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Brain tumors, characterized by irregular cell growth in the brain or surrounding 
tissues, encompass aggressive types like glioblastoma and more indolent forms such 
as meningiomas and pituitary tumors, often leading to increased intracranial pressure, 
neurological dysfunction, and low survival rates despite multimodal treatment. Early 
and precise identification of tumor subtypes in MRI images remains challenging 
due to image noise, heterogeneity, and morphological variability, limiting real-time 
clinical diagnostics. To address these issues, we propose an improved YOLO11n 
model for brain tumor detection, incorporating lightweight GhostConv modules 
for reduced redundancy, Online Convolutional Reparameterization (OREPA) in the 
C3k2 module for enhanced efficiency, and Efficient Multi-scale Attention (EMA) 
for better multiscale feature capture. Using 4,000 annotated MRI images from a 
public Kaggle dataset (glioma, meningioma, pituitary tumor, and no tumor), divided 
into training, validation, and test sets (8:1:1 ratio), the model was trained over 200 
epochs and evaluated on internal and external sets. The optimized model achieved 
a mean average precision (mAP@50) of 97.2% and recall of 93.8%, surpassing the 
baseline YOLO11n by 2.1% in mAP@50 while reducing GFLOPS by 25% from 6.4 
to 4.8, demonstrating superior accuracy, efficiency, and lightweight design for 
edge deployment. This approach not only facilitates rapid tumor localization and 
classification in clinical practice but also supports personalized treatment planning, 
offering extensible solutions for broader medical imaging applications and improved 
patient outcomes.
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1 Introduction

Brain tumor is the irregular growth of cells in the brain or its surrounding tissues, brain 
tumor has strong proliferation, when it occupies a certain space, it will constantly compress 
the surrounding tissues, and then damage the central nervous system, threatening patients’ 
lives (1, 2). Glioblastoma is the most common and aggressive malignant brain tumor, with 
abnormal cell proliferation that can lead to increased intracranial pressure and progressive 
neurological dysfunction. Recent data shows that despite combined treatment with surgery, 
radiotherapy, and temozolomide, the five-year relative survival rate remains extremely low, at 
only approximately 5% (3). In this critical context, early and precise identification of tumor 
subtypes, including highly aggressive gliomas, benign but recurrent meningiomas, and 
pituitary tumors with insidious growths, is of decisive clinical significance for the development 
of personalized surgical protocols, precise planning of radiotherapy targets, and assessment of 
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prognosis. Magnetic resonance imaging (MRI) has become an 
irreplaceable tool for the diagnosis of brain tumors by virtue of its 
multi-sequence imaging capability (e.g., T1-weighted, T2-weighted, 
FLAIR, and DWI sequences), sub-millimeter spatial resolution, and 
absence of ionizing radiation (4, 5). However, brain tumor MRI 
diagnosis also faces multiple challenges. At the level of image quality, 
the signal-to-noise ratio of images is significantly reduced due to 
patient autonomous motion, magnetic field inhomogeneity, and 
radiofrequency coil coupling noise. Morphologically, the three main 
types of tumors are highly heterogeneous, with gliomas often 
presenting as “butterfly-shaped” infiltrative growth with cystic 
necrosis in the white matter region, with blurred boundaries with the 
surrounding edema zone; meningiomas mostly present as 
homogeneously reinforced masses attached to the wide base of the 
dura mater, with a typical “rat-tail sign”; and pituitary tumors are 
hidden in the pyriform region, which are prone to wrapping around 
the carotid artery and compressing the optic crossroads (6, 7).

To overcome the diagnostic bottleneck, early approaches for brain 
tumor detection primarily relied on artificial feature engineering 
combined with machine learning classifiers. Kumar et al. extracted 
texture features using a multiscale wavelet transform with a grayscale 
covariance matrix and subsequently applied Support Vector Machines 
(SVMs) to classify gliomas, meningiomas, pituitary tumors, and 
normal brain tissues (8). Jareena et al. employed a Discrete Wavelet 
Transform (DWT) for noise reduction, followed by Principal 
Component Analysis (PCA) for dimensionality reduction, and then 
used a Random Forest classifier for tumor classification (9). Ginni 
et al. proposed a hybrid ensemble method integrating KNN, Random 
Forest, and Decision Tree classifiers. Their workflow first performed 
tumor segmentation using OTSU thresholding, then extracted 
low-dimensional features through Smooth Wavelet Transform (SWT), 
PCA, and Gray-Level Co-occurrence Matrix (GLCM), and finally 
combined the classifiers through majority voting to improve accuracy 
(10). Similarly, Basthikodi et  al. extracted features by combining 
Histogram of Oriented Gradients (HOG) and Local Binary Patterns 
(LBP), and after PCA-based dimensionality reduction, employed 
SVMs for multiclass brain tumor classification, further demonstrating 
the effectiveness of traditional machine learning approaches in this 
task (11). Although traditional machine learning methods improved 
detection accuracy through preprocessing techniques such as 
resolution enhancement, contrast adjustment, and edge preservation, 
they rely heavily on manually engineered features. This dependence 
makes it difficult to capture complex information related to texture, 
edges, and internal structures, thereby limiting both accuracy and 
computational efficiency. With the rapid advancement of deep 
learning, especially in target detection, MRI-based brain tumor 
analysis has shifted toward convolutional neural networks (CNNs) as 
the dominant baseline models. For example, Ayadi et al. developed a 
customized multilayer CNN in which the initial layers used multi-
scale convolution (3 × 3 and 5 × 5), followed by Batch Normalization, 
ReLU activation, and Dropout; two fully connected layers were then 
applied to output classification probabilities for three tumor types 
(12). Zahoor et  al. proposed Res-BRNet, a CNN that integrates 
Regional and Residual modules. Their approach first extracted 
homogeneity and boundary features through a spatial block, then 
captured local and global texture differences via consecutive residual 
blocks, followed by a Global Average Pooling and Softmax layer for 
multiclass tumor classification (13). Previous studies have primarily 

focused on classification or segmentation tasks, whereas the present 
approach employs object detection to achieve both localization and 
classification, thereby better addressing the clinical need for precise 
tumor localization.

However, existing studies still fall short of meeting the clinical 
demand for real-time, high-precision brain tumor detection, as 
traditional deep learning models continue to face the trade-off 
between accuracy and efficiency. Although recent research has 
attempted to address these issues through CNN architecture 
optimizations (14, 15), achieving substantial lightweighting for real-
time edge computing while maintaining or improving detection 
accuracy remains a major challenge. To bridge this gap, a lightweight 
brain tumor detection model with both high accuracy and efficiency 
is proposed. YOLO11n is adopted as the baseline framework owing to 
its advantages in real-time target detection, and three major 
enhancements are incorporated: (1) the GhostConv module to reduce 
redundant parameters, (2) the Online Convolutional 
Reparameterization (OREPA)-optimized C3k2 module to lower 
computational complexity (16), and (3) the Efficient Multiscale 
Attention (EMA) mechanism to strengthen multiscale feature 
representation. These improvements collectively aim to enhance 
detection accuracy and recall for complex MRI tumor features while 
significantly reducing computational cost, thereby improving 
feasibility for clinical deployment.

Deep learning-based object detection algorithms are generally 
categorized into one-stage [e.g., SSD (17), YOLO series (18, 19)] and 
two-stage approaches [e.g., R-CNN (20), Fast R-CNN (21), Faster 
R-CNN (22)]. Among them, the YOLO family has been widely applied 
in medical imaging due to its real-time performance, high accuracy, 
and end-to-end design. The latest YOLO111 (23) integrates dynamic 
kernel convolution (C3k2 module) with a dual-label assignment 
strategy, offering improvements in both accuracy and speed while 
avoiding post-processing with non-maximum suppression. 
Nonetheless, limitations remain in brain tumor detection scenarios: 
convolutional stacking results in high parameter counts and 
computational cost, downsampling reduces spatial resolution, and 
high-intensity edema signals in T2-FLAIR sequences often obscure 
critical tumor features. Aiming at the above defects, this study 
proposes an improved brain tumor MRI classification and detection 
model based on the YOLO11n model. Firstly, the GhostConv module 
is used to reconstruct the feature extraction layer (24), and the 
redundant parameters are effectively compressed by 30% through a 
third-order process of primary feature generation, depth-separable 
linear transformation and cross-channel splicing. Secondly, the 
OREPA technique is embedded into the C3K2 module (25), which 
realizes the transformation of Bottleneck structure to single-layer 
inference by eliminating the batch normalization layer, introducing 
learnable linear scaling, and multi-branch equivalent fusion. Finally, 
the EMA mechanism is added to the Backbone key layer and the 
feature fusion network (26, 27), and the EMA mechanism obtains an 
efficient multiscale attention mechanism without dimensionality 
reduction by modifying the sequential processing method of the 
Coordinate Attention (CA) mechanism.

1  https://github.com/ultralytics/ultralytics
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In summary, this study introduces an improved YOLO11n-based 
framework for brain tumor MRI detection. The proposed model 
integrates GhostConv, OREPA, and EMA modules to simultaneously 
achieve higher detection accuracy, enhanced recall, and reduced 
computational complexity. The primary objective is to provide a 
lightweight yet precise detection model that can support real-time 
clinical diagnosis and facilitate practical deployment in 
healthcare environments.

2 Improved method

2.1 Original YOLO model

The YOLO (You Only Look Once) series is a classic set of 
algorithms in the field of object detection, known for real-time 
performance, high accuracy, and ease of use. YOLO11 represents a 
mainstream object detection framework and includes five variants: 
YOLO11n, YOLO11s, YOLO11m, YOLO11l, and YOLO11x. Its 
architecture is primarily composed of three components: Backbone, 
Neck, and Head. Compared with its predecessors, such as YOLOv8 
and YOLOv10, YOLO11 introduces several key innovations. The 

C3k2 module, an optimized variant of the CSP structure, improves 
computational efficiency by segmenting feature maps and enhancing 
information flow through small-kernel convolutions. This module can 
be configured to connect in tandem or be degraded to the C2f module 
of YOLOv8, indirectly increasing precision by deepening feature 
representations. A newly added module, C2PSA, integrates the C2f 
structure with a Partial Self-Attention (PSA) mechanism. After 
feature splitting via a 1 × 1 convolution, a portion of the features is 
forwarded directly, while the remaining features are processed by the 
PSA using multi-scale convolutions and weighted by an SE module. 
Finally, channels are point-wise weighted through a Softmax 
operation, enhancing attention to critical features and improving the 
detection of multi-scale objects in complex scenes. Additionally, the 
detection head adopts depthwise separable convolutions, inspired by 
YOLOv10, which reduces redundant computations and further 
improves inference efficiency. Despite these improvements, the 
YOLO11 baseline model still faces limitations, including high 
computational costs in the backbone network, insufficient feature 
extraction leading to partial loss of target details, and challenges in 
capturing small objects in low-resolution feature maps. These 
limitations constrain overall detection accuracy. Based on these 
considerations, YOLO11 was selected as the baseline model for 

FIGURE 1

YOLO11 basic network structure.
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further improvement. Its network architecture is illustrated in 
Figure 1.

2.2 Improved YOLO algorithm

Although YOLO11 demonstrates improvements in both accuracy 
and speed for brain tumor detection, repeated convolution and 
pooling operations can compress feature maps, potentially leading to 
the dilution or loss of small-target features. Additionally, the 
anisotropic nature of brain tumor structures—including variations in 
shape, edge, and location—may cause YOLO11 to be biased toward 
negative predictions. To address these challenges and enhance both 
detection accuracy and efficiency, a series of improvements are 
proposed. Direct detection using YOLO11n alone exhibits instability, 

while employing larger models substantially increases computational 
and parameter costs. To achieve a balance between accuracy, efficiency, 
and model lightweighting, several modifications are applied to the 
YOLO11n framework. The primary improvements include: (1) 
replacing standard convolutions with the lightweight GhostConv 
module, (2) integrating OREPA to enhance the C3k2 module, and (3) 
incorporating the EMA attention mechanism. The resulting improved 
YOLO11 network architecture is illustrated in Figure 2.

2.3 Lightweight GhostConv module

Traditional feature extraction relies on stacking multiple 
convolutional kernels, which perform convolutions across all channels of 
the input feature map, often resulting in redundant computations and 

FIGURE 2

Improved YOLO11 network architecture.
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high resource consumption. Although conventional convolutions 
generate rich features, they are computationally intensive and require a 
large number of parameters. To address the inefficiency caused by 
traditional convolutions in the YOLO11 architecture, the GhostConv 
module is introduced as a replacement. GhostConv reduces model 
parameters, lightens the network, and improves inference speed. The 
structure of the GhostConv module is illustrated in Figure  3. In 
GhostConv, a portion of the feature map is initially generated using a 
standard convolution. Subsequently, a series of linear transformations are 
applied to this subset of features to produce additional feature maps. 
These original and transformed feature maps are then concatenated to 
form the final output. By reducing the learning burden on non-critical 
features and generating richer representations efficiently, GhostConv 
decreases both the number of parameters and computational load, 
thereby enhancing the speed and effectiveness of YOLO11 for brain 
tumor detection and classification.

2.4 Improvement of the C3k2 module

OREPA (Online Convolutional Reparameterization) enhances 
training efficiency through two main phases (Figure 4): (1) block 
linearization, which replaces nonlinear normalization layers with 
learnable linear scaling layers to reduce computational complexity, 
and (2) block compression, which merges multi-branch structures 
into a single convolutional layer using kernel-equivalent 
transformation. This approach achieves a dual reduction in training 
memory usage and computational cost for brain tumor detection, 
while maintaining a lightweight single-layer architecture during 
inference. In doing so, OREPA addresses the drawbacks of 
conventional heavily parameterized models, such as high complexity 
and resource consumption.

In the block linearization phase, nonlinear normalization layers are 
removed and replaced with linear scaling layers. While normalization 
layers are commonly employed to stabilize training and accelerate 
convergence, their nonlinear nature increases training complexity. By 
contrast, linear scaling layers preserve the effect of branching diversity 
during optimization while introducing learnable scaling factors that can 
be  directly merged into convolutional layers. Because of their linear 
property, these scaling factors can be  combined with convolutional 
operations, thereby reducing both computation and memory overhead. 
This ensures lightweight and efficient model training in brain tumor 
classification and detection tasks.

In the block compression phase, OREPA consolidates multi-
branch and multilayer structures into a single convolutional layer via 
kernel-equivalent merging. This strategy integrates multiple 
convolutional layers into one end-to-end operation. Nonlinear 

BatchNorm (BN) layers are eliminated to further reduce complexity 
and replaced with linear scaling layers. To stabilize training, a single 
BN layer is added after branch merging to ensure consistency, as the 
added BN layer is linearly equivalent and can be  merged 
during inference.

The C3k2 module in YOLO11 is an enhanced design derived from 
the traditional C3 module. By combining variable convolution kernels 
(e.g., 3 × 3, 5 × 5) with channel separation strategies, it strengthens 
feature extraction for complex scenes and deep learning tasks. To 
integrate OREPA into YOLO11, the Bottleneck module within C3k2 
is optimized. Specifically, nonlinear BN layers are removed and 
replaced with linear scaling layers, ensuring diverse optimization 
directions, while a stabilizing BN layer is added after branch merging. 
Using the compression principle, the scaling layers are merged into 
the OREPA structure, forming the Bottleneck-OREPA module. This 
optimized bottleneck is then embedded into the C3k2 module, 
creating the C3k2-OREPA module (Figure 5). Replacing the original 
C3k2 with C3k2-OREPA effectively reduces parameters and 
computational complexity while preserving strong feature extraction 
capability. This modification enables YOLO11 to maintain high 
performance in real-time object detection tasks, while also making the 
model more suitable for deployment in low-power edge 
computing environments.

2.5 EMA attention mechanism

In this study, the EMA (Efficient Multiscale Attention) module is 
integrated into the YOLO11 architecture. EMA is a lightweight 
attention mechanism that employs channel grouping to preserve 
essential information while reducing computational cost. It further 
encodes global features to recalibrate channel weights and captures 
pixel-level dependencies through cross-dimensional interactions, 
making it particularly effective for computer vision tasks. Owing to 
these properties, EMA achieves both efficiency and flexibility, 
substantially enhancing model performance without increasing 
computational overhead. The overall structure of EMA is illustrated 
in Figure 6.

The EMA module comprises three parallel paths, organized into 
two types of branches: two 1 × 1 convolutional branches and one 
3 × 3 convolutional branch. These branches extract attention weights 
from feature groups through different strategies. The first type 
employs one-dimensional global pooling to capture compact 
channel-level attention, whereas the second incorporates three-
dimensional global pooling to enhance feature representation. 
Initially, a two-dimensional global average pooling operation is 
applied to the output of the 1 × 1 branch to obtain spatial global 

FIGURE 3

GhostConv module structure.
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features. To enable dimensional alignment during subsequent 
channel fusion, the smallest branch output is reshaped to a compatible 
form. The feature representations from the parallel paths are then 
combined via matrix dot product to generate the first spatial attention 

map. Subsequently, two-dimensional global average pooling is also 
applied to the 3 × 3 branch output to acquire global spatial context 
information. Before activating the channel attention mechanism, the 
corresponding 1 × 1 branch outputs are adjusted to a consistent 

FIGURE 4

OREPA basic flow.

FIGURE 5

Structure of the C3k2-OREPA model.
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dimensional format, enabling pairing with the 3 × 3 branch and 
resulting in a second spatial attention map that preserves precise 
spatial location details. Finally, after the output features of both 

branches are modulated by the Siqmoid function, the output feature 
maps are used to enhance or attenuate the original input features to 
obtain the final output.

FIGURE 6

EMA network.
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3 Materials and methods

3.1 Data acquisition

The brain tumor classification data used in the experiments were 
obtained from two publicly available Kaggle datasets. The first dataset 
(28) was manually filtered to select 4,000 brain MRI images, which 
were categorized into four groups: glioma, meningioma, pituitary 
tumor, and no tumor (1,000 images per category). This dataset, 
referred to as Dataset 1, was used for model training and internal 
testing. The second dataset (29) contained 20 MRI images per 
category, totaling 80 images, and served as an external test set, referred 
to as Dataset 2. All images were annotated in advance by two attending 
radiologists with over 5 years of experience using the Labeling tool, 
and the annotations were subsequently reviewed by two senior 
radiologists with more than 10 years of experience to ensure accuracy. 
Annotation information was stored in txt format, and all images were 
resized uniformly to 640 × 640 pixels. Dataset 1 was divided into 
training, validation, and test sets in an 8:1:1 ratio to guarantee both 
sufficient training samples and reliable evaluation of model 
performance. Examples of training samples from Dataset 1 are 
presented in Figure 7, while the annotation distribution and inter-
category correlations are illustrated in Figures 8, 9.

3.2 Experimental parameters

The experiment uses windows operating system, CPU model is 
12th Gen Intel(R) Core(TM) i5-12400F, GPU model is NVIDIA 
GeForce GTX4060 graphics card, 8G RAM, and the deep learning 
framework chooses pytorch-2.4.1, cuda-12.4, and python-3.9.21. The 
model hyperparameters are set as shown in Table  1. The model 
hyperparameters were set as shown in Table 1.

3.3 Experimental evaluation index

The evaluation indicators used in this study are shown in Table 2.

The formula is as follows:

	
= ×

+
TP

TP FP

NP 100%
N N

	
= ×

+
TP

TP FN

NR 100%
N N

	 =
= ∑

1

1 n

i
i

mAP AP
n

	 ( )= ∫
1

0
AP P r dr

Here, TP denotes the number of true positive cases, FP represents 
the number of false positive cases, and FN indicates the number of 
missed detections (false negatives). The variable n refers to the total 
number of samples, and N denotes the number of categories. In this 
study, mAP@50 was selected as the primary evaluation index because 
it emphasizes that moderately overlapping detection is crucial for 
clinical localization and biopsy guidance, unlike mAP@50–95 which 
is stricter and may be  overly strict for some detections. To 
comprehensively assess the effectiveness of the proposed model in 
brain tumor MRI detection, additional performance indicators were 
introduced, including Precision (P), Recall (R), the number of model 
parameters (Params), and floating-point operations (FLOPs). These 
metrics allow for a balanced evaluation of both detection accuracy and 
computational efficiency. The improved confusion matrix for each 
tumor category is presented in Figure 10, while the training curve of 
the improved model is illustrated in Figure 11.

3.4 Ablation experiment

In order to verify the effectiveness of each improvement strategy, 
a systematic ablation experiment was conducted based on YOLO11n, 
and the experimental results are shown in Table 3. The experimental 

FIGURE 7

Example of a brain tumor.
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results show that each improvement module significantly improves 
the detection performance of the model on the target.

The comparative results of the ablation experiment are shown in 
Figure 12. As can be seen from the figure, the performance data of the 
baseline model combined with various improvements.

3.5 YOLO series comparison experiment

In order to highlight the performance of the improved algorithm 
in this paper, other algorithms of the YOLO series of the same 
magnitude as the YOLO11n model are selected for comparison tests 
under the same experimental environment, and the obtained 
experimental results are shown in Table 4. According to the data in the 
table, in terms of precision, mAP50 as a key indicator for evaluating 
the comprehensive performance of the model, the mAP50 value of the 
improved algorithm reaches the highest among the comparative 
algorithms, 97.2%, which is an increase of 2.1 percentage points on the 

basis of the original model, and the recall rate of this paper’s algorithm 
reaches 93.8%, which is the same as the highest value of all the 
comparative models, and it is a rise of 2.2 percentage points compared 
with the original model. This paper’s algorithm also reduces the 
number of parameters and computational complexity while improving 
precision, reducing the number of parameters by 0.47 M and the 
complexity by 1.5 GFLOPS compared with the original model.

3.6 Analysis of results

A more intuitive view of the effects before and after the 
improvement can be seen in the original and detection result plots 
randomly selected from the internal and external test sets, see 
Figures 13, 14. Each line compares the effects of a brain tumor type 
before and after detection and before and after the model improvement, 
with the original plot, the original YOLO11n detection result plot, and 
the improved YOLO11n detection result plot, in order from left to 

FIGURE 8

Annotation status in the dataset.
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right. The text on the left side above the target box in the detection 
result plots is the brain tumor type, and the number on the right side 
is the detection confidence level. Column 3 of both Figures 13, 14 show 
that the improved model can detect gliomas, meningiomas, pituitary 
tumors, and no tumors (entire brain region) with high confidence. 
Table 5 shows the quantitative results of the detection performance for 
various categories of the improved model in the external test set.

FIGURE 9

Target correlation graph in the dataset.

TABLE 1  Model hyperparameter settings.

Optimizer Learning 
rate

Batch Epoch IoU

Adaw 0.00125 32 200 0.7

TABLE 2  Experimental evaluation index.

Evaluation index Symbolic

Average Precision AP

Precision P

Recall R

Union loU

Average mean precision (loU = 0.5) mAP@50

Average mean precision (loU = 0.5–

0.95)
mAP@50–95

Number of model parameters Params

Floating point operation FLOPS
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FIGURE 10

Improved confusion matrix for various types of brain tumors.

FIGURE 11

Improved YOLO11n model training curves.
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4 Discussion

This study presents an improved YOLO11n algorithm that 
incorporates a lightweight GhostConv module, a C3k2 module 
optimized via OREPA, and an EMA mechanism. Empirical results 
indicate that these integrated improvements substantially increase 
both detection accuracy and computational efficiency in brain tumor 
MRI image analysis. The revised model achieves a mean average 

precision (mAP@50) of 97.2% and a recall rate of 93.8%. This high 
mAP@50 value underscores the model’s exceptional classification 
precision, which is essential for accurate and reliable clinical diagnosis. 
Furthermore, the enhanced strategy not only achieves a 2.1% increase 
in detection accuracy compared to the original model, but also 
reduces floating-point operations (GFLOPS) by 25% to 4.8, thereby 
facilitating real-time clinical diagnostics and deployment on 
edge devices.

TABLE 3  Ablation experiment.

GhostConv C3k2-
OREPA

EMA P(%) R(/%) mAP50(%) mAP50-95(%) GFLOPS

× × × 96.2 88.6 95.1 76.8 6.4

√ × × 95.8 89.2 95.2 77.1 5.5

× √ × 95.9 90.7 95.5 77.9 5.7

× × √ 96.1 92.2 96.5 78.4 6.4

√ √ × 96.0 91.1 95.5 78.1 4.9

√ × √ 96.1 92.5 96.6 78.7 5.9

× √ √ 96.3 92.9 96.8 80.2 5.7

√ √ √ 96.4 93.8 97.2 80.7 4.8

FIGURE 12

Ablation experiment comparison.

TABLE 4  Results of comparison experiment.

Model P(%) R(%) mAP50(%) Params(M) GFLOPS

YOLOv5s 94.8 89.5 93.9 2.18 5.8

YOLOv8n 95.5 90.4 94.7 2.68 6.8

YOLOv10n 95.2 89.2 94.4 2.27 6.5

YOLO11n 95.9 91.6 95.1 2.58 6.4

Ours 96.4 93.8 97.2 2.11 4.8
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The application of the improved YOLO11n model in MRI-based 
brain tumor detection markedly enhances identification and 
classification accuracy, thereby supporting the development of 
personalized treatment strategies. This model serves as a valuable tool 
for aiding clinical diagnosis and prognostic assessment. Its adoption 
leads to greater efficiency in medical decision-making and streamlines 
the diagnostic and therapeutic workflow. With the continuous 
development of deep learning and artificial intelligence, the invention 
and integration of more new modules in the future can continuously 
improve the accuracy, automation level, and real-time performance of 
models for brain tumor detection. Moreover, the lightweight 
characteristics of models have enhanced their deployability on edge 
computing devices, promoting the widespread application of 
intelligent diagnostic systems in various clinical environments 
(30, 31).

In the field of deep learning, various models including CNNs 
(Convolutional Neural Networks)) and ViT (Vision Transformer) 
have demonstrated significant potential in brain tumor image analysis 
(32, 33). CNNs, with their powerful local feature extraction capability 
and translation invariance, have been used in medical image 
processing achieved a wide range of applications (34). However, CNNs 

models usually suffer from high computational complexity, high 
requirements on the amount of training data and tend to overfit on 
small-sample medical datasets, as well as being sensitive to network 
architecture design and hyper-parameter tuning (35). In addition, its 
inherent local receptive field characteristics may limit the effective 
modeling of image global contextual information, which may become 
a bottleneck when dealing with brain tumor MRI images with 
complex spatial dependencies. In contrast, ViT is able to capture long-
range dependencies and global contextual information through the 
self-attention mechanism, which provides a new perspective for 
understanding the overall structure of images. However, it relies on 
large-scale pre-training data to fully utilize its advantages, and is prone 
to underperform or even overfit on relatively limited medical image 
datasets (36). Meanwhile, ViT models usually have a large number of 
parameters, significantly higher computational overhead than 
lightweight CNNs with the same performance, slower inference speed, 
and their training process is complex and difficult to optimize, which 
poses substantial challenges for deployment in clinical real-time 
diagnosis scenarios and resource-constrained devices.

YOLO11n demonstrates significant advantages in real-time brain 
tumor MRI image detection. As a new generation of end-to-end target 

FIGURE 13

Classification detection results of YOLO model before and after improvement on internal test set.
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detection network optimized for lightweight scenarios, YOLO11n 
inherits the core features of the YOLO series: it can efficiently predict 
the target bounding box coordinates and class information directly 
from the input image, providing good generalization capability and 
migration potential. The model enhances multi-scale feature extraction 
by dynamically adjusting the convolutional kernel size and channel 
strategy through its innovative C3K2 module; optimizes feature fusion 
and gradient propagation by adopting an improved CSPNet design and 
PAN structure combined with the C2PSA module; and introduces the 
depth separable convolution (DWConv) in the classification branch, 
which effectively reduces the number of parameters and redundancy 

computation. These designs enable YOLO11n to achieve an excellent 
balance between speed and accuracy, making it ideal for clinical 
diagnostic scenarios that require fast responses. In particular, its 
lightweight architectural design significantly reduces the demand for 
computational resources, and the model not only runs smoothly on 
high-performance GPUs, but also has the potential to be deployed to 
edge computing devices or less configurable hardware environments 
(e.g., partial CPUs or mobile platforms), which greatly expands its 
scope of application in diversified healthcare environments (e.g., 
primary healthcare centers, mobile terminals). In addition, it adopts a 
consistent dual-allocation strategy to directly generate the final 
detection frame, eliminating the non-maximum suppression (NMS) 
post-processing step, further reducing computational overhead and 
improving real-time performance.

In brain tumor detection tasks, high recall is of primary 
clinical importance to ensure that no suspicious tumor regions are 
missed. Even if the model possesses high precision, a low recall 
may result in certain tiny or ambiguous tumor lesions being 
overlooked, with serious consequences. However, simultaneous 
enhancement of precision is equally crucial, as it is directly related 
to the accuracy of target localization and classification, which not 

FIGURE 14

Classification detection results of YOLO model before and after improvement on external test set.

TABLE 5  Improved model performance on various categories in the 
external test set.

Labels P(%) R(%) mAP50(%)

Glioma 96.1 93.2 97.0

Meningioma 96.8 94.0 97.5

No tumor 96.9 93.5 97.6

Pituitary 95.6 94.5 96.7

https://doi.org/10.3389/fneur.2025.1646476
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al.� 10.3389/fneur.2025.1646476

Frontiers in Neurology 15 frontiersin.org

only significantly reduces the possibility of misclassifying 
non-tumor normal tissues as tumor categories and reduces 
unnecessary patient anxiety and invasive examinations for 
non-tumor lesions, but also provides clinicians with a reliable 
AI-assisted basis for quickly and accurately identifying tumor 
subtypes. This high-precision classification result is a critical first 
step in the development of personalized treatment plans, it directly 
determines whether the patient should be prioritized for surgical 
resection, radiotherapy, chemotherapy, or conservative observation 
and follow-up, which helps to direct the patient to the most 
appropriate diagnostic and therapeutic pathway at the early stage 
of the disease, and avoids delays in treatment or inappropriate 
choices of treatment due to misdiagnosis or ambiguity in 
classification. At the same time, clear information on the tumor 
category also provides important reference information for the 
subsequent estimation of the difficulty of surgery, the need for 
multidisciplinary collaboration, and the prediction of the 
sensitivity of radiotherapy, laying the foundation for more detailed 
diagnostic and therapeutic steps.

However, there are still limitations in this study: the model training 
relies on a single-source static MRI dataset, which does not cover multi-
center, multi-device, and multi-modality images, which may limit its 
clinical generalization ability; in the face of extremely rare or 
morphologically atypical tumor subtypes, the robustness of the model 
needs to be verified by a larger dataset; and the lesions in the dataset are 
manually annotated, which is subjective and may contain errors. Future 
research should explore multi-center and multimodal datasets (e.g., MRI, 
CT, PET) and investigate integration into clinical systems such as PACS, 
as well as deployment in mobile and intraoperative settings to enhance 
real-world applicability.

5 Conclusion

In this study, several enhancements were introduced to the YOLO11 
model to improve brain MRI tumor detection. GhostConv was 
incorporated into the feature extraction stage to reduce redundant 
computation and accelerate detection. The C3k2 module was optimized 
by embedding OREPA, thereby lowering parameter complexity while 
maintaining efficiency. In addition, the EMA attention mechanism was 
integrated to strengthen feature representation and better capture the 
heterogeneity of brain tumors. Experimental results demonstrated that, 
compared with the original YOLO11 model, the improved framework 
substantially reduced computational cost while achieving higher 
detection accuracy. The optimized model achieved 97.2% mAP@50 with 
a reduced computational load of 4.8 GFLOPS, confirming its 
effectiveness in balancing accuracy and efficiency. These advancements 
have facilitated the translation to intraoperative tools, promising to 
revolutionize the management of brain tumors.
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