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Objective: Cognitive impairment in patients with cerebral small vessel disease 
(CSVD) is closely associated with white matter injury. This study aims to evaluate 
whether diffusion tensor imaging (DTI) metrics can predict the risk of cognitive 
impairment in CSVD patients.
Methods: We retrospectively analyzed data from 54 CSVD patients, classified 
into a cognitive impairment group (CI, n = 25) and a non-cognitive impairment 
group (NCI, n = 29). Using tract-based spatial statistics (TBSS), we  computed 
fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial 
diffusivity (RD) across 48 major white matter tracts. Significant DTI metrics 
identified by univariate logistic regression were used to construct a multivariate 
logistic regression model. Model performance was evaluated via 5-fold cross-
validation based on the area under the ROC curve (AUC), calibration curves, and 
decision curve analysis.
Results: Several DTI metrics showed significant correlations with cognitive 
impairment, including FA (fornix, left corticospinal tract, bilateral medial 
lemniscus/inferior cerebellar peduncle, left cerebral peduncle, right cingulum 
hippocampus), MD (right superior cerebellar peduncle, left cerebral peduncle), 
and RD (bilateral medial lemniscus, right inferior/superior cerebellar peduncle, 
left cerebral peduncle, right external capsule, cingulum hippocampus). The 
multivariate model constructed based on these metrics demonstrated the best 
predictive performance, with a mean training AUC of 0.940 and testing AUC of 
0.809. The calibration curves showed good agreement between predicted and 
observed outcomes, and decision curve analysis confirmed the clinical utility of 
the model.
Conclusion: The multivariate logistic regression model incorporating DTI 
metrics can effectively identify cognitive impairment in CSVD patients. This 
study establishes a link between damage in specific white matter tracts and 
cognitive dysfunction, providing a practical tool for assessing the risk of cognitive 
impairment in clinical settings.
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Introduction

Cerebral small vessel disease (CSVD) is a group of disorders 
characterized by pathological changes in small arteries, arterioles, 
capillaries, and venules within the brain, manifesting with diverse 
clinical symptoms including cognitive impairment, gait 
abnormalities, and mood disorders (1). Cognitive impairment is a 
common symptom among CSVD patients, with some progressing to 
dementia while others maintain relatively normal cognitive function 
(2). This heterogeneity suggests the existence of distinct 
pathophysiological mechanisms within the CSVD patient 
population. Consequently, identifying cognitive impairment in 
CSVD patients is crucial not only for understanding the 
heterogeneity of disease progression but also for providing a basis 
for personalized treatment and early intervention.

Clinically, the diagnosis and classification of CSVD with cognitive 
impairment have largely relied on conventional neuroimaging 
markers—such as white matter hyperintensities (WMH), lacunes, 
cerebral microbleeds (CMBs), and enlarged perivascular spaces 
(EPVS)—combined with cognitive assessment scales. While these 
markers provide valuable diagnostic information, they exhibit 
limitations in sensitivity and specificity, particularly in early stages of 
cognitive decline. The assessment often depends on subjective 
interpretation and may be influenced by patient compliance and rater 
experience, potentially leading to underdiagnosis or delayed 
intervention (3).

In recent years, advanced neuroimaging techniques have 
offered new insights into the microstructural changes underlying 
CSVD. Among these, diffusion tensor imaging (DTI) has emerged 
as a powerful tool for probing the integrity of white matter tracts, 
which are frequently compromised in CSVD (4). Unlike 
conventional MRI markers, which primarily capture macroscopic 
lesions, DTI-derived metrics—such as fractional anisotropy (FA), 
mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD)—provide quantitative measures of microstructural integrity, 
axonal density, and myelin organization. There is growing evidence 
that DTI parameters may serve as earlier and more sensitive 
indicators of cognitive decline than volumetric or lesion-based 
measures (5, 6), and the severity of white matter damage is a 
primary risk factor for cognitive impairment in CSVD (7). 
Therefore, given the limitations of clinical assessment and the 
established role of white matter damage, advanced neuroimaging 
techniques like DTI offer a promising avenue for objective 
assessment. Therefore, distinguishing CSVD patients with 
cognitive impairment from those without using conventional MRI 
presents significant challenges, highlighting the urgent need for an 
objective and accurate method.

Tract-based spatial statistics (TBSS), a voxel-wise analytical 
method for DTI data, enhances the detection of white matter 
alterations by aligning individual tracts to a common skeleton, 
thereby reducing misregistration and partial volume effects (8). This 
technique allows for a more precise evaluation of microstructural 
changes across the entire white matter architecture (9). Importantly, 

CSVD patients frequently exhibit damage to white matter tracts, 
which is considered a crucial pathological basis for cognitive 
impairment and serves as a sensitive MRI marker for monitoring 
disease progression and evaluating therapeutic interventions in 
CSVD (10). White matter tracts are critical pathways for 
information transfer between different brain regions, and their 
integrity is essential for maintaining normal cognitive function 
(11). Studies show that the extent of white matter tract damage in 
CSVD patients is closely correlated with cognitive decline. 
Therefore, investigating the patterns of white matter tract damage 
in CSVD can help elucidate the neural mechanisms underlying 
cognitive impairment (12, 13).

Building on this rationale, in this study, we employed TBSS to 
analyze DTI data from CSVD patients with and without cognitive 
impairment, extracting FA, AD, MD, and RD values. Univariate 
logistic regression analysis was then used to identify regions of 
white matter tract damage that differed between the two groups. 
Subsequently, a multivariate logistic regression model was 
constructed using the FA, AD, MD, and RD data from these 
differential regions to distinguish the two patient groups. 
Furthermore, we utilized nomograms to visualize the relevant risk 
factors and quantify the predictive value of each indicator for 
cognitive impairment in patients.

This research not only contributes to a deeper understanding of 
the pathophysiological mechanisms of CSVD but also provides a 
scientific basis for the early identification of high-risk patients and the 
formulation of personalized intervention strategies, holding significant 
clinical relevance. By constructing multivariate logistic regression 
models, we aim to offer new approaches for the precise diagnosis and 
treatment of CSVD patients.

Materials and methods

This retrospective study was approved by the Ethics Committee of 
the Second Affiliated Hospital of Chongqing Medical University, and 
written informed consent was obtained from all participants. A total 
of 54 patients diagnosed with cerebral small vessel disease (CSVD) 
were enrolled. Diagnoses were confirmed by neurologists with 
specialized training.

Inclusion criteria

(1) MRI evidence of CSVD in one or both brain hemispheres; (2) 
Assessment of global cognitive function using cognitive assessment 
scales, with objective evidence of impairment in at least one cognitive 
domain, or no objective evidence of global cognitive impairment; (3) 
Corresponding neuroimaging diagnoses of recent small subcortical 
infarcts (RSSIs), cerebral microbleeds (CMBs), enlarged perivascular 
spaces (EPVS, grade 2–4), cortical superficial siderosis (cSS), and 
white matter hyperintensities (WMH, Fazekas score ≥2); (4) 
Undergone cranial MRI and DTI scanning.

https://doi.org/10.3389/fneur.2025.1647129
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al.� 10.3389/fneur.2025.1647129

Frontiers in Neurology 03 frontiersin.org

Exclusion criteria

(1) Acute intracranial large vessel diseases, such as ischemic stroke 
or cerebral hemorrhage; (2) Metabolic encephalopathy, hypoxic-
ischemic encephalopathy, or other non-vascular white matter lesions; 
(3) Other concurrent intracranial pathologies, such as tumors, 
dementia, head trauma, or other diseases; (4) Incomplete clinical data; 
(5) Incomplete imaging data; (6) Severe imaging artifacts.

All patients underwent clinical evaluation prior to MRI scanning. 
Demographic information (age and sex) was recorded, and cognitive 
assessment was performed using the Chinese version of the Mini-
Mental State Examination (MMSE) and the Montreal Cognitive 
Assessment (MoCA) (14). Both MMSE and MoCA were administered 
face-to-face by experienced neurologists strictly adhering to guidelines 
and protocols. Participants’ MoCA and MMSE scores were used for 
patient group classification. The flow chart of subject recruitment was 
shown in Figure 1.

MRI examination

Scanning parameters
MRI data for all participants were acquired using a 3.0 T MRI 

scanner (Achieva 3.0 T, Philips, Netherlands) equipped with a 
32-channel head coil. The scanning protocol included T1-weighted 
imaging (T1WI) and DTI. T1WI parameters were: repetition time 
(TR) = 7.9 ms, echo time (TE) = 39 ms, field of view 
(FOV) = 256 × 256 mm2, matrix = 256 × 256, slice thickness = 1 mm, 
interslice gap = 0 mm. DTI parameters were: TR/TE = 6,000/70 ms; 

FOV = 256 × 256 mm2; voxel size = 2.50 × 2.50 × 2.50 mm3. Each DTI 
dataset included 32 images acquired with non-collinear diffusion 
gradients at b = 1,000 s/mm2 and one baseline image at b = 0 s/mm2.

Processing and data analysis

Data preprocessing
DICOM format images were converted to NIFTI format using 

dcm2niix software.
Using FSL (FMRIB Software Library v6.0; https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/FSL), the fsl roi command was used to extract the b0 
image. The bet command was used for brain extraction, generating a 
brain mask. The eddy_correct command was applied to correct the DTI 
data (NIFTI format) for eddy current distortions and head motion. 
Following these preprocessing steps, the dtifit tool was used to generate 
voxel-wise diffusion parameter maps: fractional anisotropy (FA), mean 
diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD).

TBSS analysis
The FA maps were non-linearly registered to the FMRIB58_

FA_1mm standard template in MNI space using a two-step 
procedure. A mean FA skeleton was created, thresholded at FA >0.2. 
This mean skeleton was then projected onto each subject’s FA map 
(in standard space) to create individual skeletonized FA maps. To 
ensure consistent spatial analysis across all diffusion metrics, the 
transformation parameters derived from FA registration were 
applied to the MD, AD, and RD maps to generate their 
corresponding skeletonized maps (15).

FIGURE 1

Flow chart of subject recruitment.

https://doi.org/10.3389/fneur.2025.1647129
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL


Zheng et al.� 10.3389/fneur.2025.1647129

Frontiers in Neurology 04 frontiersin.org

Statistical analysis

Data preprocessing
All statistical analyses were performed using R software (version 

3.6.3) and the randomise tool within FSL. Normally distributed 
continuous variables are expressed as mean ± standard deviation 
(SD). Group comparisons for continuous variables were assessed 
using the t-test. Multiple comparison correction is performed using 
TFCE (threshold-free cluster enhancement correction). Categorical 
variables were compared using the Chi-square test or Fisher’s 
exact test.

Voxelwise statistical analysis of the skeletonised FA, MD, AD, and 
RD data was carried out using FSL’s randomise tool (version 6.0), 
which employs a non-parametric permutation testing framework to 
avoid assumptions of normality. Group differences (CI vs. NCI) for 
each diffusion metric (FA, MD, AD, RD) were tested using a general 
linear model (GLM) with 5,000 permutations.

To address the multiple comparisons problem inherent in 
voxelwise analysis across the entire white matter skeleton, we applied 
threshold-free cluster enhancement (TFCE). TFCE is a method that 
enhances the signal-to-noise ratio of cluster-like structures without 
relying on an arbitrary initial cluster-forming threshold. It transforms 
the raw statistic image by integrating cluster support at every point, 
providing a refined output image where the value at each voxel 
represents a combination of the height and spatial extent of the signal. 
This TFCE-transformed image is then used for inference, making the 
method more sensitive and robust compared to traditional cluster-
based thresholding.

The significance of the TFCE-corrected results was assessed by 
comparing the observed test statistics to the null distribution 
generated from the permuted data. Results were considered 
statistically significant at a family-wise error (FWE) corrected 
p-value < 0.01.

Modeling

To develop and validate predictive models while accounting for 
the limited sample size and enhancing the robustness of the evaluation, 
we employed a 5-fold cross-validation strategy. The entire cohort of 
CSVD patients was randomly partitioned into 5 subsets of 
approximately equal size. In an iterative process, four subsets were 
used as the training set to develop the model, and the remaining 
subset was used as the testing set for validation. This process was 
repeated 5 times, ensuring that each subset served as an independent 
test set exactly once.

Univariate logistic regression analyses were performed on the 
diffusion tensor data from the entire cohort to identify regions and 
parameters significantly associated with cognitive impairment 
(p < 0.01). Variables with statistical significance in the univariate 
analysis, along with clinical covariates such as age, educational level, 
and white matter hyperintensity, were incorporated into a 
multivariable logistic regression model for construction. Variables that 
showed significant associations in the univariate analysis were 
subsequently included in the multivariate logistic regression model. 
The performance of the established models was evaluated by averaging 
the results across all 5 folds. The evaluation metrics included the area 
under the receiver operating characteristic curve (AUC), calibration 

curves, and decision curve analysis (DCA). The final model was 
visualized using a nomogram.

Results

Demographic and clinical characteristics of 
patient groups

This retrospective study examined 54 CSVD patients. Among 
them, 25 had cognitive impairment (CI) and 29 did not (NCI). 
Comparison of baseline characteristics revealed no statistically 
significant differences between the two groups in terms of sex, 
smoking status, prevalence of hypertension or diabetes, or education 
level (Supplementary Table 1). However, a significant difference was 
observed in patient age. Demographic and clinical characteristics of 
training and test sets: There were no statistically significant differences 
in variables between the training and test sets.

Variable selection based on univariate 
logistic regression and model performance

Compared with patients without cognitive impairment, patients 
with cognitive impairment showed decreased FA values in the left 
anterior limb of the internal capsule, left posterior limb of the internal 
capsule, left anterior radiation, and left superior radiation (TFCE 
corrected, p < 0.01); increased MD values in the genu of the corpus 
callosum, body of the corpus callosum, left anterior limb of the 
internal capsule, left anterior radiation, left superior radiation, left 
external capsule, and left superior fronto-occipital fasciculus (TFCE 
corrected, p < 0.01); and increased RD values in multiple regions 
including the genu and body of the corpus callosum, bilateral anterior 
and posterior limbs of the internal capsule, bilateral superior and 
anterior radiation, and several other tracts (TFCE corrected, p < 0.01) 
(Figure 2).

To formally identify significant predictors, univariate logistic 
regression analysis was performed between the extracted DTI 
parameters (FA, RD, AD, MD) and cognitive impairment. Significant 
associations (p < 0.01) were found between CI and FA parameters in 
several regions, including the corpus callosum (body), left 
corticospinal tract, bilateral medial lemnisci, and bilateral inferior 
cerebellar peduncles. Significant associations were also found for MD 
and RD parameters in specific regions, while no significant 
associations were found for AD parameters.

A multivariate logistic regression model was constructed using the 
above-identified significant fractional anisotropy (FA), radial 
diffusivity (RD), and mean diffusivity (MD) variables, combined with 
clinical variables (such as age). A 5-fold cross-validation was employed 
to evaluate the model. The average area under the curve (AUC) values 
from cross-validation for the training set and test set were 0.940 and 
0.809, respectively (Figure  3). The calibration curves of both the 
training set and test set demonstrated good consistency between the 
actual probabilities and predicted probabilities of the samples 
(Figure  4). The Hosmer–Lemeshow test indicated good model fit 
(p > 0.05 for both training and test sets). Variance inflation factors 
(VIFs) for all predictor variables were below 5, indicating no 
significant multicollinearity. Decision curve analysis indicated that the 
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model yielded high clinical benefits for both the training set and test 
set within a wide range of threshold probabilities (Figure  5). The 
nomogram incorporated the following risk predictors: FA parameters 
of the corpus callosum (body part), left corticospinal tract, bilateral 
medial lemniscus, bilateral inferior cerebellar peduncles, left cerebral 
peduncle, and right cingulum (hippocampal part); MD parameters of 
the right superior cerebellar peduncle and left cerebral peduncle; RD 
parameters of the bilateral medial lemniscus, right inferior cerebellar 
peduncle, right superior cerebellar peduncle, left cerebral peduncle, 
right external capsule, and left cingulum (hippocampal part); as well 
as the patients’ clinical data (Figure 6).

Interpretation of the nomogram

This nomogram integrates diffusion tensor imaging (DTI) 
parameters of cerebral white matter fiber tracts, demographic 
characteristics, educational level, and health-related factors to 
quantitatively calculate the probability of an individual developing 
cognitive impairment. First, obtain the specific values of each 
predictive variable of the patient. Then, in the row corresponding to 
each variable, find the corresponding score on the “Points” axis (0–100 
scale) according to its value. Next, sum up the scores corresponding 
to all predictive variables to get the “Total Points” (total score, 0–350 
scale). Finally, find the corresponding position on the “Cognitive 
impairment probability” axis according to the total score, and the 

probability of the patient developing cognitive impairment can 
be obtained.

Clinicians can use this nomogram to integrate various 
information of patients and quantitatively assess their risk of 
developing cognitive impairment. For patients at high risk, 
intervention measures can be  formulated in advance, such as 
strengthening cognitive function monitoring and conducting 
cognitive training; for patients at low risk, an appropriate follow-up 
plan can be formulated. At the same time, this diagram also provides 
a visualized tool that integrates multiple factors for studying the 
pathogenesis of cognitive impairment, which is helpful for in-depth 
understanding of the impact of different factors on the occurrence of 
cognitive impairment.

Discussion

With global population aging, the prevalence of CSVD and its 
associated cognitive decline is projected to rise substantially, imposing 
a considerable burden on healthcare systems. Furthermore, studies 
have demonstrated that early identification of individuals at risk of 
developing cognitive impairment and timely clinical intervention can 
reduce the incidence of dementia in CSVD patients. This underscores 
the urgent need to develop early diagnostic biomarkers and tools for 
assessing cognitive impairment risk in the context of CSVD-related 
cognitive decline (16).

FIGURE 2

Brain regions with reduced FA values in the CSVD group with cognitive impairment (A). Brain regions with increased MD values in the CSVD group with 
cognitive impairment (B). Brain regions with increased RD values in the CSVD group with cognitive impairment (C) (TFCE correction, p < 0.01).
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FIGURE 3

The receiver operating characteristic (ROC) curve of the diagnostic model is based on 5-fold cross-validation. (A) ROC curves for the testing set (mean 
AUC = 0.809). (B) ROC curves for the training set (mean AUC = 0.940).

https://doi.org/10.3389/fneur.2025.1647129
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al.� 10.3389/fneur.2025.1647129

Frontiers in Neurology 07 frontiersin.org

FIGURE 4

The calibration curve of the logistic regression model based on 5-fold cross-validation. (A) Calibration curves for the testing set. (B) Calibration curves 
for the training set.
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FIGURE 5

Decision curve analysis of the logistic regression model based on 5-fold cross-validation. (A) Decision curves for the testing set. (B) Decision curves for 
the training set.
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Previous research has shown that loss of microstructural integrity 
in specific white matter regions correlates with specific cognitive 
dysfunctions in CSVD patients (17), highlighting the crucial role of 
white matter in cognitive decline (18, 19). Increasing evidence 
suggests that DTI parameters serve as earlier markers of cognitive 
decline compared to volumetric measures. Tract-based spatial 
statistics (TBSS) applied to DTI analysis mitigates the influence of 
cerebrospinal fluid (CSF) partial volume effects by focusing on the 
core skeleton of white matter tracts (20). In line with this approach, in 
this study, we investigated CSVD patients with and without cognitive 
impairment. Utilizing TBSS-extracted parameters, we  ultimately 
constructed classification models based on DTI parameters. The 
results indicate that DTI parameters can serve as a tool for 
distinguishing CSVD patients with cognitive impairment from those 
without. A key finding was that FA parameters demonstrated a 
broader range of associations as predictors of cognitive impairment 
risk compared to other DTI parameters. Specifically, when we explored 
the contribution of different DTI parameters individually for 
distinguishing the two patient groups. We  found that for FA, 
we identified differences in 9 regions between the two groups, more 
than found for other parameters. This suggests FA may be  more 
sensitive than other metrics for monitoring white matter disruption 
in CSVD and more strongly correlated with cognitive scales. This 
observation contrasts with some prior studies that have reported that 
AD might be more sensitive for detecting cognitive impairment (21), 
while others align with studies suggesting MD is more sensitive in 
mild cognitive impairment (22, 23).

The primary early pathology in cerebral small vessel disease 
(CSVD) may not be purely axonal injury: numerous studies have 
shown that one of the earliest changes in CSVD is blood–brain barrier 
disruption and glial cell pathology, which is followed by demyelination. 

Radial diffusivity (RD) is more sensitive to myelin changes. As a 
comprehensive indicator, fractional anisotropy (FA) captures changes 
in both axial diffusivity (AD, related to axons) and RD (related to 
myelin) simultaneously. In our cohort, if demyelination is the more 
dominant pathological process, the signals from FA (and RD) may 
mask the contribution of AD, resulting in AD itself being 
non-significant in the model. This is consistent with several studies 
that emphasize the key role of myelin injury in cognitive decline 
associated with CSVD.

Importantly, we  found that for FA, patients with CI showed 
damage in the cingulum (hippocampal part) and fornix regions 
compared to the NCI group. RD also indicated damage in the cingulum 
(hippocampal part) in the CI group. This finding is particularly 
noteworthy because previous research on Alzheimer’s disease (AD) has 
reported that the cingulum (hippocampal part) and fornix are often 
vulnerable in the preclinical AD stage and are highly associated with 
memory function (24). While processing speed and executive function 
are typically considered the most vulnerable cognitive domains in 
cerebrovascular disease, and unlike AD, CSVD progressively affects all 
major cognitive domains. Therefore, our results suggest that damage to 
the cingulum (hippocampal part) and fornix white matter tracts is also 
highly relevant to cognition in CSVD patients, potentially explaining 
broader cognitive deficits beyond pure executive dysfunction.

Our study also revealed white matter tract damage in the external 
capsule region between the groups. The significance of this region lies 
in the fact that the white matter fibers of the external capsule form a 
significant part of the lateral pathway of the cholinergic system, 
projecting to the dorsal frontoparietal neocortex, temporal cortex, and 
parahippocampal gyrus (25). This finding aligns with growing interest 
in cholinergic dysregulation in CSVD. Indeed, one tractography study 
found significantly reduced FA within cholinergic pathways (including 

FIGURE 6

Nomogram for predicting the probability of cognitive impairment in patients with CSVD.
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the external capsule, cingulum, and claustrum) in patients with 
vascular cognitive impairment no dementia (26). Damage to these 
pathways can adequately explain executive dysfunction and partially 
account for memory and global cognitive impairment. Another 
tractography study identified the external capsule as the lateral 
cholinergic bundle and found diffusion metrics in the external capsule 
and the overlying superior longitudinal fasciculus correlated with 
executive dysfunction (27). Thus, our findings support the hypothesis 
that the lateral cholinergic bundle is significantly associated with 
executive dysfunction in the early stages of cognitive decline in CSVD, 
compared to CSVD patients without cognitive impairment.

Interestingly, we identified damage in the cerebral peduncle and 
inferior cerebellar peduncle regions. The relevance of these findings 
stems from the role of the white matter tracts in these regions which 
participate in the dentato-rubro-thalamic and dentato-thalamic 
pathways, the primary connections between the cerebellum and 
cerebral cortex. These pathways link the “cognitive cerebellum” 
(including lobules VI, VII, VIIB, and Crus I), involved in language, 
verbal memory, spatial tasks, and executive function, with the 
associative cerebral cortex (28). This observation is consistent with 
increasing research highlighting the cerebellum’s role in cognitive 
regulation, and suggests that microstructural changes in cerebello-
cerebral pathways may underlie the pathophysiological cerebellar 
alterations related to cognitive deficits revealed by resting-state fMRI 
in CSVD patients (29). Our observation of microstructural damage in 
cerebello-cerebral pathways (cerebral peduncle, inferior cerebellar 
peduncle) finds support in the work of Mascalchi et al. (30), who also 
reported significant correlations between MoCA scores and DTI 
alterations (reduced FA, increased MD/RD) in the decussation of the 
superior cerebellar peduncles in the midbrain (dentate-rubro-
thalamic tracts) in their vascular MCI cohort. This convergence of 
evidence across independent studies strengthens the notion that 
disruption of cerebellar-cerebral connectivity is a clinically relevant 
component of cognitive impairment in cerebral small vessel disease, 
potentially contributing to deficits in executive function and 
processing speed (31).

Overall, our results highlight several key aspects: findings 
regarding damage to the cingulum (hippocampal part) and fornix, 
alongside potential cholinergic dysregulation, contribute to 
understanding cognitive decline in CSVD. Moreover, the practical 
application of this work is demonstrated by the logistic regression 
models we constructed, which provide a potential approach for 
clinically distinguishing CSVD patients with cognitive impairment, 
indicate the risk of cognitive impairment in CSVD patients, and 
offer some basis for clinicians’ personalized medical decisions.

Despite providing valuable insights, several limitations must 
be acknowledged. First, this is a cross-sectional study; longitudinal 
research is needed to elucidate the dynamic relationship between 
DTI parameters and cognitive impairment progression over time in 
CSVD patients. Secondly, the relatively small sample size and the 
failure to classify patients into cerebral small vessel disease (CSVD) 
subtypes may limit the generalizability of the study results. 
Therefore, larger-scale cohort studies are needed to validate and 
expand the study conclusions, and an external validation set is also 
an issue we consider. Finally, as comprehensive cognitive screening 
tools, the Mini-Mental State Examination (MMSE) and Montreal 
Cognitive Assessment (MoCA) lack sufficient depth in evaluating 

specific cognitive domains such as executive function. 
Supplementing with specific cognitive scales may more 
comprehensively reveal the characteristics of changes in CSVD-
related cognitive impairment. Furthermore, the findings of this 
study should be  regarded as a promising predictive tool, as the 
biological interpretation of diffusion-related imaging metrics in 
specific cognitive domains remains immature. Future research 
incorporating multimodal data (e.g., PET, histology) is still needed 
to further elucidate these relationships.

Conclusion

In conclusion, our study demonstrates that classification 
models based on DTI parameters can distinguish CSVD patients 
with cognitive impairment from those without. Among these, the 
multivariate logistic regression model based on fractional 
anisotropy (FA) values performed best, effectively identifying 
CSVD patients with cognitive impairment. This study is the first 
to identify specific white matter tract damage patterns associated 
with cognitive impairment in CSVD patients and provides a tool 
for assessing cognitive impairment risk, holding significant 
clinical application value.
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