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Introduction: Accurate segmentation of intracranial aneurysms (IAs) in digital
subtraction angiography (DSA) is critical for endovascular embolization and
risk assessment of ruptured IAs. However, this task remains challenging due
to problems like vascular overlap, small target size and similarity to ring blood
vessels. To develop a novel deep learning model to improve segmentation
performance of IAs on DSA datassets, especially addressing challenges of
small IAs.
Methods: We propose a novel deep learning model, the Shape-aware dual-
stream attention network (SDAN). This network integrates two novel modules:
(1) Edge-aware Local Attention Module (ELAM), which differentiates aneurysms
from adjacent vasculature by capturing morphological features, (2) Global
Shape-aware Fusion Block (GSFB) that enhances pattern recognition through
contextual aggregation between domains. The model was trained and tested on
62,187 retrospective DSA images from three institutions, with external validation
on 26,415 images. Performance was evaluated using DSC, HD95, and sensitivity.
Results: The proposed SDAN outperforms the other models when tested on
multiple centers separately with an average Dice score of 0.951 on the internal
test set and 0.944 on the external test set. We also evaluated the different sizes
of aneurysms individually and the results show that SDAN outperforms the other
models on all sizes of aneurysms. This study demonstrates the effectiveness of
SDAN for intracranial aneurysm segmentation.
Conclusion: Our proposed SDAN significantly improves the accurate
segmentation of intracranial aneurysms in DSA images beyond existing
medical image segmentation models. The model solves the problems of
small intracranial aneurysms that are not easily segmented accurately,
over-segmentation caused by the similarity of intracranial aneurysms and ring
vessels, and under-segmentation caused by the overlap of neighboring vessels.
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1 Introduction

Intracranial aneurysms (IAs) represent a critical
cerebrovascular pathology, with rupture leading to aneurysmal
subarachnoid hemorrhage (aSAH). This condition carries a
devastating mortality rate exceeding 50% (1–3). Survivors
frequently suffer severe neurological deficits, imposing significant
burdens on global healthcare systems (4). Endovascular
embolization has emerged as a primary therapeutic intervention;
however, its efficacy critically depends on precise IA delineation
for preoperative planning and intraoperative navigation (5, 6).
Substantially, inaccurate segmentation may compromise the
success of interventional treatments (such as endovascular coiling),
thereby increasing the risk of perioperative complications
like coil protrusion or incomplete occlusion (7). This
highlights that sub-millimeter precision is essential in clinical
workflows (8).

Current reliance on manual delineation by
neurointerventionists is prohibitively slow (> 1.5 minutes
per frame) and exhibits substantial variability, particularly for
small aneurysms (diameter < 3mm) and in cases of vascular
overlap or occlusion (9, 10). This inefficiency delays critical
interventions and elevates patient risk during time-sensitive
procedures, highlighting the urgency for automated segmentation
solutions. Digital subtraction angiography (DSA) remains
the gold standard for IA characterization due to its superior
spatial resolution (150 − 200μm/pixel) and clear depiction of
vascular anatomy, making it indispensable for intraoperative
guidance (11–13). In contrast, computed tomography angiography
(CTA) and magnetic resonance angiography (MRA) are more
widely adopted for screening owing to their noninvasive nature,
with datasets often including patients without aneurysms
to reflect real-world clinical scenarios (14, 15). However,
these modalities are susceptible to motion artifacts and offer
lower temporal resolution, limiting their utility in complex
interventional settings.

The lack of segmentation tools that are accurate, capable of
real-time operation, and sensitive to small IAs for single-frame 2D
DSA represents a critical gap. Furthermore, the clinical translation
of existing models is hindered by insufficient validation on large-
scale, multi-center DSA datasets. To address these limitations,
this study introduces the Shape-aware Dual-stream Attention
Network (SDAN), explicitly designed for accurate IA segmentation.
Our innovations include: (1) Edge-aware Local Attention Module
(ELAM): A learnable edge detection module combining Canny
operator with convolutions and local attention to capture
morphological features, addressing the problem of distinguishing
IAs from adjacent vasculature; (2) Global Shape-aware Fusion
Block (GSFB): A cross-dimensional feature aggregator integrating
spatial-channel attention mechanisms, enabling robust recognition
through hemodynamic context modeling.

We trained and evaluated SDAN on a retrospective dataset
comprising 62,187 DSA images from three independent
institutions. Our objective is to deliver a clinically viable
segmentation tool that significantly outperforms existing state-of-
the-art methods, particularly for small IAs, thereby enabling faster,
safer, and more precise endovascular interventions.

2 Related work

2.1 Clinical challenges in accurate
segmentation of IAs

The segmentation of intracranial aneurysms (IAs) remains
a high-stakes clinical challenge where computational precision
directly affects procedural safety. Prior studies establish that
geometric discrepancies exceeding 1 mm between segmented and
true aneurysm morphology correlate with increased intraoperative
complications (7), underscoring the need for submillimeter
precision in real-world embolization workflows. This demand is
particularly acute for small IAs (< 3mm diameter), which exhibit
higher misclassification rates due to limited contrast retention and
overlapping vasculature (10). While recent consensus guidelines
highlight IA segmentation as critical for minimizing perioperative
risks (5), conventional approaches relying on manual delineation
or threshold-based techniques lack the requisite spatial fidelity and
speed for intraoperative adoption.

2.2 Limitations of current computational
approaches

Deep learning has shown promise in addressing medical
image segmentation challenges, but existing IA-related studies
exhibit clear modality biases (16, 17). For DSA-based approaches,
early efforts include Jerman et al.’s work (18), which computed
intravascular distance maps from 3D-DSA images for CNN-based
classification but suffered from high computational overhead.
Podgorsak et al. (19, 20) modified VGG networks to achieve three-
class segmentation (background, vasculature, and aneurysm) in
DSA with good agreement between predictions and ground truth.
Duan et al. (21) proposed a two-stage CNN architecture integrating
frontal and lateral views with false-positive suppression to improve
detection specificity. For 2D+time DSA sequences, Jin et al.
(22) developed a U-shaped network incorporating spatiotemporal
information, achieving 89.3% sensitivity but with 3.77 average false
positives per sequence, while Liao et al. (23) combined CNNs with
ConvLSTM to capture temporal dynamics, enhancing accuracy
through multi-frame fusion.

Meanwhile, numerous studies focus on CTA/MRA or
3D rotational angiography (3D-RA) (24, 25). Zhang et al.
(26) proposed FSTIF-UNet with feature fusion and attention
mechanisms, showing improved performance on 3D-RA for
complex vasculature and small aneurysms, though 3D-RA requires
multi-angle acquisitions with 17.6-22.2 second processing delays
(27–29), rendering it unsuitable for real-time guidance. CTA-
specific models (9, 30–32) demonstrate robust detection but are
tailored to CT imaging characteristics.

Despite these advancements, critical limitations persist.
Conventional 2D DSA segmentation algorithms degrade
significantly when vascular overlap exceeds 50% (33), and
most deep learning approaches—including DSA-specific ones—
exhibit poor performance on small IAs, which constitute over
30% of multi-center cases (21, 23, 34) and whose misidentification
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impacts rupture risk assessment. Additionally, many studies suffer
from limited dataset size, narrow aneurysm type diversity, and
sensitivity to DSA image quality variations caused by contrast
injection parameters.

Existing deep learning solutions for IA analysis prioritize
modalities like CTA and MRA (13, 35), despite DSA’s established
role as the gold standard for vascular characterization. Methods
designed specifically for DSA face three interrelated constraints:

• Temporal Incompatibility: 3D rotational angiography
achieves moderate segmentation accuracy (Dice: 0.87–0.90)
but requires multi-angle acquisitions incompatible with
single-frame navigation needs (27).

• Contextual Blind Spots: Hybrid frameworks (36) integrate
symbolic rules with deep networks but fail to model
hemodynamic context in overlapping vessels, leading to false
positives in > 40% of small IAs.

• Morphological Rigidity: Graph-based refinements (37)
improve boundary delineation yet remain sensitive to
aneurysm shape irregularity—a key predictor of rupture risk
neglected in current benchmarks.

2.3 Insights from non-DSA vascular
segmentation and DSA-specific challenges

Insights from non-DSA vascular segmentation suggest
promising avenues for innovation. The integration of learnable
edge detectors with attention mechanisms (38) demonstrates
enhanced sensitivity to tubular structures in retinal imaging,
while dual-path feature fusion (39) mitigates noise in low-dose
CT angiography. However, these approaches lack optimization
for DSA’s projective geometry, where depth ambiguity amplifies
topological complexity. Similarly, unsupervised shape modeling
techniques (31) reduce annotation dependency but cannot
resolve the signal-to-noise limitations inherent in DSA’s
subtraction artifacts.

3 Materials and methods

3.1 Dataset collection and preprocessing

This study retrospectively collected 62,187 DSA images from
three medical centers between 2013 and 2024. The dataset included:
Northern Theater Command General Hospital (Institution 1:
35,772 images from 655 patients), 242 hospital affiliated to
Shenyang Medical College (Institution 2: 14,055 images from 247
patients) and the Fourth Affiliated Hospital of China Medical
University (Institution 3: 12,360 images from 212 patients). All
images were acquired using 300mgI/mL iodinated contrast agent
(Schering AG) with a spatial resolution of 0.308 × 0.308 mm and
matrix sizes ranging from 960 × 960 to 1, 240 × 1, 240 pixels. The
details of data collection and preprocessing is illustrated in Figure 1.
Characteristics of the dataset are listed in Table 1. We divided data
from Institution 1 into training set and internal test set with a
ratio of 8:2, while data from Institution 2 and Institution 3 are
used as external test sets. The mean age of the patient was 57.65

years (interquartile range [IQR]: 42–86 years), with balanced sex
distribution (56.53% female) and the aneurysms demonstrated a
diameter skewness (24.37% small aneurysms < 3mm, 9.65% large
aneurysms > 10mm) distributed across critical vascular territories,
including the internal carotid artery (17.72%) and the middle
cerebral artery (20.25%) (P < 0.001). The equipment models
are listed in Table 2. To address multicenter scanner variations, at
the preprocessing stage, for each image from DSA sequences, we
first utilized CLAHE to improve the contrast of vascular structure.
Subsequently, we resized images to 512 × 512 to unify the shape of
all images.

3.2 Research strategy and model
architecture

Collectively, prior work reveals a persistent challenge:
No framework simultaneously addresses the spatial-temporal
constraints of DSA (single frame processing), morphological
variability, and clinical deployability. To address this challenge,
we developed the Shape-aware Dual-stream Attention Network
(SDAN). The design of the network is based on observations of
neurointerventional decision making, where clinicians combine
local edge discontinuities, such as aneurysm neck morphology,
with a global hemodynamic context, including the trajectory of
the parent vessel, to determine the location of an intracranial
aneurysm. The structure of SDAN is shown in Figure 1b, which
incorporates a convolutional patch embedding module as the
initial feature extraction step (40). This module replaces traditional
patch embedding with task-oriented convolutional operations to
reduce computational overhead. This embedding method retains
more local image information, thereby improving the effectiveness
of feature extraction. Notably, the first feature map undergoes
4× downsampling (rather than 2×) to balance spatial resolution
retention with computational efficiency. Given the high native
resolution of the DSA images, scaling 4× compresses redundant
background information while preserving critical morphological
details of small aneurysms and vessel edges. Subsequently, two
main modules are designed: Edge-aware Local Attention Module
(ELAM) and Global Shape-aware Fusion Block (GSFB). Detailed
architectural configurations and functional mechanisms of these
components will be elaborated in the subsequent sections.

3.3 Edge-aware local attention module

Since human blood vessels are topologically oriented, we
transform the gradient computation principle of the classical
Canny edge detection operator into a learnable convolutional form
to extract anisotropic features of the vascular structure:

Fh = Kh · X, (1)

Fv = Kv · X, (2)

where Kh and Kv are the horizontal and vertical convolution
kernels with kernel size of 3 × 3, respectively. The boundary
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FIGURE 1

An overview of the pipeline of our paper. (a) Data collection and pre-processing in our study. (b) The structure of SDAN and the detail structures of
GSFB and ELAM. Convolutional Patch Embedding is a overlap patch method with convolution.

enhancement mechanism of the visual system is then simulated
using matrix addition:

F = Fh + Fv. (3)

And the spatial attention weights are generated by depth-
separable convolution D, where the Sigmoid function σ is able to
constrain the weight range to [0, 1]:

A = σ (D(F)), (4)

Meanwhile, X is processed through D and Layer Normalization
(LN) to obtain the channel-related features Fc. Then A is weighted
onto Fc to obtain the result features:

Fc = LN(D(X) + X), (5)

FELAM = Fc � A + X, (6)

here, � denotes element-wise multiplication. The design enables
ELAM to adaptively focus on morphological discontinuites in the
vessel wall, overcoming the shortcoming of traditional fixation
operators that are sensitive to biological tissue variability.

3.4 Global shape-aware fusion block

Since ELAM is a form of local attention, it causes the network
to focus only on features within the receptive field, making it
highly sensitive to noise and subtle changes in vascular structures

(41, 42). Therefore, we introduced Global Shape-aware Fusion
Block (GSFB), a global attention mechanism that combines spatial
and channel dimensions. It can map local attention into global
attention, reducing sensitivity of the model to noise and enhancing
its robustness to slight changes in vascular structures, thereby
enabling the acquisition of aneurysm features, as illustrated in
Figure 1b. GSFB consists of spatial global attention and channel
global attention, utilizing Convolutional Multilayer Perceptron
(ConvMLP) to mix these features. First, the output of ELAM
(FELAM), is utilized as query (Q), which contains localized shape
features. The key (K), spatial value (Vs), and channel value (Vc)
are extracted from the input features, ensuring the consistency and
stability of the features. In particular, weight sharing between Q and
K is used to reduce computational complexity while maintaining
feature alignment. Second, spatial and channel dimensional multi-
head attention are processed separately:

MHAs = softmax(
QKT
√

dk
Vs), (7)

MHAc = softmax(
QKT
√

dk
Vc), (8)

where dk is the key dimension and MHA means multi-head
attention. For spatial attention, the computation focuses on inter-
region dependencies, while channel attention emphasizes feature
channel relationships. This approach enables GSFB to capture both
global structural patterns and fine-grained local features. Finally,
the output features from spatial and channel branches are mixed
through a ConvMLP:
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TABLE 1 Basic information and statistical analysis of the dataset.

Characteristics Training and internal test set External test sets P Value‡

Training set Internal test set External test set 1 External test set 2

Patients 536 119 247 212

Age (y)∗ 57.65 (42–84) 55.69 (41–76) 57.70 (41–86) 56.75 (51–75) 0.004

Sex 0.980

Female 303 (56.53%) 78 (58.21%) 142 (57.49%) 120 (56.60%)

Male 233 (43.47%) 56 (41.79%) 105 (42.51%) 92 (43.40%)

DSA equipment 2 2 1 1

DSA images 28,471 7,301 14,055 12,360

Aneurysms 632 131 285 237

Aneurysm size < 0.001

> 10mm 61 (9.65%) 14 (10.69%) 8 (2.81%) 8 (3.38%)

5 to < 10mm 97 (15.35%) 29 (22.14) 61 (21.40%) 62 (26.16%)

3 to < 5 mm 320 (50.63%) 40 (30.53%) 101 (35.44%) 92 (38.82%)

< 3 mm 154 (24.37%) 48 (36.64%) 115 (40.35%) 75 (31.64%)

Aneurysm location < 0.001

Internal carotid artery 112 (17.72%) 25 (19.08%) 71 (24.91%) 41 (17.30%)

Middle cerebral artery 128 (20.25%) 23 (17.56%) 37 (12.98%) 29 (12.24%)

Anterior cerebral artery 25 (3.96%) 6 (4.58%) 7 (2.46%) 11 (4.64%)

Anterior communicating artery 124 (19.62%) 15 (11.45%) 51 (17.89%) 38 (16.03%)

Posterior communicating artery 111 (17.56%) 18 (13.74%) 60 (21.05%) 62 (26.16%)

Posterior cerebral artery 22 (3.48%) 9 (6.87%) 15 (5.26%) 12 (5.06%)

Vertebral artery 45 (7.12%) 11 (8.40%) 16 (5.61%) 20 (8.44%)

Basilar artery 35 (5.54%) 10 (7.63%) 7 (2.46%) 11 (4.64%)

Other † 30 (4.75%) 14 (10.69%) 21 (7.38%) 13 (5.49%)

∗Data are mean value; data in parentheses are IQRs.
†Other locations including pericallosal artery, Anterior cerebellar artery, Posterior cerebellar artery, and Anterior choroid aneurysm.
‡Data are considered statistically significant if P ≤ 0.05. P values were calculated using Mann-Whitney U rank test for continuous distributions; discrete distributions were assessed using
Kruskal-Wallis H-test.

TABLE 2 List of equipment models.

Institution Equipment model

Institution 1 SIEMENS AXIOM Artis system, Philips Azurion 5M20

Institution 2 SIEMENS AXIOM Artis system

Institution 3 GE MEDICAL SYSTEMS

Ffusion = MHAs + MHAc + LN(X), (9)

Fout = Ffusion + ConvMLP(Ffusion) + X, (10)

where ConvMLP is defined as two convolutions connected
with ReLU function, dynamically fuses multi-scale features and
suppresses noise by leveraging global context.

Firstly, by extending receptive fields to the entire feature
map, GSFB mitigates the over-sensitivity of ELAM to local noise,
a limitation observed in traditional local attention mechanisms.
Secondly, dual-stream attention ensures sensitivity to vascular

deformations and maintain robustness to the diverse shapes of
vascular structures, enabling the network to focus on extracting the
features of IAs. Thirdly, Weight sharing and parallel spatial-channel
processing reduce computational overhead, aligning with the
efficiency goals of modern attention architectures (43). The refined
architecture balances computational efficiency with medical image
analysis tasks especially for specific structures.

3.5 Loss function

ELAM and GSFB leverage edge-aware features to improve
the ability to identify aneurysms. We seek to augment regional
discriminative power of the network with an appropriate loss
function design, specifically to dampen its responsiveness to noise
and irrelevant edge signals. Thus, we formulate the final loss
function as a combination of the Dice and focal losses:

L = 1 − 2|y ∩ ŷ|
|y| + |ŷ| − (1 − ŷ)2 log (ŷ), (11)
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where y is the true label and ŷ is the prediction result.

4 Experiment and results

4.1 Training and implementation details

In this section, we will introduce the parameters and the
implementation details to make sure the reproducibility of SDAN.
For the architecture of SDAN, the number of channels in the first
layer is 32, and the number of channels in each subsequent layer is
twice the number of channels in the previous layer. In addition,
the number of channels of skip-connection in the input layer is
also 32. Images in training dataset were patched to 224 × 224,
while test images were only normalized by CLAHE and the model
would predict images by sliding window method, as illustrated
in Figure 1a. During the training phase of SDAN, we employed
AdamW (44) optimizer with an initial learning rate of 0.0001 to
train the model. Besides that, a cosine annealing learning rate
schedule was used to decay the learning rate during training. And
we set batch size of 8. Our framework is trained and implemented in
PyTorch 2.1.1 using a deep learning workstation with two NVIDIA

TABLE 3 Hardware and software environment.

Name Version

PC System Ubuntu 24.04 LTS

CPU Intel(R) Core(TM) i9-14900K

GPU NVIDIA RTX A6000 × 2

python 3.10.13

pytorch 2.1.1

monai 1.3.0

timm 0.9.16

RTX A6000. The detail of hardware and software is illustrated in
Table 3.

4.2 Evaluation details

We evaluated SDAN and conducted a detailed comparison
with some existing models. These models are as follows: UNet
(45), UNetV2 (46), Attention-UNet (47), nnUNet (48), SegNet
(49), UNETR (50), SwinUNet (51), SwinUNetR (52), VMUNet
(53), VMUNetV2 (54), and HTC-Net (39). UNet and other
UNet-like models are used to explain the prior performance
for GSFB. In particular, Attention-UNet was utilized for IA
segmentation in previous research, and HTC-Net was used to
balance local and global information. For all methods, we adjusted
the hyperparameters to ensure that the optimal results were
obtained during the training process.

The performance of SDAN in the IA segmentation task is
evaluated by Dice Similarity Coefficient (DSC), 95% Hausdorff
Distance (HD95), Sensitivity, Precision, and Intersection over
Union (IoU). A paired t-test P value less than 0.05 is considered
to indicate a statistically difference. Specifically, DSC measures the
overlap between the prediction and the ground truth, which is
particularly suitable for evaluating small target segmentation tasks.
The calculation method is:

DSC = 2 · |A ∩ B|
|A| + |B| (12)

where A represents the prediction and B represents the ground
truth. HD95 quantifies the maximum distance between the
prediction boundary points and the ground truth, focusing on
evaluating the precision of the segmentation boundaries. It is a
robust variant of the standard Hausdorff distance, excluding the top
5% of extreme distance values to reduce the impact of outliers. HD
can be calculated as follows:

HD = max(max
a∈A

min
b∈B

‖a − b‖, max
b∈B

min
a∈A

‖b − a‖) (13)

TABLE 4 Model performance on internal test dataset with DSC, HD95, Sensitivity, Precision, and IoU.

DSC HD95 Sensitivity Precision IoU

UNet 0.821 39.249 0.826 0.845 0.745

UNetV2 0.789 9.226 0.754 0.887 0.710

Attention-UNet 0.855 11.981 0.852 0.894 0.792

nnUNet 0.923 2.365 0.931 0.917 0.875

SegNet 0.848 7.995 0.842 0.891 0.783

UNETR 0.716 109.161 0.732 0.739 0.624

SwinUNet 0.726 15.598 0.733 0.779 0.650

SwinUNetR 0.918 53.164 0.940 0.909 0.860

VMUNet 0.857 10.040 0.853 0.885 0.790

VMUNetV2 0.786 11.519 0.769 0.855 0.703

HTC-Net 0.803 11.072 0.786 0.871 0.727

SDAN 0.951 1.995∗ 0.946∗ 0.959∗ 0.908∗

The best results are displayed in red, and the second-best results are displayed in blue. ∗P values indicate significance compared with nnUNet (P < 0.05).

Frontiers in Neurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2025.1646517
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2025.1646517

HD95 thereby can be calculated by selecting the top 95% of the
directed distance values.

In addition, sensitivity reflects the model’s ability to
correctly identify all true target regions, precision measures

the proportion of pixels predicted as target regions that are
actually true targets, and IoU evaluates the overlap between
the prediction and the ground truth by the ratio of their
intersection to their union, providing a stricter measure

TABLE 5 Model performance on external test dataset with DSC, HD95, Sensitivity, Precision, and IoU.

Institution DSC HD95 Sensitivity Precision IoU

Institution 1 0.951 1.995 0.946 0.959 0.908

Institution 2 0.943 1.873 0.913 0.976 0.892

Institution 3 0.944 1.416 0.913 0.979 0.895

TABLE 6 Performance of ablation studies.

Baseline ResBlock ELAM SE GSFB DSC HD95 Sensitivity Precision IoU

✓ 0.764 65.870 0.782 0.789 0.677

✓ ✓ 0.809 21.021 0.813 0.835 0.731

✓ ✓ ✓ 0.804 24.436 0.808 0.833 0.727

✓ ✓ ✓ 0.797 27.979 0.811 0.811 0.719

✓ ✓ ✓ 0.951 1.995 0.946 0.959 0.908

The best results are shown in red.

FIGURE 2

Segmentation results comparison of different modules. (a) Baseline model. (b) Baseline + ELAM. (c) Baseline + ELAM + ResBlock. (d) Baseline + SE +
GSFB. (e) SDAN.
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TABLE 7 Model performance on different sizes of IAs of internal test dataset with DSC, HD95, Sensitivity, Precision, and IoU.

DSC HD95 Sensitivity Precision IoU

Small

UNet 0.179 76.036 0.442 0.421 0.283

UNetV2 0.273 11.687 0.227 0.595 0.201

Attention-UNet 0.472 18.552 0.455 0.674 0.404

nnUNet 0.863 9.517 0.873 0.852 0.847

SegNet 0.482 12.444 0.498 0.615 0.410

UNETR 0.229 150.857 0.296 0.242 0.161

SwinUNet 0.145 44.002 0.163 0.354 0.111

SwinUNetR 0.844 70.412 0.891 0.829 0.758

VMUNet 0.548 22.456 0.571 0.626 0.454

VMUNetV2 0.342 23.677 0.366 0.503 0.246

HTC-Net 0.365 17.597 0.391 0.863 0.295

SDAN 0.929 1.546∗ 0.908∗ 0.957∗ 0.869∗

Middle

UNet 0.693 27.818 0.703 0.739 0.589

UNetV2 0.558 12.183 0.511 0.769 0.454

Attention-UNet 0.756 9.205 0.737 0.822 0.650

nnUNet 0.892 6.221 0.896 0.901 0.866

SegNet 0.699 9.714 0.700 0.784 0.606

UNETR 0.480 90.420 0.486 0.532 0.381

SwinUNet 0.351 28.309 0.399 0.443 0.275

SwinUNetR 0.889 32.383 0.905 0.889 0.810

VMUNet 0.694 14.762 0.705 0.739 0.596

VMUNetV2 0.538 15.390 0.529 0.686 0.433

HTC-Net 0.603 17.317 0.619 0.697 0.507

SDAN 0.935∗ 1.441∗ 0.932∗ 0.940∗ 0.878∗

Large

UNet 0.866 35.052 0.867 0.885 0.866

UNetV2 0.862 8.899 0.839 0.916 0.862

Attention-UNet 0.891 10.463 0.899 0.907 0.891

nnUNet 0.931 2.147 0.940 0.938 0.897

SegNet 0.899 7.162 0.896 0.924 0.899

UNETR 0.773 104.903 0.800 0.781 0.773

SwinUNet 0.835 10.859 0.847 0.858 0.835

SwinUNetR 0.923 55.297 0.949 0.908 0.923

VMUNet 0.908 8.270 0.904 0.926 0.908

VMUNetV2 0.856 10.967 0.848 0.894 0.856

HTC-Net 0.868 9.439 0.850 0.912 0.848

SDAN 0.954∗ 2.002∗ 0.952∗ 0.958∗ 0.954∗

Huge

UNet 0.914 43.086 0.911 0.929 0.851

(Continued)
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TABLE 7 (Continued)

DSC HD95 Sensitivity Precision IoU

UNetV2 0.911 7.964 0.867 0.967 0.842

Attention-UNet 0.938 14.166 0.927 0.955 0.888

nnUNet 0.943 2.011 0.941 0.946 0.902

SegNet 0.929 7.565 0.910 0.957 0.874

UNETR 0.854 115.485 0.851 0.886 0.764

SwinUNet 0.885 12.902 0.865 0.927 0.807

SwinUNetR 0.942 57.092 0.956 0.934 0.896

VMUNet 0.933 7.918 0.916 0.957 0.879

VMUNetV2 0.906 8.398 0.866 0.960 0.834

HTC-Net 0.907 9.424 0.865 0.966 0.838

SDAN 0.965∗ 2.471 (p = 0.12) 0.960∗ 0.971∗ 0.933∗

∗P values indicate significance compared with nnUNet (P < 0.05). The best results are displayed in red, and the second-best results are displayed in blue.

of overlap compared to DSC. These metrics are calculated
as follows:

Sensitivity = TP
TP + FN

(14)

Precision = TP
TP + FP

(15)

IoU = |A ∩ B|
|A ∪ B| (16)

4.3 Model performance on internal test
dataset

SDAN was evaluated on 7,301 DSA images from internal test
dataset. The results are listed in Table 4. The model achieved a DSC
of 0.951, surpassing existing methods by 2.83%–23.54%. The HD95
of SDAN reached 1.995, indicating that the contour of SDAN’s
results is very close to the contour of the ground truth. SDAN
also showed the best performance in Sensitivity, Precision, and
IoU, indicating that our model has excellent robustness to noise
and a high ability to distinguish IAs from adjacent blood vessels.
Evidently, SDAN exhibits superior and more concentrated DSC
values, signifying it has a better ability to segment the aneurysm
region. Moreover, the more outstanding and clustered HD95
metrics demonstrate SDAN’s sensitivity to aneurysm contours,
along with its superior discriminatory power between aneurysms
and adjacent vascular structures.

4.4 Model performance on external test
dataset

In this section, we evaluated SDAN using our external
evaluation datasets. The total results are illustrated in Table 5.
Compared with the results of the internal test dataset, our SDAN
performed well in the external test datasets and showed consistency
with its performance in the internal test dataset. In terms of overall

performance, the HD95 of the external test datasets increased by
0.122 and 0.579, while the Precision results improved by 0.017
to 0.02. For results across different diameters, the external test
datasets showed small improvements in small and middle IAs
(DSC increased by approximately 0.01). Its performance in large
and huge IAs was inferior to that in the internal test dataset,
with the DSC value decreasing by approximately 0.015, within the
error range, SDAN demonstrated a high degree of consistency in
performance across all datasets.

4.5 Ablation studies

We conducted ablation experiments on SDAN to discuss the
effects of the modules in SDAN. Firstly, we replaced ELAM with
residual block (ResBlock) as baseline model. Secondly, we used only
ELAM as the backbone to show the effect of ELAM. Thirdly, we
utilized ResBlock to replace GSFB to illustrate the effect of GSFB in
SDAN. Finally, we employed a local attention mechanism, named
Squeeze-and-Excitation block (SE) (55) to replace ELAM to show
the effect of attention mechanism in ELAM.

The quantitative results are illustrated in Table 6. The baseline
model showed passable performance with DSC of 0.764, and HD95
was 65.870. When ELAM was added, all results improved. It
indicated that ELAM could effectively enhance the performance
with DSC increased to 0.809. However, when ELAM was combined
with ResBlock, DSC decreased slightly to 0.804, suggesting that
this combination was less effective than using ELAM alone, and
GSFB outperformed ResBlock. When combined with ELAM, DSC
increased significantly to 0.951, which was superior to other
combinations. Furthermore, when SE was combined with GSFB,
the DSC was 0.797. Despite some improvement in results, it was
still much lower than the combination of ELAM and GSFB.

The qualitative results are shown in Figure 2. The baseline
models showed a significant deviation from the global truth.
The boundaries were unclear with many errors. The result of
the combination of baseline and ELAM was obviously improved
compared to the baseline model and is closer to the global truth.
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FIGURE 3

Visual performance on small IAs. The image in the rectangle is at bottom of the image.
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FIGURE 4

Visual performance on middle IAs. The image in the rectangle is at bottom of the image.
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FIGURE 5

Visual performance on large IAs. The image in the rectangle is at bottom of the image.
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FIGURE 6

Visual performance on huge IAs. The image in the rectangle is at bottom of the image.

Frontiers in Neurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2025.1646517
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2025.1646517

FIGURE 7

Heatmap of the modules. The images from left to right are input image, the results of ELAM, the results of GSFB, ground truth, respectively.

The segmentation effect of the combination of ELAM and ResBlock
was inferior to that of the use of ELAM alone. The effect of SE was
also not as good as that of ELAM.

In general, while ELAM improves aneurysm segmentation
performance, it exhibits low contour sensitivity and limited
discrimination between aneurysms and adjacent vessels.
In contrast, integrating GSFB significantly enhances this
discriminatory capacity. These findings validate ELAM’s boundary
sensitivity and GSFB’s discriminative power, aligning with the
functional analysis results.

5 Discussion

5.1 Performance of different size

We conducted a detailed analysis of the performance of SDAN
for different diameters of IAs. Table 7 systematically presents
and compares the results of SDAN and other models under the
conditions of multi-scale aneurysm diameters. The results show
that SDAN demonstrates excellent stability in the segmentation
task of small IAs, with a DSC of 0.929, which is significantly
superior to the comparative models by 6.6%–78.4%. Except for
nnUNet and SwinUNetR, the remaining methods failed to produce
valid results. Although the results of nnUNet are relatively high
with a DSC of 0.863, there is still a significant gap compared with
SDAN. In the scenario of middle IAs, although the performance
of each model has improved compared with that in the group of
small IAs, SDAN still remains the best results. When dealing with
large and huge IAs, all models show good segmentation results,

indicating that the existing methods have reliable processing
capabilities for large targets, but generally have shortcomings
in segmenting small targets. The visual results are illustrated
in Figures 3–6. In these images, we illustrate some common
problems for IA segmentation, such as IAs overlapping with
blood vessels and IAs with blurred edges. In contrast, SDAN
maintains excellent and stable performance across the entire range
of aneurysm diameters, without significant accuracy degradation,
fully demonstrating its robust adaptability to the size of IAs and its
precise segmentation ability.

5.2 Functional analysis of modules

The heatmap is shown in Figure 7. The heatmap results
show that when an image is input into ELAM, the output
heatmap demonstrates significant attention to the contours of the
vascular structure, but the response to IAs is relatively weak. This
phenomenon can be attributed to the fact that ELAM constructs
local attention through the collaborative mechanism of horizontal
and vertical convolutions, making the module highly sensitive to
the boundary features within the local window. However, due
to the lack of integration of global semantic information, ELAM
has difficulty achieving the differential recognition of IAs and
vessels. After being processed by GSFB, there is a significant
transformation in the attention distribution of the heatmap: the
response intensity in the aneurysm area has been greatly enhanced,
while the attention to the contours of vascular structure has
decreased significantly. This optimization benefits from the fact
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that GSFB uses the output features of ELAM as queries and maps
them into the global attention mechanism. Under the joint action
of spatial and channel dimensions, it can achieve accurate detection
of the aneurysm contours and simultaneously suppress interference
of vessel characteristics. The relevant evidence will be further
demonstrated in the ablation studies.

6 Conclusion

In this paper, we introduced a deep learning model named
Shape-aware Dual-stream Attention Network (SDAN) for accurate
intracranial aneurysm (IA) segmentation from single-frame
Digital Subtraction Angiography (DSA). We conducted thorough
evaluations using multi-center data. Our experimental results
demonstrated that SDAN outperformed all baseline models in all
datasets. Crucially, it maintained robust performance, particularly
in segmenting small aneurysms. Therefore, this algorithm holds
strong potential as an effective auxiliary tool for clinical intracranial
aneurysm diagnosis and treatment, thereby enhancing physicians’
diagnostic and therapeutic efficiency. Current limitations include
slightly reduced performance on external datasets, potentially
attributable to variations in image quality across institutions. SDAN
is designed based on approaches for small target segmentation (like
aneurysm segmentation), and we believe it has the potential to
accomplish various small target segmentation tasks. In future work,
we will further explore whether this neural network can handle
segmentation tasks involving other types or modalities of data.
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