(3)	 Neuroinflammation Regulation: rTMS has been shown to 
regulate inflammation-related cytokines, thereby alleviating 
neuroinflammation. Neuroinflammation is a critical 
mechanism in the brain’s response to injury and disease. After 
a stroke, the damaged brain regions trigger acute and chronic 
neuroinflammatory responses, causing secondary cell death 
(73). Furthermore, preclinical studies suggest that long-term 
neuroinflammation can impair the proliferation and 

FIGURE 4

PSQI scores. (A) A forest map of pairwise comparison of PSQI scores; (B) Cumulative probability line chart of PSQI scores; (C) The funnel plots of PSQI 
scores abbreviate: r-DLPFC: right dorsolateral prefrontal cortex, l-DLPFC: left dorsolateral prefrontal cortex, d-DLPFC: dorsolateral prefrontal cortex, 
M: Medication.
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differentiation of neural stem cells, thereby limiting 
neurogenesis (74). Prior studies have revealed that rTMS can 
reduce the overexpression of pro-inflammatory cytokines such 
as IL-1β, IL-6, and TNF-α, as well as modulate the activation 
of glutamate receptors (including mGluR5 and NMDAR2B) 
and the proliferation of reactive microglia and astrocytes (75). 
For example, a study using a mouse model that underwent 3 h 
of ischemia found that rTMS applied to the infarcted side for 5 
consecutive days led to a significant reduction in the expression 
of cytokines associated with inflammatory response and 
decreased microglial activation (76). All these mechanisms of 
rTMS highlight its potential as a therapeutic tool not only for 
improving neuroplasticity and neurogenesis but also for 
diminishing the harmful effects of neuroinflammation, thus 
contributing to PSSD treatment and neurological recovery.

In clinical practice, the effectiveness of rTMS largely depends 
on the combination of various stimulation parameters, including 
frequency, intensity, pulse number, duration, and the relative 
positioning of the coil to the target brain area. The DLPFC is the 
common target for rTMS, given its crucial role in generating and 
regulating emotions and its close connections to other emotion-
related brain regions, such as the limbic system, amygdala, and 
cingulate cortex. Consequently, the modulation of DLPFC activity 

by rTMS not only directly influences DLPFC excitability but also 
indirectly affects these emotional control areas (77). For example, 
stimulating the DLPFC was demonstrated to reduce amygdala 
hyperactivity, thereby alleviating anxiety and negative emotions. 
Stimulation frequency is defined as the rate at which rTMS pulses 
are delivered. Low-frequency rTMS (1–5 Hz) is typically utilized 
to inhibit cortical activity, whereas high-frequency rTMS 
(10–20 Hz) is employed to activate cortical regions. The 
interhemispheric competition model, a theoretical model 
developed to explain rTMS applications in stroke rehabilitation, 
suggests that the balance of mutual inhibition between the two 
hemispheres via the corpus callosum is disrupted by stroke (78). 
Moreover, activity in the l-DLPFC is usually associated with 
positive emotions, while the r-DLPFC is more closely linked to 
negative emotions. Previous studies have indicated that depressive 
states are often associated with reduced l-DLPFC activity and a 
relative elevation in r-DLPFC activity (79). Hence, rTMS is 
frequently employed to activate the l-DLPFC (80) or inhibit the 
r-DLPFC (81), aiming to rebalance the activity in these regions and 
alleviate conditions such as insomnia. Lastly, research has also 
suggested that stimulating the r-DLPFC may result in 
comparatively fewer side effects, underscoring its better suitability 
as a target region in patients with lower tolerance to 
stimulation (81).

FIGURE 5

Sleep efficiency assessment. (A) A forest map of pairwise comparison of Sleep efficiency assessment; (B) Cumulative probability line chart of Sleep 
efficiency assessment; (C) The funnel plots of Sleep efficiency assessment abbreviate: r-DLPFC: right dorsolateral prefrontal cortex, l-DLPFC: left 
dorsolateral prefrontal cortex, d-DLPFC: dorsolateral prefrontal cortex, M: Medication.
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4.4 Implications and future directions

Our findings suggest that low-frequency rTMS targeting the 
r-DLPFC may be more effective than high-frequency rTMS of the 
l-DLPFC in improving sleep function and depression in patients with 
PSSD. Earlier studies have shown that different rTMS protocols are 
more suitable for specific symptoms of sleep disorders. For instance, 
right-side low-frequency rTMS appears to be  more beneficial for 
patients experiencing difficulty falling asleep (82), while high-
frequency stimulation of the l-DLPFC is more efficient in addressing 
the symptoms associated with early awakening and vivid dreaming 
(83). Additionally, the differences in rTMS efficacy may be related to 
individual variations in neural network structures, physiological 
characteristics, and symptom heterogeneity. In light of this aspect, 
some studies have recommended using neuro-navigation systems to 
select personalized stimulation targets, including a study that showed 
that 19 out of 27 patients with major depressive and generalized 
anxiety disorders had target sites in the L8Av region of the DLPFC 
(84). However, the clinical feasibility of implementing such 
personalized approaches in standard stroke rehabilitation settings 
presents several challenges. A nationwide survey of 1,129 physiatrists 
in South Korea revealed that while 86.1% expressed interest in 
utilizing neuro-navigation systems for rTMS therapy, only 7.4% 

reported having access to such systems within their institutions (85). 
The primary barriers identified included high device costs, lack of 
reimbursement coverage, and the need for specialized training. In 
contrast, the three localization methods mentioned in this study, 
based on standard brain localization, are more cost-effective, allowing 
for broader application in rTMS therapy.

Moreover, the process of systematically optimizing target selection 
and stimulation parameters requires further exploration. Although 
some patients may experience a sleep disorders relapse following 
rTMS treatment, scarce systematic research and supporting data are 
available on strategies for extending the therapeutic effects through 
long-term maintenance or personalized adjustment to stimulation 
frequencies. All these considerations underline the need for future 
studies to refine the rTMS therapeutic approach for PSSD, focusing 
on individualized treatment plans and sustained efficacy.

5 Limitations

Our study has several limitations that should be considered. First, 
the small subgroup sample sizes and lack of analysis based on stroke 
type (hemorrhagic vs. ischemic) and lesion location limit our ability 
to assess their impact on rTMS efficacy. Future research should 

FIGURE 6

HAMD-17 scores. (A) A forest map of pairwise comparison of HAMD-17 scores; (B) Cumulative probability line chart of HAMD-17 scores; (C) The funnel 
plots of HAMD-17 scores abbreviate: r-DLPFC: right dorsolateral prefrontal cortex, l-DLPFC: left dorsolateral prefrontal cortex, d-DLPFC: dorsolateral 
prefrontal cortex, M: Medication.
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address these factors to better understand the differential effects of 
rTMS in various stroke populations. Second, the studies in our 
analysis utilized varied durations of rTMS interventions. However, 
given the small sample sizes in each study, we could not conduct a 
subgroup analysis according to the intervention duration. Therefore, 
the potential impact of different rTMS intervention cycles was not 
fully considered in our analysis. Third, we were unable to formally 
evaluate network connectivity, sparsity, and the transitivity assumption 
due to the limited number of included trials and the relatively simple 
network structure. These aspects should be addressed in future studies 
with larger and more comprehensive treatment networks. Finally, 
some outcome measures were evaluated in a relatively limited number 
of studies, which might have reduced the reliability of the evidence for 
those specific outcomes.

6 Conclusion

This systematic review and network meta-analysis reveals that 
low-frequency rTMS targeting the r-DLPFC has an overall favorable 
effect on improving sleep function and alleviating depression in 
patients with PSSD. However, considering the limitations of this study, 
the efficacy ranking results should be utilized as a reference for clinical 
applications. Additionally, future high-quality RCTs are required to 
compare the effects and long-term efficacy of rTMS for sleep disorders 
with varied symptoms and/or severities.
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