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Background: Zoster-associated pain (ZAP) significantly impacts quality of life
(QoL) and poses therapeutic challenges. However, there is limited comparative
evidence on interventional strategies, particularly regarding short-term spinal
cord stimulation (st-SCS) vs. pulsed radiofrequency (PRF), stratified by disease
duration and dermatomal involvement.
Objectives: This retrospective study aimed to compare the efficacy and safety
of st-SCS and PRF in patients with ZAP, with the primary outcome defined as
≥50% pain reduction at 1 month post-treatment. Secondary outcomes included
neuropathic pain characteristics, quality of life (QoL), medication use, and
adverse events.
Methods: Clinical data were retrospectively extracted from the institutional pain
management database at West China Hospital, covering the period between July
2022 and February 2024. Eligible patients had a clinical diagnosis of ZAP and
received either st-SCS or PRF following standard clinical practice. Outcomes
assessed included pain severity, neuropathic pain characteristics, QoL indicators,
medication usage, and adverse events. Follow-up assessments occurred
immediately post-treatment and at 1, 3, 6, and 12 months. Stratified analyses
were performed according to disease duration and affected dermatomes.
Results: A total of 186 patients met the inclusion criteria (st-SCS, n = 96; PRF,
n = 90). st-SCS showed superior pain relief compared to PRF, with significantly
higher rates of ≥50% pain relief immediately post-treatment (72.92 vs. 14.44%,
P < 0.001), at 1 month (46.88 vs. 31.11%, P = 0.035), and at 3 months (64.58
vs. 43.33%, P = 0.005). Stratified analysis indicated greater efficacy of st-SCS
in patients with disease durations of 1–2 months and thoracic dermatomal
involvement, showing significantly lower NRS scores across multiple follow-ups.
Additionally, st-SCS significantly reduced neuropathic pain characteristics, with
lower Douleur Neuropathique 4 (DN4) scores at 1 month (1.77 ± 0.80
vs. 2.11 ± 0.99, P = 0.046), 3 months (1.42 ± 0.98 vs. 2.29 ± 1.16,
P < 0.001), and 6 months (1.38 ± 0.93 vs. 1.81 ± 1.02, P = 0.008). QoL
improvements were consistently greater with st-SCS, particularly regarding
sleep quality, mood, and life enjoyment from 1 to 6 months post-treatment.
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Conclusions: st-SCS provides superior short-term and sustained pain relief and
QoL enhancements compared to PRF in managing ZAP, especially in patients
with shorter disease duration and thoracic and abdominal involvement. Both
treatments demonstrated comparable safety profiles, confirming the viability and
effectiveness of st-SCS as an advantageous interventional option for managing
zoster-associated pain.

KEYWORDS

zoster-associated pain, spinal cord stimulation, pulsed radiofrequency, database,
stratified analysis

1 Introduction

Zoster-associated pain (ZAP), triggered by the reactivation
of varicella-zoster virus (VZV), progresses through distinct
phases: acute herpes zoster neuralgia (HZN), subacute herpes
zoster (SHZ, occurring 1–3 months post-rash), and postherpetic
neuralgia (PHN) if pain persists beyond 3 months (1, 2). The
pathophysiology involves peripheral and central sensitization,
with sodium channel upregulation, axonal degeneration,
and glial activation contributing to chronic pain (3, 4).
Globally, approximately 30% of individuals experience HZN
in their lifetime, with up to 30% of cases progressing to
PHN, particularly in individuals aged over 60 (5). In China,
HZN affects 7.7% of the population and imposes significant
healthcare and economic burdens (6). ZAP is linked to
depression, sleep disturbances, and diminished quality of
life (QoL), underscoring the urgent need for effective pain
management strategies.

ZAP treatment involves a combination of pharmacologic and
interventional approaches. For refractory cases, interventional
options such as peripheral nerve blocks, epidural injections,
and neuromodulation have gained prominence (7). Among
these, pulsed radiofrequency (PRF) has become a minimally
invasive alternative, which delivers short bursts of high-
frequency electrical current to affected nerves without causing
thermal destruction (8). While PRF shows weeks to months
efficacy, and it primarily targets peripheral nerves, failing
to address central mechanisms (9). Spinal cord stimulation
(SCS), a well-established neuromodulation therapy based on
the gate control theory, has demonstrated benefits through
modulation of pain pathways and glial activity (10, 11). Short-
term SCS (st-SCS), involving temporary electrode implantation,
has been increasingly applied in ZAP as an interventional
strategy, with reports of pain relief and improved quality of
life (12).

Although both PRF and SCS are widely used in clinical practice,
direct comparative evidence between these two interventions
remains scarce, particularly regarding stratified outcomes by
disease duration and dermatomal involvement. Previous studies
were mostly small-scale and lacked systematic subgroup analysis,
limiting the development of clear clinical guidance (13, 14).
Therefore, this retrospective study aimed to compare the efficacy
and safety of st-SCS vs. PRF in patients with ZAP, with stratified
analysis according to disease duration and affected dermatomes.

2 Methods

2.1 Study design and participants

This retrospective cohort study included patients diagnosed
with ZAP who underwent either st-SCS or Pulsed Radiofrequency
PRF treatment between July 2022 and February 2024 at the
Department of Pain Management, West China Hospital. The
study protocol was approved by the institutional ethics committee
(Approval No. 2024-2469). The requirement for informed consent
was waived. No patient was actively recruited or assigned to
treatment groups; patients had received st-SCS or PRF as part of
standard clinical practice.

2.2 Inclusion and exclusion criteria

Patients were included if they were ≥18 years old, had a
clinical diagnosis of ZAP with a pre-treatment Numeric Rating
Scale (NRS) score ≥4, and received treatment with either st-SCS
or PRF alone. Exclusion criteria included bilateral or multi-site
ZAP, chronic pain due to other comorbid conditions, missing key
evaluation metrics (pre- and post-treatment pain scores, quality of
life assessments, or complication records), and a history of severe
psychiatric disorders. Patients were excluded only if incomplete
data or new comorbidities precluded valid evaluation.

2.3 Procedures

All patients were evaluated by pain specialists using
standardized scales, including NRS for pain intensity, the
Douleur Neuropathique 4 (DN4) questionnaire for neuropathic
pain characteristics, and the Brief Pain Inventory (BPI) for quality
of life. For st-SCS, under fluoroscopic guidance, a Tuohy needle
was inserted into the epidural space, followed by the implantation
of a 1×8-contact stimulation electrode (Pins Medical, TL3213),
with the lead positioned 1–2 mm lateral to the dorsal column of the
spinal cord on the affected side to ensure paresthesia coverage of
>50% of the pain area; after securing the lead to the supraspinous
ligament, it was connected to a pulse generator (Pins Medical,
T902), and short-term stimulation was administered for 2 weeks
(1–5 V, 40–100 Hz, 60–500 μs), allowing patients to adjust the
intensity as needed. For PRF, under CT guidance, two to three
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adjacent intervertebral foramina in the corresponding segment
were located, and a 21G, 5–15 cm radiofrequency needle was
inserted, with sensory testing (<0.5 V, 50 Hz) performed upon
reaching the target to ensure coverage of the pain area; PRF
was then administered with parameters set at a temperature of
42 ◦C, frequency of 2 Hz, pulse width of 20 ms, duration of 600 s,
and voltage of 65–100 V for 15 min. All patients underwent two
identical PRF sessions during hospitalization, with an interval of 5
days between treatments, which represents the standard protocol
in our department.

2.4 Data source and collection

All clinical data were retrieved from the institutional pain
management database at West China Hospital, which integrates
the Hospital Information System and Laboratory Information
System. Both the st-SCS and PRF patient groups were derived
from this same database, ensuring consistency of data collection
and minimizing bias. Trained research assistants collected patient
demographics, treatment details, follow-up outcomes, and adverse
events. Follow-up data (at pre-treatment, post-procedure, 1,
3, 6, and 12 months) were obtained from existing electronic
medical records, including outpatient notes and telephone follow-
up records.

2.5 Outcomes

The primary outcome was pain intensity, assessed using the
NRS, with treatment response defined as ≥50% reduction at 1
month compared with baseline. Secondary outcomes included
changes in neuropathic pain characteristics, quality of life, analgesic
medication usage, and treatment-related adverse events. These
were evaluated at 3, 6, and 12 months when available in
the records.

2.6 Statistical analysis

Statistical analyses were conducted using SPSS 26.0
software (IBM Corp., Armonk, NY, USA). Continuous data
were described using mean and standard deviation (SD),
while categorical data were expressed as frequencies and
percentages. Between-group comparisons were conducted
using independent-samples t-tests or Mann–Whitney U
tests, as appropriate. Categorical data were analyzed using
chi-square tests. Repeated measures of NRS and DN4 were
analyzed with non-parametric tests and validated with repeated-
measures ANOVA to ensure consistency. For baseline variables
with significant differences, ANCOVA was performed with
adjustment for baseline NRS, disease duration, and age.
Missing follow-up values were rare; when present, they were
imputed using last observation carried forward (LOCF), and
sensitivity analyses confirmed consistency with repeated-
measures models. A two-sided P value <0.05 was considered
statistically significant.

3 Results

3.1 Baseline characteristics

Between July 2022 and February 2024, a cohort of 211
ZAP patients received SCS or PRF intervention, with procedural
details systematically documented in the database. Among them,
25 patients were excluded due to eligibility criteria. A total of
186 patients were included in the study, with 96 receiving st-
SCS and 90 undergoing PRF. During the 12-month follow-up
period, five patients in the st-SCS group and seven patients in
the PRF group were lost to follow-up. The primary reasons
for loss to follow-up included withdrawal of consent (n = 3),
health issues (n = 1), and inability to contact (n = 8; Figure 1).
Sensitivity analyses confirmed that the primary outcomes remained
consistent, with no significant differences observed between
LOCF and complete case analyses (Supplementary Tables S1, S2).
Baseline characteristics, including age, gender, disease duration,
and affected dermatomes, were comparable between the two groups
(Table 1).

3.2 Pain intensity

Both st-SCS and PRF groups demonstrated significant
reductions in NRS scores post-treatment (P < 0.05). However,
the st-SCS group demonstrated superior pain relief compared to
the PRF group at all follow-up time points except for 1 month
postoperatively. Notably, at postoperative day 3, the st-SCS group
achieved a significantly lower NRS score (2.85 ± 1.26) compared
to the PRF group (4.50 ± 1.33, P < 0.001). Although there
was a slight rebound in NRS scores at 1 month, the st-SCS
group maintained a significant reduction in pain compared to
the PRF group starting from 3 months (st-SCS: 3.07 ± 1.43 vs.
PRF: 3.82 ± 1.30, P = 0.002), continuing through 6 months
(st-SCS: 2.66 ± 1.48 vs. PRF: 3.19 ± 1.38, P = 0.004), and 12
months (st-SCS: 1.93 ± 1.32 vs. PRF: 2.44 ± 1.45, P = 0.016;
Figure 2A).

3.3 Pain relief rate

The proportion of patients achieving ≥50% pain relief was
consistently higher in the st-SCS group from the postoperative
period up to 3 months. Specifically, at 3 days post-treatment,
72.92% of st-SCS patients achieved ≥50% pain relief, compared
to only 14.44% in the PRF group (P < 0.001). Similar trends
were observed at 1 month (st-SCS: 46.88% vs. PRF: 31.11%, P =
0.035) and 3 months (st-SCS: 64.58% vs. PRF: 43.33%, P = 0.005).
However, no significant differences were observed between the two
groups at 6 and 12 months post-treatment (Figure 2B).

3.4 Stratified analysis

Patients were stratified into three subgroups based on disease
duration: subacute Herpes zoster1 (SHZ1: 1 m ≤ and <2 m), SHZ2
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URE 1FIG

Flowchart of the subject enrollment.

(2 m ≤ and <3 m), and postherpetic neuralgia (PHN: ≥3 m). In
the SHZ1 subgroup, st-SCS demonstrated significantly lower NRS
scores compared to PRF from the postoperative period up to 3
months (P < 0.05). Similarly, in the SHZ2 subgroup, st-SCS showed
significantly lower NRS scores than PRF from the postoperative
period through 3–12 months (P < 0.05). In contrast, no significant
differences were observed in the PHN subgroup at any follow-up
time point except for postoperative day 3 (Table 2).

Patients were further stratified by affected dermatomes:
cervical/upper limbs (C2–8), thoracic (T1–6), abdominal (T7–12),
and lower limbs (L1–S5). The thoracic subgroup demonstrated
the greatest benefit from st-SCS, with significantly lower NRS
scores at post-op, 3 months, and 6 months (P < 0.05). The
abdomen subgroup group also showed improvements favoring st-
SCS, particularly at early follow-up time points. In contrast, no
significant differences were observed in the cervical/upper limbs
and lower limbs subgroups at any follow-up time point except for
postoperative day 3 (Table 3).

3.5 Pain characteristics

Pre-operatively, the most common pain characteristics in both
groups were tingling (st-SCS: 80.00%, PRF: 66.67%) and burning
pain (st-SCS: 70.83%, PRF: 60.00%; Supplementary Table S3).
Postoperatively, the total DN4 scores significantly declined in both
groups (P < 0.05), with the st-SCS group showing lower scores

than the PRF group at 1, 3, and 6 months (P < 0.05; Table 4).
Burning pain showed greater reduction in the st-SCS group across
follow-ups. Numbness temporarily increased in the st-SCS group
at 3 days post-treatment but improved significantly by 1 month
(Supplementary Table S3). Additionally, the st-SCS group achieved
a higher proportion of patients with ≥50% pain area reduction
from the postoperative period up to 3 months compared to the PRF
group (Supplementary Table S3).

3.6 Quality of life assessment

Both groups showed significant improvements in overall BPI
scores after treatment. The st-SCS group demonstrated significantly
greater improvements in QoL compared to the PRF group at 1
month (st-SCS: 25.70 ± 7.06 vs. PRF: 34.01 ± 5.33, P < 0.001),
3 months (st-SCS: 18.06 ± 6.98 vs. PRF: 27.81 ± 5.48, P <

0.001), and 6 months (st-SCS: 15.08 ± 6.53 vs. PRF: 20.07 ±
5.07, P < 0.001). By 12 months, both groups achieved similar
QoL scores, with no significant difference between them (st-SCS:
11.05 ± 7.13 vs. PRF: 12.23 ± 7.21, P = 0.209; Figure 3A). The
st-SCS group consistently outperformed the PRF group in mood
(MD), sleep (SP), and enjoyment of Life (EL) during the early
to mid-term follow-up periods (1–6 months). By 12 months,
the differences between groups diminished, with SP remaining
the only dimension where st-SCS showed a significant advantage
(Figures 3B–E).
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TABLE 1 Baseline information.

Patients treated with SCS n = 96 Patients treated with PRF n = 90 Z/² P value

Age (years)

Mean (SD) 65.86 (10.33) 67.74 (9.22) −1.06 0.289

Gender, n (%)

Male 62 (64.6%) 55 (61.1%) 0.24 0.624†

Female 34 (35.4%) 35 (38.9%)

Duration of disease (months)

Mean (SD) 2.00 (1.15) 2.00 (0.81) −0.893 0.372

Duration of disease, n (%)

SHZ1: (1 m ≤ and <2 m) 36 (37.5%) 29 (32.2%) 1.617 0.446†

SHZ2: (2 m ≤ and <3 m) 37 (38.5%) 32 (35.6%)

PHN: (≥3 m) 23 (24.0%) 29 (32.2%)

Pain dermatome, n (%)

Neck and upper limbs (C2–8) 14 (14.6%) 30 (33.3%) 9.225 0.026†

Thoracic (T1–6) 49 (51.0%) 38 (42.2%)

Abdomen (T7–12) 21 (21.9%) 14 (15.6%)

Lumbar and lower limbs (L1–S5) 12 (12.5%) 8 (8.9%)

NRS scores

Mean (SD) 6.59 (1.22) 6.72 (1.40) −0.296 0.767

Moderate (4–6) 44 (46.3%) 43 (47.8%) 0.04 0.842†

Severe (7–10) 51 (53.7%) 47 (52.2%)

DN4 scores

Mean (SD) 3.01 (1.01) 3.12 (1.21) −0.573 0.567

<3 31 (32.3%) 28 (31.1%) 0.03 0.863†

≥3 65 (67.7%) 62 (68.9%)

†Indicates the use of the chi-square test; all others were analyzed using the Mann–Whitney U test.

3.7 Medication usage and adverse events

The most commonly used medications at baseline were
Pregabalin (st-SCS: 95.83%; PRF: 93.33%) and Oxycodone
Acetaminophen (st-SCS: 35.42%; PRF: 35.56%). Over the 12-month
follow-up period, both groups showed significant reductions in
medication usage. Overall, the SCS group showed lower medication
usage rates across all categories by the 12-month endpoint,
although no significant differences were observed between the
SCS and PRF groups (Table 5). Common adverse events included
transient dizziness, nausea, and local pain at the needle insertion
site, with no severe complications reported in either group.

4 Discussion

Management of ZAP varies significantly depending on the
disease stage. The natural history of ZAP involves a transition
from acute HZN to chronic PHN, driven by progressive
neuroinflammatory and neuroplastic changes. Studies have
shown that early st-SCS significantly improves pain control and

sleep quality, potentially preventing PHN progression (15, 16).
Additionally, st-SCS outperforms PRF in pain relief at 3 and
6 months in subacute zoster-related pain (17). However, prior
studies did not assess how disease duration and zoster-affected
dermatomes influence treatment responses. In contrast, our study
demonstrates that st-SCS is more effective than PRF modulation in
alleviating pain and improving quality of life in patients with ZAP,
particularly in the subacute stages of the disease and in patients
with thoracic and abdomen involvement. The attenuation of
superiority at 12 months is likely attributable to the natural course
of pain resolution, the finite persistence of short-term stimulation
effects, and reduced statistical power due to attrition.

The superior efficacy of st-SCS in ZAP can be attributed to
its multifaceted mechanisms of action. While the gate control
theory provides a foundational explanation for its analgesic effects,
recent research has highlighted additional mechanisms. Deer
et al. demonstrated that SCS modulates neuroinflammation by
suppressing glial cell activation and reducing pro-inflammatory
cytokine release, which are critical contributors to neuropathic
pain (18). In addition, the durability of pain relief improvements
observed up to 12 months in our cohort suggests that short-term
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FIGURE 2

Comparison of pain conditions between the SCS and PRF groups. (A) Change in NRS scores, expressed as mean (SD): solid line with yellow triangles:
SCS group; dashed line with purple squares: PRF group *indicates significance between SCS and PRF groups (Mann–Whitney U test); δ indicates
significance between follow-ups and baseline (Wilcoxon signed-rank test); (B) Change in pain relief rate, expressed as mean (SD) %: yellow bars: SCS
group; purple bars; *indicates significance between SCS and PRF groups (Chi-square test or Fisher’s exact test).

Frontiers in Neurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2025.1649163
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lu et al. 10.3389/fneur.2025.1649163

TABLE 2 Changes in postoperative NRS scores of patients with disease durations.

Baseline Post-op 1 month 3 months 6 months 12 months

SHZ1

SCS 6.50 (1.25) 2.72 (1.28) 3.39 (0.99) 2.92 (1.23) 2.56 (1.38) 1.89 (1.19)

PRF 6.69 (1.29) 4.34 (1.11) 4.31 (1.34) 3.86 (1.58) 3.24 (1.55) 2.28 (1.36)

Z −0.387 −4.536 −3.005 −2.676 −1.899 −1.143

P value 0.699 <0.001∗ 0.003∗ 0.007∗ 0.058 0.253

SHZ2

SCS 6.92 (1.04) 2.97 (1.09) 4.14 (1.23) 3.43 (1.59) 2.65 (1.55) 1.57 (1.57)

PRF 7.13 (1.31) 4.69 (1.47) 4.56 (1.16) 4.19 (1.09) 3.47 (1.22) 2.69 (1.69)

Z −0.855 −4.501 −1.385 −2.413 −2.6 −2.711

P value 0.392 <0.001∗ 0.166 0.016∗ 0.009∗ 0.007∗

PHN

SCS 6.22 (1.35) 2.87 (1.49) 4.39 (1.53) 3.57 (1.41) 2.83 (1.56) 2.57 (0.73)

PRF 6.31 (1.51) 4.45 (1.38) 3.72 (1.31) 3.38 (1.12) 2.83 (1.34) 2.34 (1.26)

Z −0.293 −3.802 −1.62 −0.699 −0.418 −1.107

P value 0.769 <0.001∗ 0.105 0.485 0.676 0.268

NRS scores expressed as mean (SD).
∗Significance was detected between SCS and PRF group within the same duration; Inter-group comparisons: Mann–Whitney U test.

stimulation may induce lasting neuroplastic changes. This aligns
with preclinical evidence showing that spinal cord stimulation
modulates dorsal horn neuronal excitability and underlying
mechanisms of synaptic plasticity and descending inhibition. For
instance, recent studies have demonstrated that SCS robustly
activates dorsal horn neurons, suggesting mechanisms of synaptic
modulation and enduring circuit-level adaptations (19). Moreover,
SCS has also been shown to attenuate dorsal horn neuronal
excitability in neuropathic pain models (20). Other evidence
suggests that SCS may facilitate nerve repair and remyelination,
which are particularly relevant in ZAP given the axonal
degeneration and demyelination caused by VZV reactivation (21,
22).These mechanisms likely explain the sustained pain relief
observed in our st-SCS group, particularly in patients with early-
stage ZAP, where neuroplastic changes are still reversible.

In addition, st-SCS showed notably superior and more
sustained effects in patients with thoracic and abdominal ZAP
involvement, which is consistent with our previous stratified
findings on segmental differences in treatment efficacy (23).
This may be anatomically explained by the narrower thoracic
epidural space, which ensures closer electrode–cord adherence
and more stable stimulation delivery, whereas the wider epidural
space at cervical and lumbar levels reduces electrode conformity
and increases the risk of lead migration (18). Furthermore,
thoracic and abdominal dermatomes are innervated by relatively
simple, non-converging segmental nerves, facilitating more precise
stimulation coverage. By contrast, limb regions are innervated
by complex plexus structures where peripheral mechanisms
are more prominent, which may limit SCS efficacy (18).
Additionally, the longer nerves in the limbs are more susceptible
to axonal degeneration and demyelination, often leading to
heightened neuroinflammation in distal regions, potentially

reducing neuroplastic responsiveness to SCS in limb regions (24,
25). These mechanisms are anatomically plausible but remain
speculative, and future studies are warranted to provide direct
mechanistic evidence. For patients with limb-involved ZAP, st-SCS
may still be considered by employing dual-lead placement,
optimizing stimulation parameters, implementing temporary
activity restriction, or combining with peripheral nerve stimulation
(26), to improve paresthesia coverage and clinical outcomes.

The st-SCS intervention demonstrated significant
improvements across multiple dimensions, most notably in
sleep quality. An fMRI study in PHN patients found that 14 days of
spinal cord stimulation significantly altered regional homogeneity
(ReHo) and degree centrality in key brain regions, including the
middle temporal gyrus, parieto-occipital area, superior frontal
gyrus, and precentral gyrus, which correlated with improved sleep
quality (27). Moreover, the clinical utility of st-SCS is further
supported by a significant reduction in medication reliance. By
12 months, only 12.09% of patients in the st-SCS group required
pregabalin, and 7.69% required oxycodone/acetaminophen
tablets—a statistically significant decrease that reduces the risks
associated with long-term pharmacotherapy, such as dizziness,
sedation, and gastrointestinal disturbances. Additionally, the
safety profile of st-SCS is reinforced by the similar incidence
of adverse events observed between the two groups, with no
severe complications, motor deficits, or infections reported in the
st-SCS cohort.

Furthermore, our stratified findings provide practical guidance
for patient selection. Patients in the subacute phase with thoracic
or abdominal involvement are optimal candidates for early st-SCS,
which yielded superior pain relief and quality-of-life improvements
compared with PRF. For limb-involved or chronic PHN cases,
st-SCS showed no clear advantage over PRF, but may still be
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TABLE 3 Changes in postoperative NRS scores of patients with different dermatomes.

Baseline Post-op 1 month 3 months 6 months 12 months

Cervical and upper limbs (C2–8)

SCS 6.64 (1.34) 3.21 (1.05) 3.93 (1.59) 3.93 (1.90) 3.86 (1.88) 2.57 (1.60)

PRF 6.87 (1.31) 4.77 (1.19) 4.47 (1.28) 3.80 (1.10) 3.37 (1.30) 2.47 (1.36)

Z −0.417 −3.617 −1.271 −0.039 −0.791 −0.116

P value 0.677 <0.001∗ 0.204 0.969 0.429 0.907

Thoracic (T1–6)

SCS 6.45 (1.19) 2.67 (1.18) 3.86 (1.21) 3.08 (1.15) 2.41 (1.35) 1.69 (1.19)

PRF 6.63 (1.48) 4.32 (1.47) 4.08 (1.48) 3.74 (1.27) 3.05 (1.37) 2.34 (1.65)

Z −0.163 −4.852 −0.752 −2.575 −2.402 −1.789

P value 0.871 <0.001∗ 0.452 0.010∗ 0.016∗ 0.074

Abdomen (T7–12)

SCS 6.90 (1.26) 2.95 (1.50) 3.76 (1.18) 3.24 (1.61) 2.33 (1.02) 1.86 (1.28)

PRF 6.71 (1.59) 4.57 (1.28) 3.79 (0.80) 3.92 (1.38) 2.57 (1.16) 2.43 (1.28)

Z/t −0.346 3.309 −0.127 0.091 −0.666 −1.306

P value 0.729 0.002‡∗ 0.899 0.028‡∗ 0.505 0.191

Lower limbs (L1–S5)

SCS 6.58 (1.17) 3.00 (1.35) 4.42 (1.44) 3.33 (1.50) 2.83 (1.59) 2.25 (1.36)

PRF 6.63 (1.19) 4.25 (1.17) 4.63 (1.06) 4.25 (1.28) 4.25 (1.58) 2.88 (1.25)

t 0.078 2.139 0.349 2.962 1.959 1.041

P value 0.939‡ 0.046‡∗ 0.731‡ 0.058‡ 0.066‡ 0.312‡

NRS scores expressed as mean (SD).
∗Significance was detected between SCS and PRF group within the same dermatome.
‡Inter-group comparisons using the independent samples t-test; all others were analyzed using the Mann–Whitney U test.

TABLE 4 Comparison of postoperative DN4 scores between the SCS and PRF groups.

Baseline Post-op 1 month 3 months 6 months 12 months

SCS group 3.01(1.01) 2.21(1.04)δ 1.77(0.80)δ 1.42(0.98)δ 1.38(0.93)δ 1.20(0.88)δ

PRF group 3.12(1.21) 1.91(1.10)δ 2.11(0.99)δ 2.29(1.16)δ 1.81(1.02)δ 1.01(0.86)δ

Z −0.573 −1.928 −1.998 −5.161 −2.634 −1.525

P value 0.567 0.054 0.046∗ <0.001∗ 0.008∗ 0.127

DN4 scores expressed as mean (SD).
∗Significance was detected between SCS and PRF group.
δSignificance was detected between follow-ups and baseline; Inter-group comparisons: Mann-Whitney U test; intra-group comparisons: Wilcoxon signed-rank test.

considered by using dual-lead placement, optimized stimulation
parameters, temporary activity restriction, or combination with
other neuromodulation modalities. In contrast, PRF may serve as
an initial, less invasive option for these patients, with escalation to
st-SCS if response is inadequate.

5 Limitations

This study has several strengths. It is one of the few
retrospective analyses to directly compare st-SCS and PRF in
ZAP, and the use of a relatively large, hospital-based cohort
allowed stratified analysis by disease duration and dermatomes,

providing clinically relevant insights. However, several limitations
should be acknowledged. First, as a retrospective study, there
may be selection bias, incomplete data capture, and recall bias
from telephone follow-up. Second, although we attempted to
collect comprehensive baseline and outcome variables, potential
unmeasured confounders (such as psychosocial status, subtle
comorbidities, or patient expectations) might have influenced
outcomes but were not available in the database. Third, although
stratified analyses reduced heterogeneity, some subgroups had
relatively small or uneven sample sizes, particularly in the cervical
and upper limb subgroup, which may limit the robustness
of comparisons. Finally, our study did not incorporate direct
mechanistic data, and the biological explanations discussed remain
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FIGURE 3

Comparison of BPI pain interference between the SCS and PRF groups. (A) Change in total BPI scores, expressed as mean (SD): yellow bars: SCS
group; purple bars: PRF group; *indicates significance between SCS and PRF groups (1-month comparison analyzed using independent samples
t-test; all other inter-group comparisons performed using Mann–Whitney U test); δ indicates significance between follow-ups and baseline (Wilcoxon
signed-rank test); (B–E) Pain interference across seven domains measured by BPI between the SCS and PRF groups: (B) domain scores at 1 month;
(C) domain scores at 3 months; (D) domain scores at 6 months; (E) domain scores at 12 months. Yellow zone with solid edge: SCS group; purple
zone with dashed edge: PRF group; GA, general activity; MD, mood; WA, walking ability; NW, normal work; RO, relationship with others; SP, sleep; EL,
enjoyment of life; *indicates significance between SCS and PRF groups.
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TABLE 5 Changes in medication usage rate between the SCS and PRF groups.

Baseline 1 month 3 months 6 months 12 months

Pregabalin

SCS 92 (95.83%) 77 (80.21%) 32 (33.68%) 27 (28.72%) 11 (12.09%)

PRF 84 (93.33%) 68 (76.40%) 31 (35.63%) 24 (27.91%) 13 (15.66%)

Gabapentin

SCS 4 (4.17%) 1 (1.04%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

PRF 5 (5.56%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Tramadol and acetaminophen

SCS 21 (21.88%) 13 (13.54%) 9 (9.47%) 2 (2.13%) 0 (0.00%)

PRF 17 (18.89%) 9 (10.11%) 7 (8.05%) 1 (1.16%) 1 (1.20%)

Oxycodone and acetaminophen

SCS 34 (35.42%) 28 (29.17%) 14 (14.74%) 9 (9.57%) 7 (7.69%)

PRF 32 (35.56%) 26 (29.21%) 15 (17.24%) 10 (11.63%) 5 (6.02%)

Tramadol

SCS 17 (17.71%) 15 (15.63%) 6 (6.32%) 5 (5.32%) 5 (5.49%)

PRF 15 (16.67%) 10 (11.24%) 3 (3.45%) 3 (3.49%) 3 (3.61%)

Oxycodone HCl SR tablets

SCS 6 (6.25%) 3 (3.13%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

PRF 3 (3.33%) 3 (3.37%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Fentanyl patch

SCS 4 (4.17%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

PRF 2 (2.22%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

hypothetical. Future multicenter, prospective randomized studies
are warranted to validate these results and further clarify the
optimal timing, patient selection, and mechanistic underpinnings
of st-SCS therapy.

6 Conclusion

Our findings demonstrate that st-SCS is more effective than
PRF in alleviating pain and enhancing quality of life for patients
with ZAP. The benefits of st-SCS are particularly evident in the
subacute stage of the disease and among patients with thoracic and
abdominal involvement.
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