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Machine learning models for
mortality prediction in patients
with spontaneous subarachnoid
hemorrhage following ICU
treatment
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China, 2Graduate School, Hubei University of Medicine, Shiyan, China

Background: Spontaneous subarachnoid hemorrhage (SAH) is a severe and
potentially life-threatening acute cerebrovascular disease. Early identification of
the risk of death in patients with spontaneous SAH is of vital importance for
improving prognosis, reducing mortality, and guiding clinical treatment.
Methods: A retrospective cohort study was conducted using the public
database, Medical Information Mart for Intensive Care IV (MIMIC)-IV. The primary
outcome was in-hospital mortality following intensive care unit (ICU) treatment.
All features were extracted from first-day ICU admission data. Data analysis was
performed by using R and Python, with feature selection conducted via least
absolute shrinkage and selection operator (LASSO) regression. We constructed
8 models based on the 12 selected features in the training set and evaluated
them in the test set by various metrics, including area under the curve (AUC),
accuracy, precision (positive prediction value), recall (sensitivity), Brier score,
Jordan index, and calibration slope. The most effective model was rendered
explainable through the SHapley Additive exPlanations (SHAP) approach.
Results: The study included 1,121 records, with 870 surviving and 251 deceased
patients. We selected 43 features for the preliminary baseline analysis. Based
on LASSO regression analysis and clinical practical significance, 12 features
were finally included in the construction of the machine learning models. We
constructed eight machine learning models, among which the logistic regression
(LR) model performed the best.
Conclusions: In our study, the LR model exhibited superior discrimination in
predicting risk of mortality among patients with spontaneous SAH compared to
other models. This research contributes to facilitating the early identification of
mortality risk in patients with spontaneous SAH. External validation and further
prospective studies are warranted to confirm and refine these predictive insights
for clinical utilization.

KEYWORDS

subarachnoid hemorrhage, intensive care unit, machine learning, predictive model,
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1 Introduction

Subarachnoid Hemorrhage (SAH) is a critical public health concern, which remains a
serious disease associated with considerable disability and mortality (1). The incidence of
SAH is approximately 9 cases per 100,000 individuals, and it is the third most prevalent
subtype of stroke (2). This disorder is primarily categorized into two types: traumatic and

Frontiers in Neurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1648353
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1648353&domain=pdf&date_stamp=2025-09-17
mailto:zjsjzz@hbmu.edu.cn
https://doi.org/10.3389/fneur.2025.1648353
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2025.1648353/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hu et al. 10.3389/fneur.2025.1648353

spontaneous (non-traumatic), with the spontaneous type
accounting for approximately 85%−95% of cases, thus constituting
the majority (3). Spontaneous SAH is relatively common, and its
causes are diverse. The rupture of intracranial aneurysms is one of
the main causes, accounting for approximately 85% (4). Cerebral
vascular malformations, such as arteriovenous malformations, are
also important contributing factors, occurring more frequently
in adolescents (5). In addition, vascular inflammation, abnormal
vascular networks at the base of the brain, brain tumors, and
moyamoya disease may also lead to spontaneous SAH (5).

One-third of spontaneous SAH patients die within the initial
days to weeks after the hemorrhage, and most survivors have
long-term disability or cognitive impairment (6). Spontaneous
SAH carries an exceptionally high disease-specific burden. Since
traditional risk prediction is limited to a single feature selection
method or a single algorithm, it has relative lag and limitations
(7). There is an urgent need for a reliable method to predict
the risk of death in spontaneous SAH patients in the ICU at
an early stage. Clinical prediction models that utilize electronic
health record data through advanced data mining techniques have
emerged as a promising approach to addressing these challenges.
Machine learning, with its high efficiency and accuracy in data
processing, has become increasingly prevalent in various disease
predictions. In our study, we aimed to integrate machine learning
algorithms with traditional statistical analysis to comprehensively
evaluate the risk factors for death in patients with spontaneous SAH
following intensive care unit (ICU) treatment. These new analytic
approaches may enhance risk prediction beyond only traditional
statistical approaches used in the past (8). An assessment of the risk
of death after spontaneous SAH is valuable for guiding early clinical
management of patients and evaluating clinical efficacy.

2 Methods

2.1 Data source and study population

This study is a retrospective cohort study based on the
Medical Information Mart for Intensive Care IV (MIMIC-IV,
Version 3.1, released on 11 October 2024) database (9). In order
to enhance usability of medical data and to improve patient
care through knowledge discovery and algorithm development, a
large deidentified dataset - MIMIC-IV database, developed and
maintained by the Computational Physiology Laboratory at the
Massachusetts Institute of Technology (MIT). MIMIC-IV contains
data for over 65,000 patients admitted to an ICU and over
200,000 patients admitted to the emergency department at the
Beth Israel Deaconess Medical Center in Boston, MA. All data was
captured automatically through the three systems during clinical
care: Hospital-wide Electronic Health Record (EHR) System,
ICU Clinical Information (MetaVision) System, and Emergency
Department (ED) System.

For data retrieval from the MIMIC-IV database, Structured
Query Language (SQL) was applied. In order to comply with the
regulations, the author, Wenwen Hu, obtained both a Cooperative
Institutional Training Initiative (CITI) license and the necessary
permissions to use the MIMIC-IV database (ID: 67812003). We
developed detailed data extraction steps and conducted trial

extractions before the official data extraction phase to test and refine
the clarity and operability of these steps.

(1) Inclusion criteria

a. Patients who were diagnosed with spontaneous SAH
confirmed by both the International Classification of
Diseases (ICD)-9 or ICD-10.

b. For patients with ICU admissions more than once, only data
of the first ICU admission of the first hospitalization was
collected for the study.

(2) Exclusion criteria

a. Patients under the age of 18 were excluded from the study.
b. Patients with concurrent malignant tumors were excluded

from the study.
c. Patients with over 20% missing features (after feature

extraction) were also excluded from the study.

2.2 Feature selection and outcome

In this study, 43 features referring to published articles (10–
13) and clinical experience were extracted from the MIMIC-
IV database, including age, gender, basic vital signs, coexisting
disorders, blood cell analysis, coagulation function, serum ions,
biochemical parameters, ventilation status, Glasgow Coma Scale
(GCS) score, sepsis-related organ failure assessment (SOFA) score,
acute physiology score iii (APS III), simplified acute physiology
score ii (SAPS II) and the primary outcome.

The vital signs and serum ions were selected based on the
maximum and minimum values recorded on the first day of
admission to the ICU, while blood cell analysis, coagulation
function, liver and kidney function, and serum ions were selected
based on the first test values recorded on the first day of admission
to the ICU. In cases where multiple test results were available for a
specific feature, the first measurement was used in the analysis.

The variance inflation factor (VIF) is an effective tool to detect
multicollinearity (14). A VIF = 1 indicates no multicollinearity;
a VIF between 1 and 5 indicates moderate collinearity; a VIF
> 5 indicates high collinearity; a VIF > 10 indicates severe
multicollinearity (15). To mitigate the interference caused by
strong multicollinearity, we removed 5 features with severe
multicollinearity. Re-calculated the VIF of the retained features, all
of them were < 5.

We applied the least absolute shrinkage and selection operator
(LASSO) regression in feature selection. LASSO achieves variable
selection through L1 regularization. As the value of λ increases,
more and more coefficients are shrunk to zero, resulting in twelve
features with nonzero coefficients (16). The primary outcome was
in-hospital mortality of spontaneous SAH patients following their
treatment in the ICU.

2.3 Missing data processing

Missing data is inevitable because clinical needs and resources
limit what data is collected, patient differences lead to inconsistent
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or variable measurements, and merging data from various sources
may introduces omissions and discrepancies. Most features had
missing rates <10%, with the exception of PT (12.2%) and APTT
(13.7%) (Supplementary Table S1).

For data with a missing rate of less than 10%, a filling method
(median, mean, or mode) that represents the central tendency of
the variables was selected based on the characteristics of the data
distribution (17). For data with a missing rate ranging from 10%
to 20%, the multiple imputation method was employed to replace
missing values, thereby minimizing their impact on classification
performance (18).

When the missing rate is low (<10%), the bias introduced
by simple imputation is typically negligible compared to the
additional complexity associated with multiple imputation.
Multiple imputation is designed for higher missing rates. In our
study, simple imputation and multiple imputation didn’t make
significantly different results. Variability and the relationships
between variables were preserved as they would be when using
multiple imputation.

2.4 Statistical analysis

Categorical variables were presented as numbers and
percentages (%). We compared proportions for unordered
categorical variables using the χ2-test or Fisher’s exact test
and compared proportions for ordered categorical variables
using the Wilcoxon rank-sum test. Normally and non-normally
distributed continuous variables were expressed as mean
± SD and median (interquartile range, IQR), respectively.
Normally distributed continuous variables were analyzed
by an independent t-test, while non-normally distributed
continuous variables were analyzed by the Mann–Whitney U
test. P values less than 0.05 (two-sided test) were considered
statistically significant.

2.5 Model construction and evaluation

Model construction was performed using 8 machine learning
algorithms, including Random Forest (RF), Logistic Regression
(LR), Light Gradient Boosting Machine (LGBM), Naive Bayes
(NB), Decision Tree (DT), Extreme Gradient Boosting (XGBoost),
Support Vector Machine (SVM), and Artificial Neural Network
(ANN). The performance of each model was evaluated depending
on area under the curve (AUC), accuracy, precision, recall,
Brier score, Jordan index, and calibration slope. Receiver
operating characteristic (ROC) curves and precision–recall (P-
R) curves for the eight models were depicted in one plot,
respectively, for comparison. The metrics and plots were used
to determine the optimal model. Additionally, the SHapley
Additive exPlanations (SHAP) approach was adopted to make
the final optimized model more interpretable. The SHAP
values indicate the contribution of each feature to the final
classification, enabling us to interpret the model from a
clinical perspective.

2.6 Software

We used Navicat (version 17.0.8) to access the MIMIC-IV
database. Data preprocessing, feature selection, and statistical
analysis were performed using R (version 4.4.3). Python (version
3.13.1) was employed for the construction and evaluation of
machine learning models.

3 Results

3.1 Baseline characteristics of ICU patients
with SAH

Initially, 1,329 ICU admission records diagnosed with
spontaneous SAH and 43 features were extracted from the
MIMIC-IV database. By combining exclusion criteria and
discarding features with excessive missing values, 1,121 records
were ultimately retained for subsequent analysis. The flowchart of
the study is shown in Figure 1. Based on ICU outcomes, the entire
study population was divided into two groups: a survival group (n
= 870) and a non-survival group (n = 251). Baseline characteristics
of the included patients are presented in Table 1.

Forty-three characteristics were compared between the two
groups, among which 24 characteristics showed significant
statistical difference. According to the baseline data presented in
the Table 1, patients in the non-survival group were generally older
than those in the survival group. No significant difference was
observed in gender composition between the two groups, with
females slightly outnumbering males in both the survival and non-
survival groups. The data revealed that the non-survival group was
more likely to have electrolyte disorders, coagulation abnormalities,
hyperglycemia, and thrombocytopenia. Additionally, vital signs
such as heart rate, body temperature, and oxygen saturation in
these patients fluctuated more widely and were more likely to be
accompanied by comorbidities.

3.2 Features selection

Given that the red blood cell (RBC) count influences
hemoglobin and hematocrit levels, RBC was retained. The
calculation of non-invasive mean arterial pressure (NMAP) is
dependent on non-invasive systolic blood pressure (NBPS); hence,
NBPS was retained. Given the close interrelationship among INR,
PT, and APTT, APTT was retained. Consequently, five features
- hemoglobin, hematocrit, INR, PT, and NMAP - with excessive
multicollinearity were removed, and 38 features were retained for
further analysis (Supplementary Figure S1).

Subsequently, the retained features were selected by the LASSO
regression algorithm. Twelve of 38 features were selected as the best
predictive to construct the machine learning models. These were
identified at a shrinkage parameter (lambda.1se) of 0.02618559
(Figure 2). The following features raise the risk of mortality in
our study: serum sodium, SAPSII score, admission age, BUN,
glucose, SOFA score, heart rate, APSIII score, liver disease, and
creatinine. Conversely, when SpO2 and platelet count rise, the risk
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FIGURE 1

Patients and features selection flowchart of the MIMIC-IV database.

of death falls. The importance ranking of the 12 features is shown in
Figure 3. Then, these features were used in the subsequent analyses
for all models in both training and test sets.

3.3 Model performance and explanation

1,121 records were randomly divided into a training set (n =
897) and a test set (n = 224) at a ratio of 8:2. The number of non-
survival patients was 205 (22.9%) and 46 (20.5%) in the training
and test sets respectively. We developed 8 machine learning models
to predict the risk factors for death after receiving treatment in
ICU. The 8 models were trained employing the training set. Their
performance was subsequently evaluated employing the test set.

Table 2 and Figure 4 showed the metrics for each model in
predicting mortality. The LR model outperformed others with the
highest accuracy of 0.8545 and a higher recall of 0.7826. The Jordan
index of 0.7291, calibration slope of 0.7623, and Brier score of
0.1650 all indicated better model performances. On the training
set, both LGBM (AUC = 0.9907) and XGBoost (AUC = 0.9780)
achieved near-perfect AUC scores approaching 1.0, whereas their
performance declined markedly on the test set (AUC = 0.8396 and
0.8510), indicating potential overfitting. In contrast, the LR model
demonstrated relatively excellent and stable performance across
both the training and test sets, achieving the highest prediction
performance on the test set (AUC = 0.8646), as is shown in
Figure 5. The precision-recall curve is a visualization tool used to
evaluate the trade-off relationship between the precision and recall
of a classification model at different thresholds. Figure 6 showed
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TABLE 1 Characteristics of spontaneous SAH from the MIMIC-IV
database.

Variables Survival
(n = 870)

Non-survival
(n = 251)

P
Value

Baseline characteristics

Admission age (years) 59.73
(50.21, 70.64)

69.49
(57.83, 80.94)

<0.001∗

Gender 0.271

Male 359 (41.26 %) 114 (45.42 %)

Female 511 (58.74 %) 137 (54.58 %)

Vital signs (1st 24 h)

Heart rate-max
(b.p.m)

96 (85, 106) 103 (92, 118) <0.001∗

NBPS-max (mmHg) 155 (143, 167) 157 (145, 175) 0.004∗

NMAP-max (mmHg) 82 (75, 88) 83 (76, 91) 0.026∗

SpO2-min (%) 93 (91, 95) 94 (90, 97) 0.877

Glucose-max (mg/dL) 143.21
(122.35, 171.38)

179.03
(145.31, 246.5)

<0.001∗

Temperature-max (◦C) 37.39
(37.11, 37.78)

37.56
(36.94, 38.30)

0.049∗

Coexisting disorders

Chronic pulmonary
disease

110 (12.64 %) 38 (15.14 %) 0.356

Congestive heart
failure

50 (5.75 %) 29 (11.55 %) 0.002∗

Myocardial infarct 822 (94.48 %) 30 (11.95 %) <0.001∗

Diabetes 115 (13.22 %) 45 (17.93 %) 0.076

Renal disease 40 (4.60 %) 31 (12.35 %) <0.001∗

Liver disease 22 (2.53 %) 25 (9.96 %) <0.001∗

Rheumatic disease 14 (1.61 %) 3 (1.20 %) 0.857

Hypertension 514 (59.08 %) 164 (65.34 %) 0.087

Peptic ulcer disease 6 (0.69 %) 3 (1.20 %) 0.573

Aids 3 (0.34 %) 2 (0.80 %) 0.682

Smoking and drinking history

Alcohol 31 (3.56 %) 10 (3.98 %) 0.903

Tobacco 104 (11.95 %) 29 (11.55 %) 0.951

Serum ions (1st 24 h)

Sodium-max (mEq/L) 140.37
(139.09, 143.25)

144.21
(140,06, 148.50)

<0.001∗

Sodium-min (mEq/L) 138.13
(136.09, 140.36)

139.07
(135.21, 141.70)

0.200

Potassium-max
(mEq/L)

4.11 (3.81, 4.52) 4.34 (4.02,4.91) <0.001∗

Potassium-min
(mEq/L)

3.73 (3.42, 4.28) 3.76 (3.31,4.14) 0.522

Calcium-min (mg/dL) 8.43 (8.08, 8.91) 8.23 (7.75,8.80) <0.001∗

Calcium-max (mg/dL) 8.82 (8.41, 9.23) 8.86 (8.25,9.33) 0.897

Blood cell analysis (1st 24 h)

RBC (K/μL) 4.12 (3.74, 4.51) 4.02 (3.54,4.54) 0.058

(Continued)

TABLE 1 (Continued)

Variables Survival
(n = 870)

Non-survival
(n = 251)

P
Value

Platelet (K/μL) 219.58
(182.25, 267.75)

203.02
(152.50, 262.51)

<0.001∗

WBC(K/μL) 11.06
(8.51, 13.93)

13.15
(10.23, 16.251)

<0.001∗

Lymphocyte (K/μL) 12.98
(9.02, 16.96)

11.39 (6.28, 14.47) <0.001∗

Hematocrit (%) 37.26
(33.91, 40.34)

36.97
(32.75, 40.45)

0.272

Hemoglobin (g/dL) 12.56
(11.31, 13.64)

12.42
(10.85, 13.50)

0.163

Coagulation function (1st 24 h)

PT(s) 12.33
(11.52,13.24)

12.70 (11.62,13.91) <0.001∗

APTT (s) 27.91
(25.41,30.82)

27.42 (24.85,31.53) 0.539

INR 1.13 (1.04,1.25) 1.21 (1.10,1.38) <0.001∗

Renal function (1st 24 h)

Creatinine-max
(mg/d)

0.84 (0.71,1.03) 1.07 (0.81, 1.42) <0.001∗

BUN-max (mg/dL) 15.06 (12.15,
19.23)

20.27 (15.18,
28.04)

<0.001∗

Scoring system (1st 24 h)

GCS-min 13 (10, 15) 8 (3, 15) 0.009∗

SOFA 2 (1, 4) 4 (2, 7) <0.001∗

APS III 30 (23, 40) 47 (32, 67) <0.001∗

SAPS II 27 (22, 36) 39 (34, 52) <0.001∗

Ventilation 644 (74.02%) 221 (88.05%) 0.254

Return ICU 92 (10.57 %) 24 (9.56 %) 0.729

The unit of measurement is extracted from MIMIC-IV database without any changes.
b.p.m, beats per minute; NBPS, non-invasive blood pressure systolic; NMAP, non-invasive
mean arterial pressure; SpO2, saturation of pulse oxygen; RBC, red blood cell count; WBC,
white blood count; PT, prothrombin time; APTT, activated partial thromboplastin time; INR,
international normalized ratio; BUN, blood urea nitrogen; GCS, glasgow coma scale; SOFA,
sequential organ failure assessment; APS III, Acute Physiology Score III; SAPS II, Simplified
Acute Physiology Score II; ICU, intensive care unit.
∗P values less than 0.05.

that this LR model algorithm has high classification precision and
recall rate. Therefore, the LR model was finally selected to predict
the mortality rate of spontaneous SAH patients in the ICU.

To identify the most influential features, we employed the
SHAP value analysis, an interpretable method widely used in
medical research. By visualizing the SHAP values of all features
across the entire dataset, we were able to discern overarching
patterns and relationships within the data. As illustrated in
the SHAP summary plots (Figures 7A, B), we evaluated the
contributions of 12 selected features to the model performance.
We further transformed the SHAP value matrix into a heatmap
(Figure 7C) to visualize the feature contributions at the individual
sample level. This visualization provided a granular view of how
each feature contributed to the prediction for every sample. In
Figure 7D, the decision plot depicted the decision-making process
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FIGURE 2

Features selection using a LASSO regression model. (A) LASSO coefficient path graph: Lasso achieves variable selection through L1 regularization. As
the value of λ increases, more and more coefficients are shrunk to zero. To determine the optimal predictors of the model, ten-fold cross-validation
with minimum criteria was used, resulting in twelve features with nonzero coefficients. (B) The minimum criteria (lambda.min) and 1 SE of the
minimum criteria (lambda. 1se) were used to depict the optimal values with dotted vertical lines. We chosed lambda.1se instead of lambda.min
because lambda.1se (the maximum λ value within the minimum error range of one standard error) usually provides a more robust and concise
model, which helps to avoid overfitting.

FIGURE 3

LASSO coefficient profile of 12 features. Features after selection. There are 38 features in total before the selection process, and 12 features remain
after using LASSO regression. The plot presents the top 12 features that had the greatest impact on survival or death in SAH patients after receiving
treatment in the ICU. Green bars indicate protective factors and red bars indicate risk factors. The length of the bar for each feature indicates the
importance (weight) of that feature in making the prediction. A longer bar indicates a feature that contributes more to survival or death.
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TABLE 2 Evaluation of different machine learning models.

Models Sets AUC Accuracy Precision Recall Brier score Jordan index Calibrationslope

ANN Training set 0.6993 0.7904 0.5752 0.3171 0.1888 0.3985 0.4228

Test set 0.6373 0.7812 0.4571 0.3478 0.1997 0.2745 0.3535

DT Training set 0.8482 0.6934 0.4219 0.9220 0.1491 0.6964 0.8394

Test set 0.7938 0.6473 0.3565 0.8913 0.171 0.5876 0.7129

LGBM Training set 0.9907 0.9398 0.7938 0.9951 0.0574 0.9814 1.2931

Test set 0.8396 0.7902 0.4921 0.6739 0.1372 0.6793 0.6881

LR Training set 0.8451 0.8681 0.4949 0.7171 0.1613 0.6902 0.8512

Test set 0.8646 0.8245 0.4444 0.7826 0.1650 0.7291 0.7623

NB Training set 0.8658 0.8161 0.6075 0.5512 0.1642 0.7317 0.2404

Test set 0.8577 0.8259 0.5660 0.6522 0.1579 0.7154 0.7689

RF Training set 0.8969 0.7949 0.5344 0.7951 0.1415 0.7939 1.3670

Test set 0.8448 0.7545 0.4483 0.8478 0.1590 0.6895 1.1009

SVM Training set 0.8485 0.7670 0.4938 0.7756 0.1246 0.6969 1.0644

Test set 0.8340 0.7366 0.4253 0.8043 0.1260 0.6681 0.5259

XGBoost Training set 0.9780 0.9320 0.9337 0.7561 0.0549 0.9559 1.2734

Test set 0.8510 0.8348 0.6154 0.5217 0.1176 0.7020 0.6313

FIGURE 4

Line graph of the test set model metrics. LR, logistic regression; RF, random forest; LGBM, light gradient boosting machine; NB, naive bayes; DT,
decision tree; XGBoost, extreme gradient boosting; SVM, support vector Machine; ANN, artificial neural network.
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FIGURE 5

ROC curves of eight machine learning models. LR, logistic regression; RF: random forest; LGBM, light gradient boosting machine; NB, naive bayes;
DT, decision tree; XGBoost, extreme gradient boosting; SVM, support vector Machine; ANN, artificial neural network.

for each participant. Every line converges to a single point
at −0.323.

4 Discussion

Spontaneous SAH is an acute cerebrovascular disease with
a life-threatening neurological condition, which imposes a heavy
burden on individuals, families, and even society (19). Once the
disease occurs, most patients will be sent to the ICU for rescue
and treatment. However, many patients still have poor prognosis
or even death (19). Currently, the majority of studies are limited to
the impact of a single conventional indicator or factor on mortality,
and they lack an analysis of multiple causes of death. There are
some studies that have reported that gender, WFNS class, APACHE
II score, IL-6, Hunt and Hess grade, troponin I, white blood cell
count, and electrocardiographic abnormalities are associated with
spontaneous SAH (20).

We extracted relevant indicators from the MIMIC-IV database
as comprehensively as possible for machine learning. To refine
the feature selection process, we applied collinearity analysis and
LASSO regression, thereby effectively reducing the influence of
multicollinearity on the selected features. Subsequently, multiple
models were developed using various machine learning algorithms.

These models were evaluated based on multiple parameters to
ensure that the final model had better and more stable performance
in predicting the outcome of death.

We found, quite interestingly, patients with hyperglycemia
on admission had increased mortality most significantly. A
retrospective analysis showed that admission hyperglycemia was
associated with significantly increased mortality in critically ill
patients with SAH (21). The causes of admission hyperglycemia,
which could either be pre-existing diabetes mellitus or stress-
induced hyperglycemia. Stress-induced hyperglycemia was an
independent risk factor for pulmonary infection and death after
intracranial hemorrhage (22). In clinical practice, blood glucose is
an indicator that can be quickly obtained. In subsequent studies,
we will focus on blood glucose to explore the mechanism of
hyperglycemia on the death of spontaneous SAH patients. Rapidly
detecting blood glucose and reducing hyperglycemia that may
occur in the early stage of the disease are likely to become a potent
measure to reduce the mortality rate of patients.

In our study, low SpO2 indicates increased mortality, which
may be related to the lack of oxygen in patients. However, a
study utilizing data from large ICU databases revealed a U-shaped
relationship between SpO2 levels and mortality among patients
(23). For patients with TBI and SAH, maintaining SpO2 at 94–
96% will minimize the in-hospital mortality of patients. In the other
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FIGURE 6

Precision–recall curves of eight machine learning models. LR, logistic regression; RF, random forest; LGBM, light gradient boosting machine; NB,
naive bayes; DT, decision tree; XGBoost, extreme gradient boosting; SVM, support vector Machine; ANN, artificial neural network.

study, the optimal range of SpO2 was 94% to 98% (24). The patients
who were within the optimal range of SpO2 were associated with
decreased hospital mortality (23). This finding is different from the
results of our study. In the subsequent research, we can conduct a
separate analysis of the relationship between SpO2 and mortality.

Regardless of whether baseline analysis or machine learning
models were used, older age was associated with a higher risk of
mortality. It is well-established that as patients grow older, their
organ functions become increasingly susceptible to failure (25).
Therefore, when elderly patients experience an acute disease, like
spontaneous SAH, they will probably be at relatively high risk
of death.

In terms of vital signs, patients with higher heart rates on
ICU admission had a higher risk of death. Studies have shown
that increased sympathetic nerve stimulation in patients with
subarachnoid hemorrhage leads to increased heart rate and even
arrhythmia, and severe sympathetic nerve stimulation can greatly
increase the risk of cardiac arrest, thereby increasing mortality (26).
Therefore, reducing the heart rate of patients within the normal
range and correcting arrhythmia immediately on admission can
reduce the mortality of patients.

The on-admission platelet count was found to be significant
and predictive of patient outcome on discharge (27). In our
study, spontaneous SAH patients with low platelet counts
have an increased risk of death. According to the literature,

thrombocytopenia has been identified as an independent risk factor
for symptomatic vasospasm following aneurysmal subarachnoid
hemorrhage (28). Additionally, thrombocytopenia is associated
with an increased risk of bleeding, which in turn elevates the
mortality risk among patients.

We analyzed serum sodium, potassium, and calcium levels
and found that serum sodium may be associated with the
risk of death, with higher sodium levels at ICU admission
indicating a higher risk of death. A study found that high serum
sodium levels are related to higher ICU and hospital mortality
in patients with non-traumatic SAH (29). Increased intracranial
pressure (ICP) impairs hypothalamic function, thereby resulting
in electrolyte disturbances in the body (30). Therefore, timely
identification and correction of electrolyte disturbances is critical to
prevent permanent central nervous system damage. Elevated serum
sodium levels are indicative of severe intracranial hemorrhage and
significant neurological dysfunction, potentially guiding clinicians
to promptly initiate pharmacological interventions or surgical
procedures aimed at reducing ICP.

Impaired kidney or liver function was also associated with high
mortality (31). Several studies have shown that the underlying
mechanism may involve renal failure leading to severe electrolyte
disturbances and acid-base imbalances (32), as well as liver failure
resulting in coagulopathy, which increases the risk of bleeding
(33). This suggests that for patients with spontaneous SAH, early
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FIGURE 7

(A) SHAP summary dot plot; (B) SHAP summary bar plot; (C) SHAP heatmap plot; (D) SHAP decision plot. (A) Color denotes the feature value–red
denotes a value that is greater, and blue denotes a value that is lower. The more dispersed the points of the graph represent, the greater the impact
of the feature on the model. (B) The average SHAP values were calculated and ranked in descending order, with each row representing a distinct
feature and the horizontal axis indicating the magnitude of its SHAP value. (C) Rows represent features, and columns represent samples. The color
intensity reflects the magnitude of feature values on the model output (SHAP value). Red has a greater influence, while blue has a lesser influence. (D)
The features were listed in order of decreasing importance, based on their cumulative SHAP values across the plotted observations. Every line
converges to a single point at −0.323.

initiation of liver and renal protection treatment may be conducive
to reducing the mortality of patients.

Several grading systems have been used to predict the outcome
of critically ill patients (34). SAPS II score, APS III score, and SOFA
score are related to the health status and organ function of patients.
The higher the score, the worse the health status of the patients and
the higher the risk of death (35).

Furthermore, the best performance of a model under the
current methodology reflects the effectiveness of the selection
process rather than an inherent advantage of the model itself.
While LR remains remarkably competitive in the wave of Artificial
Intelligence (AI), no single model is universally superior—optimal
performance is fundamentally contingent on careful matching of
algorithmic strengths to the specific data characteristics and specific
research constraints at hand.

The study possesses several notable strengths: (1) The data were
sourced from a large, publicly accessible database on the Internet,
ensuring reliability and representativeness. (2) Collinearity analysis
was used for feature selection, enhancing the robustness of the
model. (3) Multiple machine learning algorithms were used to
construct models capable of ranking feature importance. (4) The
final 12 selected features are readily available clinically. There is no
analysis of the combined effects of these features on SAH.

Additionally, this study had several limitations: (1) The study
lacks external validation. We have initiated the collection of
relevant data from our hospital and plan to conduct further
research upon reaching the target sample size. (2) This study
captured laboratory indicators only on the first day of ICU
admission, lacking dynamic monitoring of these indicators over
time. (3) In future follow-up studies, targeting aneurysmal SAH
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exclusively could help exclude the influence of etiology on the
results, thereby enhancing the specificity of the findings.

5 Conclusion

Our study develops an interpretable machine learning model to
predict the risk factors and mortality in patients with spontaneous
SAH. We selected the best-performing model among the eight
models, namely the LR model. This model incorporates 12
features. Finally, SHAP was used to interpret the model to
improve the interpretability of the model. This study may
facilitate the early identification of mortality risk in patients with
spontaneous SAH, thereby enabling timely intervention. Moreover,
it can assist clinicians in optimizing patient management under
resource constraints, thus reducing mortality risk and improving
clinical outcomes.
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