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White matter hyperintensity (WMH) is the core imaging hallmark of cerebral small 
vessel disease (CSVD). This phenomenon is closely related to nervous system 
damage, such as cognitive impairment, dementia and increased risk of stroke. 
However, traditional diagnostic methods have significant limitations in terms of 
quantitative assessment, analysis of pathological mechanisms, and clinical decision 
support, which severely restrict their clinical application. Through high-throughput 
feature extraction and comprehensive analysis of clinical, laboratory, histological, 
and genomic data, radiomics in its current form can not only achieve the high-
precision identification and staging of WMH but also help to reveal its pathological 
mechanism, which has shown important value in the diagnosis, prognosis, and 
evaluation of WMH-related diseases. Against this backdrop, we strictly adhered 
to the norms of systematic literature reviews, conducting a comprehensive and 
transparent literature search. We also thoroughly reviewed the data using a predefined 
strategy and strict inclusion/exclusion criteria (detailed in the text). This article 
systematically reviews the progress of radiomics research in characterizing the 
pathological mechanism of WMH and in the early identification, classification 
and prognostic evaluation of related diseases, aiming to provide a theoretical 
basis and a technical reference for the early identification of high-risk groups, 
the optimization of diagnosis and treatment decision-making, and the practice 
of collaborative patient management.
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1 Introduction

White matter hyperintensity (WMH) is an imaging feature based on magnetic 
resonance imaging (MRI). WMH lesions present high signal intensity on T2-weighted 
imaging (T2WI) or fluid-attenuated inversion recovery (FLAIR) sequences and are 
mainly distributed in the bilateral deep brain and periventricular white matter, 
symmetrically or asymmetrically (1). Clinically, WMH is recognized as the core imaging 
marker of cerebral small vessel disease (CSVD) (1, 2), which is closely related to nervous 
system damage, such as cognitive dysfunction, dementia and increased risk of stroke 
(3–5). Furthermore, some researchers have reported that WMH in acute cerebrovascular 
diseases is mainly associated with the subtype of lacunar infarction (6). According to the 
literature, WMH increases the risk of cognitive impairment and all-cause dementia 
(ACD) by 14% while increasing the risk of Alzheimer’s disease (AD) by 25% and the risk 
of vascular dementia (VaD) by 73% (5). Other studies have shown that WMH can be used 

OPEN ACCESS

EDITED BY

Chuanming Li,  
Chongqing University Central Hospital, China

REVIEWED BY

Benedetta Tafuri,  
University of Salento, Italy
Adria Arboix,  
Sacred Heart University Hospital, Spain

*CORRESPONDENCE

Desheng Li  
 13996045029@163.com  

Weiguo Li  
 tengtong2007@163.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 16 June 2025
ACCEPTED 04 August 2025
PUBLISHED 26 August 2025

CITATION

Du L, Wang L, Shen G, Zeng M, Li D and 
Li W (2025) Progress of radiomics research on 
white matter hyperintensity lesions.
Front. Neurol. 16:1647724.
doi: 10.3389/fneur.2025.1647724

COPYRIGHT

© 2025 Du, Wang, Shen, Zeng, Li and Li. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Review
PUBLISHED  26 August 2025
DOI  10.3389/fneur.2025.1647724

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1647724&domain=pdf&date_stamp=2025-08-26
https://www.frontiersin.org/articles/10.3389/fneur.2025.1647724/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1647724/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1647724/full
mailto:13996045029@163.com
mailto:tengtong2007@163.com
https://doi.org/10.3389/fneur.2025.1647724
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1647724


Du et al.� 10.3389/fneur.2025.1647724

Frontiers in Neurology 02 frontiersin.org

as an independent predictor of stroke (7), and its severity is 
significantly associated with an increased risk of ischemic and 
hemorrhagic stroke (7, 8). In clinical practice, early and accurate 
identification and staging of WMH are of great clinical importance 
for the diagnosis and prognosis of the disease.

MRI findings combined with Fazekas scale scores are commonly 
used to assess the severity of WMH (9–11). However, owing to the 
shortcomings of artificial subjectivity, quantitative bias and lack of 
pathological interpretation, their value in clinical and scientific 
research is limited. In recent years, radiomics has been used to 
extract quantitative and highly reproducible information from CT, 
MR, PET/SPECT and other imaging images; capture tissue and 
lesion characteristics; and comprehensively evaluate the obtained 
feature patterns by combining clinical, laboratory, histological, and 
genomic data. It has shown broad application prospects in analyzing 
the pathophysiology of diseases and predicting therapeutic effects, 
and it has also shown great potential in research on WMH-related 
diseases (12–14). This article reviews the progress of radiomics 
research on the pathological mechanism of WMH and the early 
identification, classification and prognostic evaluation of related 
diseases to provide a clinical basis for the formulation of early 
intervention strategies.

2 Methods

This study strictly adhered to the systematic literature search 
protocol of the Preferred Reporting Items for Systematic Review and 
Meta-Analyses (PRISMA) guidelines (15).

During the data collection stage, we conducted a detailed and 
comprehensive search of the PubMed and Springer databases using 
logical combinations of keywords to ensure the reliability and 
coverage of the data. The adopted search strategy included terms such 
as “white matter hyperintensity,” “cerebral small vessel disease,” 
“radiomics,” “stroke,” “cognitive dysfunction,” “dementia,” 
“Alzheimer’s disease” and “Parkinson’s disease.” The references 
obtained through manual search were used to identify more 
published articles. The research is limited to non-conference 
academic publications published in English. The date of this literature 
search ranged from January 2000 to March 2025. A total of 6,069 
records were ultimately retrieved. After careful adjustment and 
optimization of the search strategy, 26 records were deemed relevant 
to the research topic and were included in the study. The following is 
a schematic workflow of the study (Figure 1). The neurology literature 
feature extraction is shown in Table 1.

The inclusion criteria for the literature were online 
publications specifically related to the abovementioned topic and 
those published in English. The exclusion criteria were duplicate 
publications, studies with insufficient or incomplete data for 
which relevant information could not be  extracted, studies 
without a clear research objective, and studies published in 
languages other than English. The researchers used EndNote X9 
reference management software to eliminate duplicate studies. 
Two researchers independently screened the titles and abstracts 
to determine whether they met the inclusion criteria. 
Disagreements were resolved by discussion; if there was still 
disagreement, a third researcher was consulted.

3 Manuscript formatting

3.1 Overview of white matter 
hyperintensity in the brain

3.1.1 Epidemiology
The prevalence of WMH increases with age and ranges from 

approximately 20–100% (16–18). Wide variation exists due to 
differences in the race, sex, and age of the subjects and the different 
research methods used (such as examination methods, observation 
sites, and evaluation criteria). The prevalence of WMH varies 
significantly among different races, with studies showing higher 
prevalence and progression rates of WMH among black people than 
white people (19, 20). Another study reported that the prevalence 
of confluent WMH in the Han Chinese population was significantly 
greater than that in Australian Caucasians (21). Differences also 
exist in the incidence of WMH in patients according to sex. Lohner 
et al. (22) reported that the rate of progression and the proportion 
of severe WMH lesions (Fazekas ≥ 2) in postmenopausal women 
were significantly greater than those in contemporary men, and 
women with uncontrolled hypertension were found to have a 
greater WMH burden than men, which was unrelated to 
menopausal status. In middle-aged people, the prevalence of WMH 
is approximately 20–50% (17). Among people aged 60–70 years, 
87% had deep white matter hyperintensity (DWMH), and 68% had 
periventricular white matter hyperintensity (PVWMH). The 
prevalence of DWMH and PVWMH reached 100 and 95%, 
respectively, in people aged 80–90 years (16, 18).

3.1.2 Risk factors
The development of WMH is related to the interaction of multiple 

systems, and the main risk factors include vascular endothelial 
dysfunction and hemodynamic disorders caused by hypertension, 
diabetes, atherosclerosis and smoking (17, 23–26); cerebral metabolic 
abnormalities and vasomotor disorders caused by hyperlipidemia, 
migraine, and sleep disorders (27–29); and genetic diseases (such as 
adrenoleukodystrophy) and immune-mediated inflammatory diseases 
(such as multiple sclerosis) (30–32).

3.1.3 Pathological mechanism
The pathogenesis of WMH is complex, and the core pathological 

changes are characterized by demyelination, oligodendrocyte 
apoptosis, axonal injury and reactive gliosis (16). The current 
mainstream hypotheses include the following four categories: (1) 
Hypoperfusion and ischemic injury: Factors such as arterial stenosis 
and endothelial dysfunction lead to chronic white matter 
hypoperfusion, which leads to disordered oligodendrocyte energy 
metabolism and ischemic demyelination (16, 23, 33). (2) Blood–brain 
barrier (BBB) disruption: Vascular permeability is abnormally 
increased, and plasma components (such as inflammatory factors and 
fibrinogen) leak into the brain parenchyma, directly damaging myelin 
structure and reducing white matter fiber density (34). (3) Vein 
collagen hyperplasia and microcirculation disorder: Venous ischemia, 
collagen deposition in venules around the ventricles and obstruction 
of flow in the jugular vein occur, resulting in intensified 
microcirculation blockage and obstacles to the removal of metabolic 
waste (35). (4) Hypoperfusion, BBB destruction and other pathological 
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processes activate microglia and release proinflammatory factors, 
which further accelerate white matter damage (32).

3.2 Diagnostic methods and grading 
criteria for WMH

3.2.1 Diagnostic MRI techniques for WMH
MRI is a noninvasive, radiation-free and high-resolution method 

to evaluate the brain structure and function of patients with WMH. In 
clinical practice, the MRI techniques related to the diagnosis of WMH 
mainly include conventional plain MRI (T1-weighted imaging 
(T1WI), T2WI and T2-FLAIR) (1), arterial spin labeling (ASL) (36), 
diffusion tensor imaging (DTI) (37–39) and diffusion kurtosis 
imaging (DKI) (39–42).

T2WI and T2-FLAIR are highly sensitive in detecting WMH. In 
particular, 3D-T2-FLAIR, which was developed on the basis of 

T2-FLAIR, has characteristics including high resolution and fast 
imaging speed, which are highly valuable for the detection of WMH, 
but this modality cannot define the pathogenesis of the lesions and 
the pathological changes associated with them. ASL can directly and 
quantitatively measure cerebral blood flow (CBF) by labeling water 
molecules in arterial blood as an endogenous tracer. It has high value 
for evaluating WMH induced by hypoperfusion, but it is less sensitive 
to small lesions and is easily disturbed by motion artifacts. DTI can 
quantify the microstructure and integrity of white matter by detecting 
the diffusion characteristics of water molecules in white matter fiber 
tracts, which has the advantages of noninvasiveness, safety, high 
sensitivity, three-dimensional visualization, fiber tracking and 
dynamic monitoring. However, there is confusion and interference 
in the crossing area of nerve fiber tracts, which affects the 
measurement results of WMH lesions. DKI introduces a fourth-order 
tensor model, which can more accurately analyze the non-Gaussian 
characteristics of water molecular diffusion and compensate for the 

FIGURE 1

A schematic workflow of the study.
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TABLE 1  The neurological literature feature extraction table.

Number Authors/Ref. Paper title Study design Sample size (n) Research objectives Main conclusions

1 Etherton MR et al. 

(7)

Normal-Appearing White Matter 

Microstructural Injury Is Associated with 

White Matter Hyperintensity Burden in 

Acute Ischemic Stroke

A retrospective 

study

319 AIS patients (mean age 

64.9 ± 15.9 years) with MRI (DTI/

FLAIR) within 48 h of onset.

To characterize diffusion tensor imaging 

(DTI) features of normal-appearing white 

matter (NAWM) and white matter 

hyperintensity (WMH) in acute ischemic 

stroke (AIS) patients, and explore 

associations between NAWM 

microstructural injury and WMH burden.

Normal-appearing white matter axial diffusivity 

increases with age and is an independent 

predictor of white matter hyperintensity 

volume in acute ischemic stroke.

2 Giese AK et al. (53) White Matter Hyperintensity Burden in 

Acute Stroke Patients Differs by Ischemic 

Stroke Subtype

A retrospective 

study

3,301 AIS patients, with 2,529 

patients analyzed after quality 

control of FLAIR MRI data.

To examine etiologic stroke subtypes and 

vascular risk factor profiles and their 

association with white matter hyperintensity 

(WMH) burden in patients hospitalized for 

acute ischemic stroke (AIS).

Vascular risk factor profiles and extent of 

WMH burden differ by Causative Classification 

of Ischemic Stroke (CCS)subtype, with the 

highest lesion burden detected in patients with 

small artery occlusion (SAO). These findings 

further support the small vessel hypothesis of 

WMH lesions detected on brain MRI of 

patients with ischemic stroke.

3 Gupta R et al. (50) Quality Assessment of Radiomics Studies 

on Functional Outcomes After Acute 

Ischemic Stroke-A Systematic Review

Review 14 Studies using radiomics-

extracted features to predict 

functional outcomes among AIS 

patients using the modified Rankin 

Score (mRS) were included.

To assess the quality of existing studies 

which use radiomics methods to predict 

functional outcomes in patients following 

AIS.

Included studies showed low-to-moderate 

quality. As per the QUADAS-2, 6/14 (42.9%) 

studies had risk of bias concern and 0/14 (0%) 

had applicability concern.

4 Guo Y et al. (54) Novel Survival Features Generated by 

Clinical Text Information and Radiomics 

Features May Improve the Prediction of 

Ischemic Stroke Outcome.

A retrospective 

study

A total of 80 DSC-PWI images 

from 56 patients with ischemic 

stroke were included.

To evaluate the performance of clinical text 

information (CTI), radiomics features, and 

survival features (SurvF) for predicting 

functional outcomes of patients with 

ischemic stroke.

The combination of mRSRF and CTI can 

accurately predict functional outcomes in 

ischemic stroke patients with proper machine 

learning models. Moreover, combining SurvF 

will improve the prediction effect compared 

with the original features.

5 Tang T-y et al. (55) Penumbra-Based Radiomics Signature as 

Prognostic Biomarkers for Thrombolysis 

of Acute Ischemic Stroke Patients: A 

Multicenter Cohort Study.

A multicenter 

retrospective study

168 AIS patients within 9 h after 

onset were collected from seven 

hospitals and divided into a 

training dataset and an external 

validation dataset.

To develop a radiomics signature (R score) 

as prognostic biomarkers based on 

penumbra quantification and to validate the 

radiomics nomogram to predict the clinical 

outcomes for thrombolysis for acute 

ischemic stroke (AIS) patients.

The radiomics signature is an independent 

biomarker for estimating the clinical outcomes 

in AIS patients. By improving the 

individualized prediction of the clinical 

outcome for AIS patients 3 months after onset, 

the radiomics nomogram adds more value to 

the current clinical decision-making process.

(Continued)
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TABLE 1  (Continued)

Number Authors/Ref. Paper title Study design Sample size (n) Research objectives Main conclusions

6 Guo K et al. (56) Machine Learning-Based Nomogram: 

Integrating Mri Radiomics and Clinical 

Indicators for Prognostic Assessment in 

Acute Ischemic Stroke.

A retrospective 

study

506 AIS patients involved To develop and validate a nomogram that 

combines a multi-MRI radiomics signature 

with clinical factors for predicting the 

prognosis of AIS.

The study underscores the efficacy of the 

clinical-radiomics model in forecasting AIS 

prognosis, offering a significant leap toward 

more individualized and effective healthcare 

solutions.

7 Xia Y et al. (57) Machine Learning Prediction Model for 

Functional Prognosis of Acute Ischemic 

Stroke Based on Mri Radiomics of White 

Matter Hyperintensities.

A retrospective 

study

202 inpatients with acute anterior 

circulation ischemic stroke from 

the Department of Neurology.

To explore the value of a nomogram that 

integrates clinical factors and MRI white 

matter hyperintensities (WMH) radiomics 

features in predicting the prognosis at 

90 days for patients with acute ischemic 

stroke (AIS).

The FLAIR sequence-based WMH radiomics 

approach demonstrates effective prediction of 

the 90-day functional prognosis in patients 

with AIS. The integration of TWMH radiomics 

and clinical factors in a combined model 

exhibits superior performance.

8 Bonkhoff AK et al. 

(58)

Association of Stroke Lesion Pattern and 

White Matter Hyperintensity Burden with 

Stroke Severity and Outcome.

A retrospective 

study

928 AIS patients (severity analysis) 

and 698 followed-up patients 

(outcome analysis) from the MRI-

GENIE cohort

To examine whether high white matter 

hyperintensity (WMH) burden is associated 

with greater stroke severity and worse 

functional outcomes in lesion pattern-

specific ways.

1. High WMH burden exacerbated severity for 

lesions in left insular-inferior frontal (language) 

and right temporo-parietal (attention) regions

2. High WMH burden independently increased 

unfavorable outcomes.

3. Bilateral subcortical lesions (thalamus, 

internal capsule) were strongest predictors of 

severity/outcomes, independent of WMH.

9 Bretzner M, et al. 

(59)

MRI Radiomic Signature of White Matter 

Hyperintensities Is Associated with 

Clinical Phenotypes.

A retrospective 

study

A multi-center cohort of 4,163 

acute ischemic stroke (AIS) 

patients (mean age 62.8 years, 42% 

female) with T2-FLAIR MRI.

To evaluate radiomics for predicting white 

matter hyperintensity (WMH) burden and 

assessing brain structural integrity using 

conventional MRI.

To uncover associations between radiomic 

features of WMH and clinical phenotypes.

Radiomics extracted from T2-FLAIR images of 

AIS patients capture microstructural damage of 

the cerebral parenchyma and correlate with 

clinical phenotypes, suggesting different 

radiographical textural abnormalities per 

cardiovascular risk profile.

10 Meng F, et al. (16) Research Progress on Mri for White 

Matter Hyperintensity of Presumed 

Vascular Origin and Cognitive 

Impairment.

Review Middle-aged and elderly 

individuals

To review the association between WMH 

and cognitive impairment and the 

application of dynamic contrast-enhanced 

MRI, structural MRI, diffusion tensor 

imaging, 3D-arterial spin labeling, 

intravoxel incoherent motion, magnetic 

resonance spectroscopy, and resting-state 

functional MRI for examining WMH and 

cognitive impairment.

Multimodal MRI enables non-invasive 

assessment of structural, metabolic, and 

functional abnormalities in WMH, providing 

an important tool for early diagnosis, 

pathophysiological research, and treatment 

monitoring of cognitive impairment.

(Continued)
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TABLE 1  (Continued)

Number Authors/Ref. Paper title Study design Sample size (n) Research objectives Main conclusions

11 Pasi M, et al. (60) Clinical Relevance of Cerebral Small 

Vessel Diseases. Stroke

Review Middle-aged and elderly 

populations

To review the main clinical phenotypes of 

cerebral small vessel disease (SVD), 

including acute ischemic/hemorrhagic 

events and cognitive impairment, explore 

the clinical significance of MRI markers 

(e.g., white matter hyperintensities, lacunes, 

microbleeds), and analyze the impact of 

asymptomatic SVD on disabling conditions 

such as stroke and dementia.

Associated with elevated ischemic/hemorrhagic 

stroke risk; severe WMH triples dementia risk.

12 Grau-Olivares M, 

et al. (61)

Mild Cognitive Impairment in Stroke 

Patients with Ischemic Cerebral Small-

Vessel Disease: A Forerunner of Vascular 

Dementia?

Review Middle-aged and elderly patients 

with ischemic stroke

Asymptomatic elderly individuals 

with MRI-detected SVD markers 

and patients with mild cognitive 

impairment (MCI) or early 

dementia.

To investigate the association between 

ischemic cerebral small vessel disease (SVD) 

and cognitive impairment, and to evaluate 

whether vascular mild cognitive impairment 

(vMCI) is a precursor of subcortical 

vascular dementia.

Severe WMH (particularly periventricular) 

independently predicts slowed processing 

speed and memory decline, strongly associated 

with dementia risk.

13 Tang L, et al. (65) Individualized Prediction of Early 

Alzheimer’s Disease Based on Magnetic 

Resonance Imaging Radiomics, Clinical, 

and Laboratory Examinations: A 

60-Month Follow-up Study.

Retrospective cohort 

study

162 mild cognitive impairment 

(MCI) patients

To develop and validate radiomics models 

and multipredictor nomogram for 

predicting the time to progression (TTP) 

from MCI to AD

The prediction of individual TTP from MCI to 

AD could be accurately conducted using the 

radiomics clinical-laboratory model and 

multipredictor nomogram.

14 Dadar M, et al. (66) White Matter Hyperintensity Distribution 

Differences in Aging and 

Neurodegenerative Disease Cohorts.

Cross-sectional 

observational study

976 participants from the 

COMPASS-ND cohort of the 

Canadian Consortium on 

Neurodegeneration in Aging 

(CCNA).

To compare the distribution characteristics 

of white matter hyperintensities (WMH) in 

aging and neurodegenerative disease 

cohorts, including prevalence, regional 

differences, sex-specific patterns, and 

hemispheric asymmetry, and explore 

associations with cognitive impairment.

There were distinct differences in WMH 

prevalence and distribution across diagnostic 

groups, sexes, and in terms of asymmetry. 

WMH burden was significantly greater in all 

neurodegenerative dementia groups, likely 

encompassing areas exclusively impacted by 

neurodegeneration as well as areas related to 

cerebrovascular disease pathology.

15 Garnier-Crussard 

A, et al. (67)

White Matter Hyperintensity Topography 

in Alzheimer’s Disease and Links to 

Cognition.

Cross-sectional 

observational study

54 cognitively impaired amyloid 

beta– positive AD (Aβpos-AD), 

compared to 40 cognitively 

unimpaired amyloid beta– negative 

older controls (Aβneg-controls) 

matched for vascular risk factors.

To investigate the topographic distribution 

of white matter hyperintensities (WMH) in 

Alzheimer’s disease (AD) and their 

independent associations with cognitive 

function, excluding the effects of amyloid 

deposition and brain atrophy.

1. AD patients had larger WMH volumes than 

controls in all regions, with the most significant 

increase in the splenium of the corpus callosum 

(S-CC).

2. Total WMH volume and S-CC WMH were 

strongly associated with cognitive decline (e.g., 

executive function, memory) in AD, 

independent of Aβ deposition and atrophy.

(Continued)
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TABLE 1  (Continued)

Number Authors/Ref. Paper title Study design Sample size (n) Research objectives Main conclusions

16 Fiford CM, et al. 

(68)

Automated White Matter Hyperintensity 

Segmentation Using Bayesian Model 

Selection: Assessment and Correlations 

with Cognitive Change.

Retrospective cohort 

study

Magnetic resonance images from 

30 control and 30 AD participants

To evaluate the performance of Bayesian 

Model Selection (BaMoS) for automated 

white matter hyperintensity (WMH) 

segmentation and validate its ability to 

predict longitudinal cognitive decline in 

individuals with normal cognition, mild 

cognitive impairment (MCI), and 

Alzheimer’s disease (AD).

BaMoS is suitable for large-scale multi-center 

studies, providing reliable quantification of 

WMH to explore its role in cognitive 

impairment.

17 Carvalho de Abreu 

DC, et al. (3)

Is White Matter Hyperintensity Burden 

Associated with Cognitive and Motor 

Impairment in Patients with Parkinson’s 

Disease? A Systematic Review and Meta-

Analysis.

A systematic review 

and meta-analysis

Fifty eligible studies were included, 

involving PD patients, PD-MCI 

patients, PDD patients, and healthy 

controls.

To examine the association between WMH 

and cognitive and motor performance in PD 

through a systematic review and meta-

analysis.

WMH burden appears to increase with PD 

worse cognitive and motor status in PD

18 Hou M, et al. (70) Characteristics of Cognitive Impairment 

and Their Relationship with Total Cerebral 

Small Vascular Disease Score in 

Parkinson’s Disease.

A retrospective 

study

174 idiopathic PD patients who 

underwent brain magnetic 

resonance imaging (MRI) were 

recruited

To investigate the characteristics of 

cognitive dysfunctions and their 

relationship with total cerebral small 

vascular disease (CSVD) in Parkinson’s 

disease (PD)

CSVD can independently contribute to 

cognitive decline in PD and cause damage in 

specific cognitive domains. Promoting 

neurovascular health may help preserve 

cognitive functions in PD.

19 Huang X, et al. (76) Periventricular White Matter 

Hyperintensity Burden and Cognitive 

Impairment in Early Parkinson’s Disease.

Cross-sectional 

study (baseline data 

analysis of a 

prospective cohort)

175 non-demented early PD 

patients who had undergone 

baseline brain MRI were included.

Quantified the total brain and 

periventricular white matter 

hyperintensities (WMHs) burdens in 

patients with early Parkinson disease (PD) 

and explored their associations with 

cardiovascular risk factors and cognitive 

performance.

Periventricular WMHs burden was 

independently associated with PD-MCI, as well 

as worse executive function and visuospatial 

function.

20 Wu H, et al. (77) Regional White Matter Hyperintensity 

Volume in Parkinson’s Disease and 

Associations with the Motor Signs.

Combined cross-

sectional and 

longitudinal study

A total of 50 PD participants and 

47 age- and gender-matched 

controls were enrolled.

To investigate the association between 

regional white matter hyperintensity 

(WMH) volumes and Parkinson’s disease 

(PD), and to assess their impact on motor 

signs through cross-sectional and 

longitudinal analyses.

PD participants in this study were characterized 

by greater WMH at the occipital region, and 

greater occipital WMH volume had cross-

sectional associations with worse motor signs, 

while its longitudinal impact on motor signs 

progression was limited

21 Liu H, et al. (78) The Influence of White Matter 

Hyperintensity on Cognitive Impairment 

in Parkinson’s Disease.

Meta-analysis 15 eligible studies To review systematically and to identify the 

relationship between the severity and 

location of white matter hyperintensities 

(WMHs) and the degree of cognitive decline 

in patients with Parkinson’s disease (PD).

WMHs might be imaging markers for cognitive 

impairment in PDD but not in PD-MCI, 

regardless of age, vascular risk factors, or race. 

Further prospective studies are needed to 

validate the conclusions.

(Continued)
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TABLE 1  (Continued)

Number Authors/Ref. Paper title Study design Sample size (n) Research objectives Main conclusions

22 Shu Z, et al. (48) An Integrative Nomogram for Identifying 

Early-Stage Parkinson’s Disease Using 

Non-Motor Symptoms and White Matter-

Based Radiomics Biomarkers from 

Whole-Brain Mri.

Retrospective cohort 

study

336 participants (168 PD patients, 

168 healthy controls)

To develop and validate an integrative 

nomogram based on white matter (WM) 

radiomics biomarkers and nonmotor 

symptoms for the identification of early-

stage Parkinson’s disease (PD).

This integrative nomogram is a new potential 

method to identify patients with early-stage PD.

23 Rektor I, et al. (79) White Matter Alterations in Parkinson’s 

Disease with Normal Cognition Precede 

Gray Matter Atrophy.

Cross-sectional 

case–control study

Twenty PD patients and twenty-

one healthy controls (HC)

To detect gray matter (GM) and white 

matter (WM) changes in PD patients 

without cognitive impairment.

WM microstructural damage occurs early in 

PD prior to overt GM atrophy, suggesting WM 

alterations as a sensitive biomarker for early 

PD.

24 Shu ZY, et al. (80) Predicting the Progression of Parkinson’s 

Disease Using Conventional Mri and 

Machine Learning: An Application of 

Radiomic Biomarkers in Whole-Brain 

White Matter.

Retrospective cohort 

study

144 PD patients (72 progressive, 72 

stable)

To develop and validate a radiomics model 

based on whole-brain white matter and 

clinical features to predict the progression of 

Parkinson disease (PD).

Conventional structural MRI can predict the 

progression of PD. This work also supports the 

use of a simple radiomics signature built from 

whole-brain white matter features as a useful 

tool for the assessment and monitoring of PD 

progression.

25 Haliasos N, et al. 

(81)

Personalizing Deep Brain Stimulation 

Therapy for Parkinson’s Disease with 

Whole-Brain Mri Radiomics and Machine 

Learning.

Retrospective cohort 

study

A total of 120 PD patients 

underwent Deep brain stimulation 

(DBS) of the subthalamic nucleus. 

T

To develop a machine learning-driven 

predictive model for DBS patient selection 

using whole-brain white matter radiomics 

and common clinical variables.

Machine learning models can be used in 

clinical decision support tools which can 

deliver true personalized therapy 

recommendations for PD patients.

26 Tubi MA, et al. (81) White Matter Hyperintensities and Their 

Relationship to Cognition: Effects of 

Segmentation Algorithm.

Cross-sectional 

study

260 non-demented participants To investigate how different WMH 

segmentation algorithms affect the 

relationship between WMH volume and 

cognitive function, and to analyze whether 

Alzheimer’s disease (AD)-specific pathology 

masks the cognitive effects of WMH.

AD neuropathology may mask WMH effects 

on clinical diagnosis and cognition.
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shortcomings of DTI, which is based on the Gaussian diffusion 
model only. Compared with DTI, DKI is more sensitive to tissue 
microstructural changes, and the measurement results in the crossing 
area of nerve fibers are more reliable, which improves the ability to 
detect early lesions. However, owing to the limited image resolution, 
the display of WMH lesions is greatly limited. Moreover, DTI and 
DKI require considerable equipment, and the interpretation of 
parameters is complex, which makes these techniques less popular in 
clinical practice.

3.2.2 Grading criteria
The Fazekas grading system is the classical imaging standard for 

assessing the severity of WMH (9–11, 43). The most common 
classification of WMHs is location, as periventricular white matter 
hyperintensities (PWMHs) around the lateral ventricles and deep 
white matter hyperintensities (DWMHs) in the deep part of the 
subcortical white matter are assigned grades 0–3. According to the 
morphology of the lesions, PWMHs are divided into no lesions (0 
grade), cap or pencil-thin lesions (1 grade), smooth halo lesions (2 
grade) and irregular extension into the deep white matter (3 grade). 
DWMH scores are assigned as follows: no lesion (0 grade), punctate 
lesions (1 grade), lesions beginning to fuse into plaque (2 grade) and 
large areas of lesions fused into patches (3 grade). The modified 
Fazekas classification was as follows: grade 1 (scattered punctate 
lesions with a speckle-like appearance), grade 2 (some lesions fused to 
a plaque), and grade 3 (large lesions fused to a patch). The 
characteristic MR imaging findings on white matter hyperintensity 
lesions refer to Figure 2 for details.

The Fazekas classification is easy to apply and is the most widely used 
method in clinical practice, but it is prone to subjective effects arising 
from equipment and manual interpretation. Therefore, we  need to 
introduce a more objective, sensitive, accurate and efficient tool to reduce 
human error, improve the display rate of lesions, accurately localize and 
quantify lesions, reveal the etiology and pathological changes of the 
disease, and lay a solid foundation for clinical diagnosis and treatment.

3.3 Overview of radiomics

Radiomics is a technique for high-throughput extraction of 
quantitative features from CT, MR, PET/SPECT and other imaging 
modalities, combining clinical, genetic or molecular data and using 
machine learning or deep learning to construct predictive models. 
The process mainly includes the following five stages (12–14): (1) 
Data acquisition and preprocessing: Appropriate imaging modalities, 
such as CT, MRI, and PET, are selected, and the standardization of 
the data is ensured; (2) Region of interest (ROI) segmentation: There 
are three methods: manual, semiautomatic and automatic 
segmentation; (3) Feature extraction: high-throughput extraction of 
many valuable quantitative features from the segmented region of 
interest (ROI), including first-order statistical features, texture 
features, shape features and high-order features; (4) Feature selection 
and dimension reduction: To avoid model overfitting, it is necessary 
to screen out the features that are stable and related to the prediction 
target from the extracted features; and (5) Model construction and 
validation: According to the research purpose and data type, 
appropriate machine learning or deep learning algorithms were 
selected to construct prediction models (including logistic regression, 

support vector machines, random forests, neural networks, etc.) 
based on the selected features. Finally, cross-validation and external 
validation methods were used to evaluate the reliability and 
generalizability of the model. Radiomics can identify the microscopic 
characteristics of lesions by deep mining of the collected data, which 
provides a theoretical basis for the diagnosis, pathological analysis 
and prognostic evaluation of diseases.

3.4 The application and research progress 
of radiomics in WMH

3.4.1 The application and progress of radiomics in 
basic pathological research on WMH

A longitudinal study of 51 general elderly individuals (44) 
demonstrated that radiomics texture analysis based on conventional 
MRI can be  used for the early detection of white matter 
hyperintensity (WHM), providing patients with early indications of 
disease and more time for treatment. Shao et al. (45) reported that 
a radiomics model based on the WMH penumbra (WMHP) was 
significantly better than a whole-brain white matter (WBWM) 
model at predicting the progression and speed of WMH. The 
progression rate of WMH was correlated with only the rad-score 
from the WMHP ROI. The reason for this difference may be related 
to the evolution mechanism of WMH, which affects mainly the foci 
and gradually spreads to the periphery. The WMHP region has 
greater microstructural heterogeneity and is more sensitive to early 
dynamic changes. Hou et al. (46) constructed a radiomic hybrid 
model based on CT-fractional flow reserve (CT-FFR) and the 
pericoronary fat attenuation index (pFAI) to predict the progression 
of WMH. The pFAI↑ and CT-FFR↓ (the ↑ indicates “increase” and 
the ↓ indicates “decrease”) can predict white matter damage, and 
the common pathological mechanism of cardiac and cerebral 
microcirculation diseases is related to the inflammatory response. 
Shu et al. (47) developed a radiomics nomogram to screen out gray-
level cooccurrence matrix (GLCM), form factor, and run-length 
matrix (RLM) features, which can noninvasively predict WMH 
progression in elderly patients aged ≥60 years. Shu et  al. (48) 
constructed an integrated nomogram model of radiomics based on 
white matter, which could effectively distinguish scans of patients 
with Parkinson’s disease (PD) from scans without evidence of 
dopaminergic deficit (SWEDD). These findings suggest that white 
matter microstructural heterogeneity may underlie the pathological 
heterogeneity of PD and is associated with cognitive impairment. 
In addition, damage to white matter axons and the myelin sheath in 
PD patients occurs earlier than typical pathological changes, such 
as the loss of substantia nigra dopaminergic neurons. Ramon et al. 
(49) analyzed the textural features of different brain tissues and 
multisequence MR images through two traditional machine 
learning methods, and the results revealed that lacunar stroke was 
related to blood–brain barrier damage and that the white matter 
microstructural changes caused by it could be sensitively captured 
through textural features.

3.4.2 The clinical application of radiomics in the 
study of WMH-related diseases

WMH can be  observed in a variety of clinical diseases, 
including cerebrovascular diseases, demyelinating diseases, 
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FIGURE 2

Characteristic MR imaging findings on white matter hyperintensity lesions (Fazekas).

inflammatory reactions, tumors or other space-occupying lesions, 
brain trauma, and metabolic diseases. Among them, WMHs are 
particularly closely related to cerebrovascular diseases and 
neurodegenerative diseases.

3.4.2.1 Application of radiomics in cerebrovascular 
diseases

Cerebrovascular accidents (CVAs) are the second leading cause of 
death and neurological disease, with the highest burden of death and 
disability in the world (50, 51). According to the pathological 
mechanism, CVAs can be  divided into ischemic stroke and 
hemorrhagic stroke, and the former is the most common, accounting 
for 62.4% of cases (52). Studies have shown that ischemic stroke is 
associated with WMH (7, 53). At present, many studies have used 
radiomics technology to predict the individualized functional 
outcomes of patients with acute ischemic stroke (AIS) after discharge 
(50, 54–56), but relatively few studies have focused on the imaging 
features of WMH. Xia et al. (57) integrated radiomics and clinical 
factors to construct a combined model to predict the prognosis of 
acute ischemic stroke (AIS). The results showed that the radiomics 
model of total white matter hyperintensity (TWMH) using the 

support vector machine (SVM) classifier performed best in predicting 
the prognosis of AIS patients. Bonkhoff et  al. (58) explored the 
associations between WMH burden and the severity and prognosis of 
stroke. The results revealed that a high WMH burden in specific lesion 
locations (such as the language-related area in the left hemisphere and 
the attention-related area in the right hemisphere) significantly 
aggravated the severity of the acute phase of stroke and increased the 
risk of poor long-term prognosis. Bretzner et al. (59) constructed a 
model for predicting WMH burden on the basis of conventional 
T2-FLAIR images of AIS patients and explored its association with 
clinical phenotypes. The results indicated that radiomics analysis of 
conventional T2-FLAIR images could capture microstructure damage 
in WMH and was significantly associated with clinical phenotypes 
such as age and cardiovascular risk factors.

Cerebral small vessel disease (CSVD) is a group of chronic and 
progressive diseases caused by a variety of factors that affect cerebral 
tiny arteries, capillaries, and venules. CSVD manifests as 
microstructure damage to white matter in the brain and has become 
the most common cause of vascular cognitive impairment, accounting 
for 45% of dementia cases (2, 38, 60). In clinical studies, subcortical 
vascular dementia is the most common type of dementia in patients 
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with CSVD, accounting for 36–67% of all cases of vascular dementia 
(61). The signs of cerebral small vessel disease on conventional MRI 
include white matter hyperintensities, recent subcortical lacunar 
infarcts (clinically symptomatic), lacunes (clinically silent), cerebral 
microbleeds, prominent perivascular spaces, and cerebral atrophy 
(62). On MR images, WMH is a typical marker of CSVD, and its 
volume burden (WMH burden) can quantitatively reflect the 
cumulative degree of pathological damage, such as chronic cerebral 
ischemia, blood–brain barrier dysfunction and axonal demyelination 
(16, 60). Evidence (61) is available suggesting that the cognitive 
features of WMH include executive dysfunction, slowed information 
processing speed, and reduced language fluency. Moreover, the degree 
of cognitive impairment is significantly correlated with the location 
and quantity of white matter hyperintensity lesions in the brain. When 
patients progress to subcortical vascular dementia, the typical 
cognitive syndrome is executive dysfunction syndrome, which 
includes slowed information processing, memory deficits, behavioral 
and psychiatric symptoms, and language function that usually remains 
until the late stage of the disease. Owing to the diverse imaging 
manifestations and clinical symptoms of CSVD, radiomics research 
on WMH alone cannot be used as an independent diagnostic tool but 
can be used only as an auxiliary means. Therefore, further research in 
this field is needed.

3.4.2.2 The application of radiomics in neurodegenerative 
diseases such as Alzheimer’s disease and Parkinson’s 
disease

Alzheimer’s disease (AD), a complex neurodegenerative disease, is 
not only the leading cause of dementia worldwide but also is associated 
with increasing incidence, high mortality, high medical expenditures 
and long-term care needs. It is rapidly becoming one of the most 
expensive, deadly and burdensome diseases of the century (63). 
Currently, studies on Alzheimer’s disease (AD) based on radiomics 
mainly focus on gray matter regions (64, 65). In recent years, an 
increasing number of studies have reported that the cognitive function 
impairment of AD patients is closely related to the volume of WMH 
(66, 67) and the distribution of brain regions (66, 67). However, Tang 
et al. (65) believed that the severity of white matter lesions is related to 
cognitive decline, but the volume of WMH is not an independent risk 
factor for the progression of MCI to AD. Fiford et al. (68) evaluated the 
performance of the Bayesian model selection (BaMoS) algorithm in the 
segmentation of WMH and analyzed its correlation with cognitive 
changes. The study revealed that the volume of WMH was significantly 
associated with subjective/significant memory concern (SMC), early 
mild cognitive impairment (EMCI), and late mild cognitive 
impairment (LMCI) in terms of cognitive decline but was not 
significantly associated with patients in the AD stage.

Based on the above research, consensus is still lacking on whether 
a correlation exists between the volume of WMH and cognitive 
impairment in AD patients, and some of the results are even 
contradictory. However, most scholars agree that the volume of WMH 
is related to cognitive impairment in AD patients. Radiomics is 
expected to make certain contributions to the study of the relationship 
between WMH in the brains of AD patients and changes in 
cognitive function.

Parkinson’s disease (PD) is a neurological disorder characterized 
by the progressive deterioration of motor and cognitive function with 
clinical manifestations of motor dysfunction and nonmotor 

symptoms, which seriously affects quality of life, and disease 
progression is associated with increased mortality (69, 70). In recent 
years, the application of radiomics in the research of Parkinson’s 
disease (PD) has made some progress, but most studies have focused 
on specific brain regions (such as the substantia nigra) or relied on 
multimodal combined applications (such as neuromelanin imaging, 
DTI, DKI, etc.), with some difficulty in clinical popularization and 
promotion (71–75). Numerous studies have shown that white matter 
hyperintensity (WMH), an imaging marker of white matter damage, 
may exacerbate cognitive and motor dysfunction (3, 76–78). The total 
WMH burden of PD patients is significantly greater than that of 
healthy controls, and its severity is positively correlated with the 
degree of cognitive decline (normal cognition → mild cognitive 
impairment [PD-MCI] → dementia (PDD)). A high WMH burden 
can also increase the risk of PD and related dementia (PDD) (3, 70, 
76–78). Other studies have confirmed that in PD patients, white 
matter undergoes extensive structural changes before gray matter 
atrophy and cognitive impairment, and white matter (WM) changes 
may be  a sensitive indicator of early PD (79). In clinical work, 
understanding the changes in WM microstructure and assessing the 
severity of PD are very important for the treatment and prognosis of 
PD patients. Shu et al. (80) constructed a joint model based on whole-
brain white matter radiomics and clinical features to predict the 
progression of Parkinson’s disease (PD). Research has shown that the 
combined model can effectively predict the progression of PD, and a 
radiomic marker (rad-score) can also distinguish the severity of the 
disease. This method is low-cost, simple to perform, and can effectively 
predict the progression of PD, which is more suitable for clinical 
promotion. Shu et al. (48) developed a comprehensive nomogram 
model based on biomarkers and nonmotor symptoms of whole-brain 
MRI white matter radiomics for the identification of early Parkinson’s 
disease (PD). The results show that the model can effectively 
distinguish between typical PD patients and atypical PD patients 
(SWEDD: no evidence of dopaminergic deficiency on imaging) and 
provides a new method for the early diagnosis of PD. Haliasos et al. 
(81) developed a machine learning model based on radiomics of 
whole-brain white matter and clinical variables to predict the efficacy 
of deep brain stimulation (DBS) in patients with Parkinson’s disease. 
The results show that the combined model of machine learning can 
accurately screen patients who will benefit from DBS, which can 
be used as a clinical decision support tool to provide truly personalized 
treatment recommendations for PD patients. In summary, compared 
with other PD prediction models that rely on specific brain regions or 
complex MRI sequences, the radiomics model based on whole-brain 
white matter is more comprehensive and more likely to capture global 
brain structural changes, which compensates for the limited value of 
conventional MRI in the early diagnosis of PD, reduces the technical 
threshold, and facilitates adoption in primary medical care. However, 
there are still challenges, such as relatively small sample sizes and a 
lack of external validation, and the pathological mechanism of white 
matter features is not fully understood, which needs to be further 
explored and determined in future research.

3.5 Limitations

This article reviews the progress of radiomics research on the 
pathological mechanism of WMH and the early identification, 
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classification and prognostic evaluation of related diseases. It 
provides a theoretical basis and technical reference for the early 
identification of high-risk populations, the optimization of 
diagnosis and treatment decisions, and collaborative patient 
management. Importantly, our research methods have two main 
limitations. First, we relied solely on the PubMed, and Springer 
databases for the comprehensive review of the literature, which may 
have led to confounding biases. Second, the correlation between the 
volume of WMH and cognitive impairment in AD patients remains 
inconclusive. According to previous scholars, this is related to the 
differences in the definition of lesion boundaries caused by different 
segmentation methods of WMH (82). Therefore, merely exploring 
the correlation between WMH and cognitive impairment in AD 
patients through radiomics may have certain limitations. 
Combining deep learning to optimize the segmentation method of 
WMH is expected to solve this problem, but this aspect was not 
covered in this article.

4 Summary and outlook

As the core imaging marker of cerebral small vessel disease, 
WMH is closely related to nervous system damage, such as cognitive 
impairment, dementia and increased risk of stroke. Early 
identification of WMH is highly important for the diagnosis, 
treatment and prognosis of related diseases. In recent years, 
radiomics has emerged as an innovative tool that effectively 
compensates for the shortcomings of traditional imaging diagnostic 
methods, providing new approaches for the early identification and 
pathological analysis of WMH. However, cognitive dysfunction is a 
common manifestation of a series of neurodegenerative diseases, 
and its correlation with WMH in the brain is still not fully 
understood. In the workflow of radiomics, accurate segmentation 
and precise quantification of WMH and surrounding brain regions 
are vital for determining the severity of disease. This requires the 
combination of multiple different deep learning algorithms to 
explore the optimal solution for WMH, which is conducive to the 
establishment of more accurate artificial intelligence diagnostic and 
prognostic models. Second, cognitive impairment is a dynamic 
process that is constantly changing. In the future, through dynamic 
omics, subgroup analysis, combined with metabolomics, a 
multicenter prospective experiment can be  established for 
longitudinal analysis to construct a predictive model with 
broad interpretability to enhance the clinical application value of 
WMH in multiple fields, such as patient stratification, clinical 
decision making, and rehabilitation assistance.
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