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Introduction: Accurate intraoperative identification of glioma molecular 
subtypes, such as isocitrate dehydrogenase mutation and 1p/19q co-deletion, 
is essential for precise diagnosis, prognostication, and determining the extent 
of tumor resection—balancing maximal tumor removal with preservation of 
neurological function.

Methods: We developed a machine learning model that integrates preoperative 
imaging features [magnetic resonance imaging, computed tomography, and 
11C-methionine positron emission tomography (PET)] and intraoperative flow 
cytometry (iFC) data to predict molecular subtypes of glioma in real-time.

Results: Analyzing 288 cases of diffuse gliomas, this model achieved an overall 
accuracy of 76.0%, with a macro-average ROC-AUC of 0.88 and a micro-
average ROC-AUC of 0.89. Key predictive factors included the tumor-to-normal 
uptake ratio on PET, malignancy index from iFC, and patient age, all of which 
showed significant differences between correctly and incorrectly classified 
cases. We also developed a prototype application that visualizes the prediction 
results intraoperatively, thereby supporting real-time surgical decision-making.

Conclusion: This integrated approach enhances the precision of intraoperative 
molecular diagnosis and has the potential to optimize surgical strategies for 
glioma treatment.
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1 Introduction

The 2021 World Health Organization (WHO) Classification of 
Tumors of the Central Nervous System (CNS) defines gliomas by their 
molecular genetic alterations, such as IDH1/2 mutations and 1p/19q 
co-deletion (1, 2). These molecular subtypes are essential for diagnosis 
and closely associated with prognosis and recurrence risk. They also 
influence surgical strategies; some subtypes benefit from aggressive 
resection, whereas others require more conservative approaches to 
preserve neurological function. Therefore, determining the molecular 
subtype preoperatively or intraoperatively is critical.

Molecular classification is also closely associated with the extent 
of resection (EOR) and overall survival. In glioblastoma (GBM), gross 
total resection is correlated with prolonged survival, especially in 
isocitrate dehydrogenase (IDH)-wild-type GBM, as shown in recent 
systematic reviews (3–5). For low-grade gliomas (LGGs), particularly 
astrocytomas, a resection rate exceeding 90% significantly improves 
long-term outcomes (6–8). Conversely, no clear survival benefit has 
been observed with EOR in oligodendrogliomas, likely because of 
their increased chemosensitivity (9). In tumors located near eloquent 
regions such as the language or motor cortex, functional preservation 
is prioritized, and techniques such as intraoperative mapping and 
monitoring are essential to achieve maximal safe resection (10).

In response to these challenges, machine-learning-based 
approaches that predict molecular subtypes noninvasively from 
magnetic resonance imaging (MRI) and positron emission 
tomography (PET) derived radiomic features have gained attention. 
Our group previously developed a deep learning model using T1-, 
T2-, and fluid attenuated inversion recovery (FLAIR) weighted MRI 
to predict the molecular subtypes of LGGs, achieving an accuracy of 
68.7% (11). An area under the curve (AUC) of 0.89 has also been 
reported for predicting IDH mutations using radiomics from 
11C-methionine PET (11C-MET PET) (12). A recent systematic review 
provides a comprehensive overview of machine- and deep-learning 
approaches for glioma molecular subtyping (13). In addition to 
imaging-based approaches (14), we  also explored the use of 
intraoperative flow cytometry (iFC) as a rapid diagnostic tool that 
enables the quantification of DNA content, aneuploidy, and S-phase 
fraction within minutes. iFC has been shown to assist in malignancy 
assessment, resection margin determination using the malignancy 
index (MI), and prognostication based on DNA ploidy (15–17). 
We also demonstrated that iFC allows intraoperative differentiation 
between GBM and primary central nervous system lymphoma and 
proposed surgical strategies for LGGs that integrate molecular data 
obtained from iFC (18, 19).

In this study, we  developed a novel machine learning-based 
prediction model that integrates preoperative imaging features (MRI, 
CT, and 11C-MET PET) with iFC-derived histograms and ploidy data 
to enable real-time prediction of molecular subtypes, specifically IDH 
mutations and 1p/19q co-deletions. This approach moves beyond 
conventional iFC-based malignancy grading and provides an 
innovative framework for intraoperative molecular classification by 
combining cellular and radiological data.

Furthermore, we  implemented this model in a prototype 
application designed for intraoperative use and evaluated its clinical 
feasibility. Our approach may contribute to improving the accuracy of 
intraoperative molecular diagnosis and support surgical decision-
making in glioma treatment.

2 Methods

2.1 Patient cohort

This retrospective study included 288 patients with newly 
diagnosed diffuse gliomas who underwent surgical resection at Tokyo 
Women’s Medical University Hospital between 2016 and 2024. All 
tumors were classified according to the WHO 2021 CNS tumor 
classification system.

The IDH1 mutation status was initially evaluated using 
immunohistochemistry (IHC), and cases negative for IDH1-R132H 
were further analyzed for both IDH1 and IDH2 mutations using 
direct sequencing. 1p/19q co-deletion status was assessed using either 
fluorescence in situ hybridization or multiplex ligation-dependent 
probe amplification. Based on integrated histological and molecular 
diagnoses, the dataset included 141 IDH-wild-type astrocytomas 
(Astro-WD), 68 IDH-mutant astrocytomas (Astro-MT), and 79 
oligodendrogliomas (Oligo). All patients underwent iFC analysis of 
tumor samples obtained during surgery.

2.2 Feature extraction and preprocessing

Preoperative neuroimaging features were extracted from MRI, CT, 
and 11C-Met-PET scans, including the presence or absence of a 
T2-FLAIR mismatch, gadolinium enhancement, calcification on 
either T2*-weighted MRI or CT, and tumor-to-normal uptake ratio 
(TNR) on MET PET. Patient age was also included as a clinical 
variable. Each imaging feature was independently evaluated by three 
board-certified neurosurgeons and a majority vote was used to finalize 
the label.

T2-FLAIR mismatch, enhancement, and calcification were 
assessed using a standardized three-point scale: “+” (clearly present), 
“+/−” (ambiguous or mild), and “−” (clearly absent). Intraoperative 
tumor samples were processed using iFC to generate nuclear DNA 
histograms (binned into 10 intervals from the original 512-bin signal), 
detect aneuploidy, and compute the MI. Continuous variables (age, 
TNR, and MI) were normalized using Z-score standardization, and 
categorical features (four imaging variables and aneuploidy) were 
one-hot encoded. All features were then concatenated into a single 
fused vector as input to the machine-learning models.

2.3 Model development and evaluation

The classification task aimed to predict molecular subtypes across 
three classes: Astro-WD, Astro-MT, and Oligo. We  employed a 
Random Forest as the benchmark model, with key hyperparameters 
such as the number of estimators and the splitting criterion optimized 
within each cross-validation fold. Model performance was evaluated 
using stratified five-fold cross-validation with a fixed random seed for 
reproducibility (20). As a deep learning comparator, we implemented 
TabNet, a state-of-the-art interpretable model optimized for structured 
and tabular data (21). TabNet leverages sparse attention mechanisms 
to dynamically select relevant features at each decision step.

Training was conducted using a batch size of 128 and 10 
decision steps, and an AdamW optimizer with early stopping 
(patience = 10 epochs) to avoid overfitting. The attention-based 
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feature selection process in TabNet  also enables the visual 
interpretability of predictive signals (22). Classification performance 
was evaluated using accuracy, F1-score, and receiver operating 
characteristic (ROC)-AUC. Statistical comparison between models 
was performed using the DeLong test. Feature importance was 
assessed using the permutation importance for Random Forest and 
attention weights for TabNet (23). An overview of the data 
processing pipeline, including imaging and iFC-derived features 
and model architectures, is shown in Figure 1.

2.4 Ethical considerations

This study was approved by the Institutional Review Board of 
Tokyo Women’s Medical University (Approval No. 3540-R6). Written 

informed consent was obtained from all participants in accordance 
with the institutional and national guidelines.

3 Results

3.1 Classification accuracy for molecular 
subtypes

We developed classification models for three molecular 
subtypes—Astro-WD, Astro-MT, and Oligo—using integrated 
features derived from preoperative imaging (gadolinium 
enhancement, T2-FLAIR mismatch, calcification on T2*-weighted 
MRI or CT, and TNR on 11C-MET PET), iFC (DNA histogram, 
aneuploidy status, MI), and patient age.

FIGURE 1

Overview of the machine learning pipeline for intraoperative molecular classification of gliomas. Categorical features (calcification, T2*star, gadolinium 
enhancement, fluid attenuated inversion recovery mismatch, and aneuploidy) were one-hot encoded, and continuous features (tumor-to-normal 
uptake ratio, malignancy index, and age) were normalized. The histogram data (originally 512 bins), obtained from intraoperative flow cytometry 
representing the DNA content distribution of tumor cells, were downsampled to 10 aggregated features based on relative frequencies. The malignancy 
index was defined as the proportion of cells with more DNA content than those in the G0/G1 phase, including cells in S phase, G2/M phase, and those 
with DNA aneuploidy. All features were integrated and input into a Random Forest model to classify glioma molecular subtypes. The missing values 
were imputed using the mean of the training set. The model performance was evaluated using five-fold stratified cross-validation. The synthetic 
minority oversampling technique was applied to the training data to address class imbalance.
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To ensure the reliability of radiological annotations, inter-rater 
agreement among the three neurosurgeons was assessed using 
weighted Cohen’s kappa statistics. Substantial agreement was observed 
for gadolinium enhancement (κ = 0.859) and calcification (κ = 0.717), 
while T2 hypointensity (κ = 0.485) and the T2-FLAIR mismatch sign 
(κ = 0.452) showed moderate agreement. These results confirm that 
the imaging features used for model input were reproducible and 
clinically reliable.

In the dataset of 288 cases, the Random Forest model achieved an 
overall classification accuracy of 76.0%, with a macro-average 
ROC-AUC of 0.88 and micro-average ROC-AUC of 0.89 (Figure 2). 
The F1-scores were 0.82 for Astro-WD, 0.72 for Astro-MT, and 0.68 
for Oligo, indicating favorable classification performance across all 
three subtypes. The sensitivity and specificity were also stable, as 
shown in Table 1 and the confusion matrix in Table 2.

The macro-average ROC-AUC represents the unweighted mean 
of the AUC values across all classes, offering a balanced measure of 
model performance. By contrast, the micro-average ROC-AUC was 
calculated from pooled predictions and reflected class imbalance, 
making it more representative of real-world performance. These 
values are summarized in Figure 2.

To evaluate the contribution of each modality, we  trained 
models using limited feature sets. The imaging + age model 
achieved 66% accuracy, while the iFC + age model reached 72%. 
The full model combining imaging, iFC, and age achieved 76%. 
Although the imaging + age model (66%) underperformed 
compared to imaging alone (69%), this outcome should not 
be interpreted as evidence that adding age universally degrades 
imaging-based prediction performance. It likely reflects 
interactions specific to the current model or dataset configuration. 
Notably, the addition of iFC data improved the overall classification 

accuracy by approximately 7 percentage points compared to 
imaging features alone. These findings highlight the complementary 
roles of imaging and iFC features, as well as the additive value of 
age. Confusion matrices are provided in Supplementary Table 1.

3.2 Feature importance and contribution of 
flow cytometry

The feature importance was evaluated using the Gini importance 
(mean decrease in impurities) calculated during Random Forest 
training (Figure  3). The most influential feature was the TNR on 
MET-PET, followed by the MI, age, DNA histogram bin 6, and 
gadolinium enhancement. These features are thought to reflect the key 
biological properties associated with tumor metabolism, cellular 
proliferation, patient characteristics, and vascular permeability.

In particular, bin 6 of the DNA histogram made a substantial 
contribution, highlighting the utility of histogram-derived features in 
predicting molecular subtypes. This suggests that the nuclear DNA 
distribution data obtained from iFC provide valuable information 
beyond that captured by imaging alone.

Beyond Random Forest, we also examined feature importance using 
TabNet (Supplementary Figure 1). Notably, the top-ranked features—
histogram6, TNR, patient age, T2-FLAIR mismatch, and gadolinium 
enhancement—were largely consistent between both classifiers, 
indicating a stable feature selection process. This agreement reinforces 
the reliability of these features across different interpretable models.

Furthermore, a comparison between correctly classified and 
misclassified cases revealed significant differences in TNR, MI, and age 
for specific subtypes (Figures 4A–F and Table 3). For example, TNR 
and age differed significantly in Astro-WD, whereas MI was 

FIGURE 2

Multi-class ROC curves for molecular subtype prediction using the Random Forest model. (A) Receiver operating characteristic (ROC) curves are 
shown for each glioma molecular subtype: IDH-wild-type astrocytoma (Astro-WD), IDH-mutant astrocytoma (Astro-MT), and oligodendroglioma 
(Oligo), based on the Random Forest classifier trained on 288 cases. The AUC values were 0.88 for Astro-WD (blue), 0.90 for Astro-MT (red), and 0.87 
for Oligo (green), indicating robust discriminatory performance across all subtypes. (B) Micro-average and macro-average ROC curves summarize 
overall classification performance. The micro-average AUC (0.89) reflects performance across all individual predictions, whereas the macro-average 
AUC (0.88) represents the unweighted mean of AUCs for each class. The near-overlapping curves demonstrate stable and balanced prediction 
capability of the model.
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significantly different in both Astro-MT and Oligo. These results 
indicate that the model relies on clinically meaningful variables to 
guide classification.

Among the three molecular subtypes, oligodendroglioma 
demonstrated the lowest F1-score (0.68), with 22 out of 77 cases 
misclassified—primarily as Astro-WD, and to a lesser extent as 
Astro-MT (Table 2). Misclassified Oligo cases exhibited significantly 
higher MET-PET uptake (median TNR = 3.07 vs. 2.03, p = 0.0026) 
and malignancy index (11.9 vs. 4.67, p = 0.018) compared to 
correctly classified cases, while patient age did not differ 
significantly (p = 0.396) (Table 3). These findings suggest that some 
Oligo tumors may share biological features with Astro-WD, such 
as increased metabolic activity or abnormal nuclear DNA content, 
making classification more challenging. Further refinement of the 
model or inclusion of additional molecular markers may 
be required to improve prediction accuracy in such cases.

3.3 Development of intraoperative 
prediction application

We developed a prototype real-time prediction application based 
on the Random Forest model for intraoperative support. The 
application used preoperative imaging and intraoperative iFC data as 
inputs and outputs molecular subtype predictions in the form of 
probability distributions, which were visualized as pie charts for 
intuitive interpretation.

This tool enabled real-time prediction of the genetic subtype 
during surgery and supported intraoperative decision-making, such 
as determining the EOR. The user interface was designed to 
be  intuitive and informative for both surgeons and support staff, 
allowing quick comprehension of the predictive results.

The model inference was completed in less than one second on a 
Microsoft Surface Go 2 (Intel Core m3-8100Y, 8GB RAM), resulting 
in negligible latency. In the current workflow, radiological features are 
assessed and entered preoperatively, and intraoperative flow cytometry 
results are available approximately 10 min after tissue sampling. Data 
transfer is performed via SD card, although direct network integration 
is under consideration. Taking into account data entry and transfer 
time, the entire process from sampling to prediction output typically 
takes about 15 min, which is well within the intraoperative decision-
making window.

3.4 Illustrative cases

3.4.1 Illustrative case 1
A 76-year-old woman presented with right-sided hemiparesis. 

MRI revealed contrast-enhancing lesions in the left parietal lobe and 
right splenium and FLAIR hyperintensity in the left temporal lobe 
(Figure 5). No T2-FLAIR mismatch or calcifications were observed. 
Intratumoral hemorrhage was present, suggesting a high-grade glioma.

The patient underwent tumor resection under general anesthesia. 
When preoperative imaging and intraoperative iFC data were input into 
the prediction application, the model predicted “Astro-WD” with the 
highest probability. Postoperative molecular diagnosis confirmed IDH 
wild-type, absence of 1p/19q co-deletion, and presence of a pTERT 
mutation, consistent with GBM, IDH wild-type, and WHO CNS grade 
4. This case exemplifies a scenario in which the intraoperative prediction 
matches the final diagnosis, underscoring the tool’s clinical utility.

3.4.2 Illustrative case 2
A 32-year-old woman underwent MRI for headache, which 

revealed a diffuse FLAIR hyperintense lesion extending from the right 
frontal lobe to the left frontal lobe via the corpus callosum, raising 
suspicion of gliomatosis cerebri (Figure 6). No apparent calcification, 
T2-FLAIR mismatch, or contrast enhancement was observed. Initial 
Met-PET showed mild uptake (TNR = 1.54).

After pregnancy, the lesion enlarged, prompting a stereotactic 
biopsy of the right frontal lobe and corpus callosum. A second 
Met-PET scan showed elevated uptake (TNR = 2.17) in the subcortical 
region of the right frontal lobe. Although Astro-WD was suspected 
based on imaging, iFC analysis revealed no aneuploidy and a low MI 
(0.98). The application predicted “Oligo: 52.7%, Astro-WD: 43.7%.”

Postoperative genetic testing confirmed the IDH1 R132H 
mutation, 1p/19q co-deletion, and pTERT mutation, resulting in a 
final diagnosis of oligodendroglioma, WHO CNS grade 2. This case 
demonstrates how artificial intelligence (AI)-assisted prediction 
provides accurate classification, even when clinical impressions differ, 
highlighting its value as an intraoperative support tool.

4 Discussion

In this study, we developed a machine learning model that integrates 
preoperative imaging data (MRI, CT, and 11C-MET PET) with iFC 
features to enable the real-time intraoperative prediction of molecular 
subtypes of glioma. The model achieved a high overall accuracy of 
76.0% and ROC-AUCs of 0.88 (macro) and 0.89 (micro), indicating its 
potential as a practical intraoperative decision-support tool.

TABLE 1  Performance metrics of the Random Forest model for molecular 
subtype classification.

Subtype Sensitivity Specificity F1-score

A-WD 0.81 0.84 0.82

A-MT 0.72 0.91 0.72

Oligo 0.70 0.87 0.68

The table shows the classification performance for each molecular subtype, including 
sensitivity, specificity, precision, F1-score, and support (number of true cases), based on 
stratified five-fold cross-validation. The overall accuracy of the model was 0.76, indicating 
consistent and balanced prediction performance across all three classes. A-WD, IDH-wild-
type astrocytoma; A-MT, IDH-mutant astrocytoma; and Oligo, oligodendroglioma.

TABLE 2  Confusion matrix of Random Forest predictions for molecular 
subtypes.

Imaging+Age+iFC 
model

Predict

A-WD A-MT Oligo

Molecular 

subtype

A-WD 114 9 18

A-MT 10 49 9

Oligo 14 10 55

The table displays a confusion matrix comparing the predicted labels with the true molecular 
subtype labels. Diagonal values represent correct classifications, whereas off-diagonal values 
indicate incorrect classifications. The confusion matrix provides a comprehensive view of the 
strengths of the model and areas that require improvement. A-WD, IDH-wild-type 
astrocytoma; A-MT, IDH-mutant astrocytoma; and Oligo, oligodendroglioma.
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4.1 Novelty and clinical relevance

The novelty of our model lies in the integration of quantitative 
features derived from iFC, such as the MI, aneuploidy, and DNA 
histograms, with conventional imaging data for molecular 
classification. Although iFC has traditionally been used for rapid 
intraoperative assessments of malignancy and tumor typing, our 
approach demonstrates that these data can be  quantitatively 
incorporated into machine learning algorithms to enhance diagnostic 
precision beyond that provided by imaging alone (15–17, 24, 25).

Our previous study proposed an intraoperative surgical strategy 
based on the molecular data obtained during surgery (18). This study 
expands on this concept by providing an AI-assisted framework for 
real-time predictions. Recent advances in intraoperative genetic 
testing, including real-time and digital droplet polymerase chain 
reaction, have highlighted the clinical utility of intraoperative 
molecular diagnostics (26, 27).

4.2 Feature interpretability and predictive 
factors

Feature importance analysis based on Gini impurities revealed 
that the TNR on 11C-MET PET, MI, patient age, bin 6 from DNA 
histograms, and gadolinium enhancement were the most influential 
predictors (Figure  3). The TNR, a known indicator of tumor 
metabolic activity, is associated with tumor grade and malignancy 

(28). MI reflects abnormalities in DNA content and has been linked 
to tumor aggressiveness and prognosis (15–18). Age has also been 
reported as a prognostic factor, particularly in lower-grade 
astrocytomas (28), and was notably lower in misclassified Astro-WD 
cases in our analysis.

The substantial contribution of histogram-derived features—
especially bin 6—suggests that nuclear DNA distribution profiles 
captured by iFC contain valuable information that is not readily 
apparent from imaging alone.

In addition, comparisons between correctly and incorrectly 
classified cases showed statistically significant differences in the T/N 
ratio, MI, and age for certain subtypes (Figures 4A–F and Table 3). For 
instance, Astro-WD misclassification was associated with lower TNR 
and younger age, whereas Astro-MT and Oligo misclassifications were 
related to MI values, indicating that these variables were central to the 
model’s decision-making process.

This agreement reinforces the reliability of these features across 
different interpretable models.

To contextualize our model choice, we  additionally evaluated 
LightGBM and XGBoost, which achieved accuracies of 0.72 and 0.73, 
respectively. These values were comparable to our primary models, 
while a baseline SVM classifier showed lower accuracy (0.64). In 
summary, Random Forest demonstrated the highest accuracy in our 
study. This finding implies that Random Forest may offer enhanced 
robustness to overfitting relative to gradient boosting and deep 
learning approaches, as well as improved adaptability to multiclass and 
imbalanced classification tasks compared to SVM.

FIGURE 3

Feature importance ranking based on mean Gini importance across five-fold cross-validation. The bar chart shows the relative importance of each 
input feature used in the Random Forest model to predict glioma molecular subtypes. The tumor-to-normal uptake ratio (TNR) from 11C-methionine 
positron emission tomography exhibited the highest importance, followed by the malignancy index (MI), patient age, and histogram bin 6 derived from 
intraoperative flow cytometry (iFC). Other significant features included gadolinium enhancement (Gd+), T2-FLAIR mismatch (mismatch+), and 
additional histogram bins. These results highlight the combined contribution of imaging and iFC-derived features for molecular subtype classification.
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FIGURE 4

Comparison of key predictive variables across molecular subtypes and classification performance. (A) Distribution of tumor-to-normal uptake ratio 
(TNR) from 11C-methionine positron emission tomography across the three molecular subtypes (Astro-WD, Astro-MT, and Oligo). (B) TNR values 
stratified by classification outcome (correct = blue, incorrect = red) within each molecular subtype. Significant differences were observed for Astro-WD 
(***p < 0.001) and Oligo (**p < 0.01). (C) Distribution of malignancy index (MI) derived from intraoperative flow cytometry for each subtype. 
(D) Subtype-specific MI values categorized by prediction accuracy. Significant differences were found in Astro-WD (*p < 0.05), Astro-MT (**p < 0.01), 
and Oligo (*p < 0.05). (E) Patient age distribution across subtypes. (F) Age stratified by correct and incorrect model predictions within each subtype. 
Astro-WD showed significant differences (***p < 0.001). Box plots indicate median, interquartile ranges, and outliers. Significance levels: *p < 0.05, 
**p < 0.01, and ***p < 0.001.

TABLE 3  Comparison of key predictive features between correctly and incorrectly classified cases by molecular subtype.

Variable Subtype n (correct) n (incorrect) Median 
(correct)

Median 
(incorrect)

U-value p-value

TNR Astro-WD 59 23 4.15 2.48 1,039 0.0002

Astro-MT 44 14 1.6 2.23 240 0.22

Oligo 54 19 2.03 3.07 273 0.00255

MI Astro-WD 114 27 15 10.6 1,986 0.0194

Astro-MT 49 19 43.3 10.3 676 0.00419

Oligo 55 24 4.67 11.9 437 0.0177

Age Astro-WD 114 27 60 43 2,358 1.8 × 10−5

Astro-MT 49 19 41 40 469 0.967

Oligo 55 24 39 41 580 0.396

The table summarizes the differences in the tumor-to-normal uptake ratio (TNR), malignancy index (MI), and patient age between correctly predicted cases (OK) and misclassified cases (NG) 
for each molecular subtype (Astro-WD, Astro-MT, and Oligo). Statistical significance was assessed using Wilcoxon rank-sum test. Significant differences were observed for TNR and age in the 
Astro-WD group and for MI in the Astro-MT and Oligo groups. A-WD, IDH-wild-type astrocytoma; A-MT, IDH-mutant astrocytoma; and Oligo, oligodendroglioma.
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FIGURE 5

Illustrative case 1: Intraoperative prediction consistent with final diagnosis. (A) Preoperative CT image showing intratumoral hemorrhage without clear 
evidence of calcification. (B) Gadolinium-enhanced T1-weighted MRI showing contrast-enhancing lesions in the left parietal lobe and splenium of the 
corpus callosum. (C) T2-weighted MRI and (D) FLAIR image showing high-signal lesions without a T2-FLAIR mismatch. (E) Intraoperative prediction 
result generated by the developed support tool. Based on preoperative imaging and intraoperative flow cytometry findings (aneuploidy-negative, 
malignancy index = 10.3), the application predicted “Astrocytoma, IDH-wild-type” with a probability of 89.3%. The final molecular diagnosis was 
glioblastoma, IDH-wild-type, WHO CNS grade 4, consistent with the intraoperative prediction.

FIGURE 6

Illustrative case 2: Artificial intelligence prediction exceeding preoperative expectations. (A) Preoperative CT and (B) T2*-weighted MRI showing no 
evidence of calcification. (C) Gadolinium-enhanced T1-weighted MRI without any contrast enhancement. (D) T2-weighted MRI and (E) FLAIR image 
showing diffuse high-signal lesions without a T2-FLAIR mismatch. (F) 11C-methionine PET showing mildly increased tracer uptake (tumor-to-normal 
uptake ratio = 2.17). (G) Intraoperative prediction result generated by the support tool. Based on preoperative imaging and intraoperative flow 
cytometry data (aneuploidy-negative, malignancy index = 0.98), the predicted molecular subtype was “Oligodendroglioma” (52.7%), followed by 
“Astrocytoma, IDH-wild-type” (43.7%). The final molecular diagnosis confirmed oligodendroglioma, WHO CNS grade 2, with an IDH1 mutation, 1p/19q 
co-deletion, and TERT promoter mutation, consistent with the intraoperative AI-based prediction.
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4.3 Subtype-specific performance and 
challenges

Among the three molecular subtypes, the model performed least 
accurately for Oligo, with an F1-score of 0.68. This may be partly due 
to the overlap in imaging characteristics, such as elevated 11C-MET 
PET uptake, with Astro-WD. The iFC-derived features also showed 
limited specificity in a subset of Oligo cases.

Nevertheless, in illustrative case 2, the model accurately 
predicted an oligodendroglioma despite the initial suspicion as 
IDH wild-type based on imaging and clinical impression. This 
highlights the utility of iFC data as a complementary input when 
imaging-based assessments are inconclusive.

4.4 Clinical implications and broader 
significance

This study extended our previous research on iFC for 
intraoperative grading and tumor classification by demonstrating its 
applicability to molecular subtyping. The development of a functional 
application based on our model represents a meaningful step toward 
real-time intraoperative implementation.

Future integration with deep learning models and radiomics 
features derived from preoperative imaging could further enhance 
the diagnostic performance (29, 30). Our model may serve as a 
benchmark for the next generation of intraoperative decision-
support systems for glioma surgery.

4.5 Limitations and future directions

This retrospective study was conducted at a single institution. 
Thus, external validation and further case accumulation are essential 
to ensure generalizability. Some misclassified cases show atypical 
imaging or iFC patterns, underscoring the potential need for new 
markers or additional molecular data in select cases.

In the future, the integration of real-time quantitative data, 
including iFC and intraoperative genetic diagnostics, may enable the 
prediction of not only molecular subtypes, but also tumor grading, 
further supporting precise surgical decision-making.

Finally, we  note that this study focused solely on molecular 
subtype classification and did not evaluate glioma grading (i.e., low 
vs. high grade) using ROC analysis. Although the malignancy index 
has been associated with tumor grade in prior work (16), further 
studies will be  needed to extend this model to real-time 
grading support.

5 Conclusion

In this study, we  developed a machine learning model that 
integrates preoperative imaging data with iFC features to enable the 
real-time prediction of molecular subtypes of glioma. The model 
demonstrated high predictive accuracy and clinical relevance, with 
the TNR on 11C-MET PET, MI, and patient age identified as key 
predictive factors. These findings highlight the contribution of 

quantitative iFC data to improving diagnostic precision beyond 
imaging alone.

Furthermore, the development of a user-friendly intraoperative 
prediction application based on this model indicates its feasibility for 
clinical implementation. With continued case accumulation, external 
validation, and future integration with deep-learning approaches, this 
framework may eventually support the intraoperative prediction of 
molecular subtypes and tumor grading. Such advancements would 
directly contribute to optimizing surgical strategies, including the 
EOR, and promote personalized treatment planning during 
glioma surgery.
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