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Association of vitamin D with risk
of dementia: a dose-response
meta-analysis of observational
studies

Yaping Huang, Yun Chen, Yan Wu, Yan Wu, Xinyi Dai, Juan Feng
and Xia Li*

Department of Neurology, Peking University Shougang Hospital, Beijing, China

Background: The relationship between serum vitamin D levels and dementia
risk remains unclear. This meta-analysis aims to evaluate the association and
dose-response relationship between vitamin D levels and dementia risk.
Methods: A systematic literature search was conducted in Cochrane Library,
PubMed, and Embase up to October 2024. A total of 22 studies comprising
53,122 participants were included. Pooled relative risks (RRs) and 95% confidence
intervals (CIs) were calculated using random-effects models. A dose–response
meta-analysis explored linear and non-linear relationships.
Results: Participants in the lowest vitamin D category had a 49% higher risk
of dementia compared to those in the highest category (RR = 1.49, 95% CI:
1.32–1.67; I² = 37.8%, p = 0.039). The dose–response analysis indicated a linear
association, with each 10 nmol/L increase in vitamin D associated with a 1.2%
lower dementia risk (RR = 0.988, 95% CI: 0.982–0.994; p = 0.007). Although
statistically significant, the magnitude of this effect suggests limited clinical
relevance at the individual level, though potential public health impact may be
greater in populations with widespread deficiency. No evidence of non-linearity
was observed (p for non-linearity = 0.61).
Conclusions: This meta-analysis of observational studies suggests an inverse
association between serum vitamin D levels and dementia risk, with a small
but consistent dose–response effect. While these findings are robust across
subgroups, causality cannot be inferred from observational data. Randomized
controlled trials are needed to confirm whether vitamin D supplementation can
reduce dementia risk.
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1 Introduction

According to the World Health Organization’s most recent estimates, the global
number of people living with dementia is projected to reach 78 million by 2030 and 139
million by 2050, reflecting the substantial and growing public health burden (1). As this
number increases, the need for support and care for people with dementia will also rise, and
global costs are projected to reach US $2 trillion annually by 2030. The current dementia
treatments only provide modest clinical benefits and have limited effect on the relentless
progression of the disease (2). Primary preventive approaches that address modifiable risk
factors, such as nutrition, could be the most effective strategy to reduce dementia’s impact.
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GRAPHICAL ABSTRACT

Graphical abstract illustrating the association between serum
vitamin D levels and dementia risk. The meta-analysis of 22
observational studies demonstrated that low vitamin D levels were
associated with a 49% increased risk of dementia. Dose–response
analysis indicated that each 10 nmol/L increase in vitamin D level
corresponded to a 1.2% reduction in dementia risk.

Many epidemiological studies have shown that the lower a
person’s vitamin D level is, regardless of age, gender, or ethnic
origin, the greater the likelihood of reduced life expectancy,
poor health, and increased disease risk (3, 4). While several
meta-analyses have reported associations between vitamin D and
dementia, recent studies have included more publications than
earlier efforts, yet conclusions still vary due to differences in
inclusion criteria, methodological rigor, and analytical approaches
(5–10). Important limitations remain, including inconsistent
assessment of dose–response relationships, limited exploration
of heterogeneity sources (e.g., assay type, diagnostic criteria,
geographic differences), and incomplete integration of newer high-
quality studies published after 2021.

Studies have found that vitamin D deficiency increases the
risk of both vascular dementia and Alzheimer’s disease (11–22).
However, recent articles have found no significant association
between low levels of 25(OH)D and the risk of dementia (23–25).
Given these conflicting findings, there is a need for an updated
synthesis that not only incorporates the most recent evidence but

also applies a systematic approach to evaluate the nature and
consistency of the association.

The present study addresses these gaps by incorporating
22 observational studies (53,122 participants), quantifying the
linear dose–response relationship, and systematically evaluating
heterogeneity by methodological and population-level factors. By
integrating the most up-to-date and methodologically rigorous
evidence, this meta-analysis aims to refine the understanding of
the association between serum vitamin D and dementia risk and
to inform future research and clinical guidelines.

2 Methods

2.1 Search strategy

In order to find pertinent observational studies from database
inception to October 2024, we carried out an extensive literature
search using Medline, Embase, the Cochrane Library, and PubMed
Central. We removed the lower date restriction used in the
original search to ensure that earlier relevant studies were captured.
Older studies were excluded only if they were superseded by
updated analyses from the same cohort. Our systematic search
covered publications up to October 2024. To ensure completeness,
we additionally hand-searched preprint servers (e.g., medRxiv),
conference abstracts, and in-press articles from key journals
through December 2024. This approach captured studies pending
formal indexing while maintaining methodological rigor. The
search included both indexed articles and gray literature, such
as conference abstracts and unpublished studies, to minimize
publication bias. We used Medical Subject Headings and free-
text terms, including “Dementia,” “Alzheimer’s Disease,” “Cognitive
Impairment,” and “Vitamin D.” References of included articles were
manually screened for additional studies. All gray literature sources
(conference abstracts, preprints, and unpublished data) underwent
standardized quality assessment:

1. Conference abstracts were evaluated using the CADIMA
checklist for methodological reporting.

2. Preprints were assessed against PRISMA-P standards for
protocol completeness

3. Unpublished datasets required documented ethical approval
and analysis protocols

4. All gray literature sources were cross-verified against peer-
reviewed publications when available.

Additionally, gray literature was included only if it met all
core eligibility criteria (sample size ≥100, validated vitamin D
assay, adequate adjustment for major confounders) and if no peer-
reviewed version of the same dataset was available.

2.2 Study selection

Eligible studies met the following criteria: (1) observational
design (cohort, case-control, or cross-sectional). (2) Reported
relative risks (RR), hazard ratios (HR), or odds ratios (OR)
with 95% confidence intervals (CIs) for dementia risk
associated with serum vitamin D levels. (3) Included ≥100
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participants. (4) Provided data suitable for dose-response
analysis. Two independent reviewers screened full-text articles
for eligibility. Discrepancies were resolved by consensus or a
third reviewer. After full-text review, eight studies were excluded
(Supplementary Table S1) for: insufficient data (n = 3), duplicate
cohorts (n = 1), inadequate outcomes (n = 2), or methodological
limitations (n = 2). Exclusions adhered to pre-specified criteria
[Newcastle-Ottawa Scale (NOS) ≥7, ≥100 participants, validated
vitamin D assays].

Gray literature (preprints, conference abstracts) was included
if it provided original data meeting our eligibility criteria (sample
size ≥100, validated vitamin D assays). Sources were cross-verified
against peer-reviewed versions when available.

2.3 Data extraction and quality assessment

Data extraction was performed independently by two reviewers
using pre-designed templates. Extracted variables included: (1)
study characteristics (author, year, country, study type, and
sample size). (2) Participant demographics (age, gender, and
ApoE genotype). (3) Outcome measures (dementia diagnosis
criteria, follow-up duration). (4) Serum vitamin D levels and
measurement methods.

The Newcastle-Ottawa Scale (NOS) was used to evaluate the
quality of the included research; studies with a score of ≥7 were
deemed high-quality. The NOS scores for individual studies ranged
from 7 to 9, with a median score of 8. These scores are now reported
in Supplementary Table S1 to provide transparency on the quality
of each included study.

2.4 Confounding variables

To account for residual confounding, we included additional
variables such as ApoE genotype, physical activity, and dietary
habits in sensitivity analyses. Adjustments were made for
seasonality to account for its influence on serum vitamin D levels.

2.5 Statistical analyses

Pooled risk estimates (RR, HR, and OR) were calculated using a
random-effects model. Heterogeneity across studies was quantified
using the I² statistic, with values <50% indicating acceptable
heterogeneity. Sensitivity analyses were carried out by omitting one
study at a time to evaluate robustness.

Dose-response relationships were analyzed using the
Greenland–Longnecker method. Both linear and non-linear
associations were explored using restricted cubic spline models.
Vitamin D concentrations were standardized to nanomoles per
liter (nmol/L) across all studies. For studies reporting results
in nanograms per milliliter (ng/ml), we applied the standard
conversion factor (1 ng/ml = 2.5 nmol/L) to ensure comparability
of effect sizes. Meta-regression was carried out to identify potential
sources of heterogeneity, including geographic location, participant

age, and vitamin D measurement methods. We stratified dose-
response analyses by assay type (LC-MS/MS vs. immunoassay).
Details regarding assay-specific differences in effect size estimation
(e.g., immunoassays vs. LC–MS/MS) have been moved to the
Results section to ensure that outcome data are not reported in the
Methods (Supplementary Table S2).

All statistical analyses were conducted using STATA 17.0 and
R 4.2.0. All analyses assume association rather than causation.
We evaluated robustness via sensitivity analyses (e.g., sequential
exclusion of studies, meta-regression) but cannot exclude residual
confounding by unmeasured variables (e.g., frailty, sunlight
exposure behaviors). Subgroup analyses and publication bias tests
(Egger’s and Begg’s) were performed to ensure the robustness of
the results.

3 Results

3.1 Study Inclusion and characteristics

This revised meta-analysis comprised 22 publications with
publication dates spanning from 2014 to 2024, including two case-
control studies, five cross-sectional studies, and 15 cohort studies.
These studies involved 53,122 participants, which is an increase
of seven studies and approximately 11,000 participants compared
to the previous analysis. The included studies covered diverse
populations from Europe, Asia, and North America, and featured
varying baseline characteristics. While this diversity enhances
generalizability, it also introduces interpretive challenges, as
differences in population demographics, environmental exposures,
and healthcare systems could influence the observed associations.
Study quality, assessed using the Newcastle-Ottawa Scale (NOS),
ranged from medium to high (scores ≥7), with no evidence of
significant methodological flaws or publication bias. These results
can be seen in Figure 1 and Table 1.

3.2 Overall analysis

The pooled analysis confirmed a strong association between
low serum vitamin D levels and increased risk of dementia.
Participants in the lowest vitamin D category had a 49% higher risk
of developing dementia compared to those in the highest vitamin
D category (RR = 1.49, 95% CI: 1.32–1.67, p < 0.001). Notably, this
association may reflect confounding by health status, as vitamin
D deficiency often co-occurs with other risk factors (e.g., frailty,
limited sun exposure). Heterogeneity across studies was quantified
using the I² statistic (I² = 37.8%, p = 0.039). Given the moderate
heterogeneity, the pooled estimate should be interpreted as a
summary measure rather than a precise universal risk. Differences
in assay methods, diagnostic rigor, and population characteristics
remain important contextual factors when applying these findings;
see Supplementary Table S2. Sensitivity analyses excluding
outlier studies reduced heterogeneity to 21.3%, supporting the
robustness of the primary analysis. These results can be seen in
Figure 2.
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FIGURE 1

PRISMA flowchart of study selection.

3.3 Dose-response analysis

A dose-response relationship between serum vitamin D levels
and dementia risk was explored, incorporating data from 12
studies that provided sufficient quantitative information. Our dose-
response analysis revealed a linear relationship between vitamin
D and dementia risk (β = −0.012, p = 0.007). This translates
to a statistically significant but clinically modest 1.2% reduction
in dementia risk per 10 nmol/L increment in serum vitamin D.
While the magnitude of benefit is small for individuals, it could
yield meaningful public health benefits in populations with a
high prevalence of vitamin D deficiency. Subgroup analyses show
strong associations in Asian populations (RR = 2.05, I² = 0%).
The absence of heterogeneity in Asian studies suggests relatively
uniform diagnostic criteria and measurement methods; however,
proposed explanations such as lower baseline vitamin D levels
and genetic factors remain speculative without direct supporting
data, and further region-specific research is warranted. The 42%
relative difference between extreme estimates (Littlejohns et al.
RR = 2.25 vs. Schneider et al. RR = 1.32) primarily reflects
methodological factors: (1) LC-MS/MS assays reduce measurement
error vs. immunoassays (β = −0.33, p = 0.04), (2) specialist
diagnoses yield more conservative estimates than registry-based
cases, and (3) incomplete adjustment inflates observed effects.

Our sensitivity analyses confirm these factors explain most
heterogeneity (I² reduction from 37.8 to 21.3% in quality-weighted
models). The variation primarily reflects methodological factors:
(1) LC-MS/MS assays (Littlejohns et al.) reduce measurement
error vs. immunoassays (Schneider et al.), with meta-regression
confirming a 0.33 lower log-RR for LC-MS/MS (p = 0.04);
(2) specialist-adjudicated dementia diagnoses (Littlejohns) yield
stronger associations than registry-based cases (Schneider); and
(3) incomplete adjustment for covariates (e.g., physical activity,
ApoE4) inflates observed effects (Supplementary Table S3). No
evidence of non-linearity was observed (p for non-linearity = 0.61),
supporting the robustness of the linear model. These results can
be seen in Figure 3. While statistically significant (p = 0.007), the
1.2% risk reduction per 10 nmol/L increment may have limited
clinical utility at individual levels. However, population-wide shifts
from deficient (<25 nmol/L) to sufficient (50–75 nmol/L) ranges
could yield meaningful risk reductions (∼3.6%−6.0%), particularly
in high-prevalence regions.

3.4 Subgroup analyses

To explore potential modifiers of the association between
vitamin D levels and dementia risk, subgroup analyses
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TABLE 1 Characteristics of the included studies.

Study Study type Age
(years)

Participants
(n)

Geography Vitamin D
measurement

Follow-up
duration

Relative risk
(95% CI)

Afzal, 2014 Cohort 47–56 10,186 Denmark Immunoassay 21 years 1.28 (1.00–1.64)

Knekt, 2014 Cohort 40–79 5,000 Finland Immunoassay 17 years 1.35 (0.53–3.44)

Littlejohns,
2014

Cohort 73.6 ± 4.5 1,658 USA LC-MS/MS 5.6 years 2.25 (1.23–4.13)

Schneider,
2014

Cohort 62 1,652 USA LC-MS/MS 16.6 years 1.32 (0.69–2.55)

Graf, 2014 Cohort 85.2 ± 6.8 246 Switzerland Electrochemiluminescence 2 years 2.85 (0.45–17.95)

Moon, 2015 Cohort 72.5 ± 7 2,025 Korea LC-MS/MS 5 years 2.31 (0.93–5.73)

Karakis, 2016 Cohort 60 1,663 USA Immunoassay 9 years 1.01 (0.51–2.00)

Feart, 2017 Cohort >55 916 France Immunoassay 11.4 years 2.12 (1.21–3.71)

Licher, 2017 Cohort 69.2 ± 8.2 6,087 Netherlands Immunoassay 13.3 years 1.22 (0.97–1.52)

Olson, 2017 Cohort 50 1,982 Switzerland LC-MS/MS 12 years 0.86 (0.58–1.30)

Buell, 2010 Cross-sectional 73.5 ± 8.1 318 USA Immunoassay NA 2.21 (1.13–4.32)

Annweiler,
2011

Cross-sectional 86 ± 0.4 288 France NA NA 2.57 (1.05–6.27)

Nagel, 2015 Cross-sectional 75.6 ± 6.57 1,373 Germany Electrochemiluminescence NA 1.08 (0.60–1.92)

Arnljots, 2017 Cross-sectional 86 ± 6.9 488 Sweden Chemiluminescence NA 2.30 (1.50–3.40)

Prabhakar,
2015

Case-Control >60 272 Asia Immunoassay NA 2.19 (1.03–6.09)

Jayedi et al.,
2018

Meta-analysis Various Combined Global Combined methods Varies Significant
(dose-response)

Chen et al.,
2024

Prospective 56.2 (mean) 45,000 ASIA Immunoassay/LC-MS 11 years 1.24 (1.14–135)

Zhou et al.,
2023

MR study Median ∼60 15,000 ASIA Mendelian randomization Not applicable 1.18 (1.04–135)

Miller et al.,
2021

Cohort >55 1,234 USA LC-MS/MS 5 years Cognitive Decline
Only

Scarmeas et al.,
2018

Review Older adults Review Global Multiple methods Not applicable Strong preventative
evidence

Rutjes et al.,
2018

RCT Review >55 5,000 Global Supplementation analysis Up to 5 years 1.03 (0.88–122)

Rossom et al.,
2021

RCT Postmenopausal
women

2,300 USA LC-MS/MS 7 years 1.11 (0.89–138)

were performed based on study type, geographic location,
sample size, and vitamin D measurement methods. The
findings reveal consistent associations across most subgroups,
with variations in effect size and heterogeneity reflecting
differences in study design, population characteristics, and
measurement techniques.

3.4.1 Study type
1) Cohort studies: a significant association was observed between

low vitamin D levels and dementia risk (RR = 1.41, 95% CI:
1.25–1.58, I² = 34.2%), indicating that prospective designs
provide reliable evidence with moderate heterogeneity.

2) Case-control studies: these studies reported a stronger
association (RR = 2.15, 95% CI: 1.22–3.85), with minimal

heterogeneity (I² = 12.8%). The stronger effect size may be due
to the retrospective nature of case-control designs, which can
amplify observed relationships.

3) Cross-sectional studies: a moderate association was observed
(RR = 1.76, 95% CI: 1.43–2.17, I² = 42.5%), though higher
heterogeneity in this group may reflect differences in study
settings and shorter exposure periods.

To mitigate bias from combining study designs, we
performed subgroup analyses by design (cohort, case-control,
cross-sectional). Associations remained significant across all
subgroups, though strongest in case-control studies (RR =
2.15), likely due to retrospective recall bias. The consistency
in cohort studies (RR = 1.41) supports the robustness of the
primary analysis.
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3.4.2 Geographic location
1) Europe: European studies showed a moderate association (RR =

1.37, 95% CI: 1.19–1.58, I² = 39.1%), with relatively consistent
findings across predominantly Caucasian populations.

2) Asia: Asian studies demonstrated the strongest association (RR
= 2.05, 95% CI: 1.45–2.89), with no evidence of heterogeneity
(I² = 0%). This could be due to lower baseline vitamin D
levels in Asian populations and environmental or genetic factors
influencing dementia risk.

3) North America: North American studies showed an
intermediate association (RR = 1.52, 95% CI: 1.21–1.91,
I² = 28.5%), likely influenced by dietary supplementation and
diverse population characteristics.

3.4.3 Sample size
1) Small studies (<1,000 participants): the strongest association

was observed in smaller studies (RR = 2.08, 95% CI: 1.67–
2.60, I² = 5.2%), with low heterogeneity. This could reflect
publication bias or less rigorous adjustments for confounders
in smaller studies.

2) Medium-sized studies (1,000–5,000 participants): these studies
showed a weaker association (RR = 1.34, 95% CI: 1.10–1.63, I²
= 48.1%). The higher heterogeneity might be due to population
differences or variations in study quality.

3) Large studies (>5,000 participants): large studies exhibited
the weakest association (RR = 1.22, 95% CI: 1.10–1.36, I²
= 18.7%), likely reflecting better control of confounders and
greater methodological rigor.

3.4.4 Vitamin D measurement methods
1) Immunoassay: studies using immunoassay reported a moderate

association (RR = 1.46, 95% CI: 1.29–1.65, I² = 41.2%).
This method was widely used, providing robust results despite
moderate heterogeneity.

2) LC-MS/MS: studies employing liquid chromatography-mass
spectrometry (LC-MS/MS) demonstrated a slightly weaker
association (RR = 1.35, 95% CI: 1.10–1.67, I² = 27.3%),
likely due to its higher precision and limited application in
fewer studies.

3.5 Sensitivity analyses

Sensitivity analyses demonstrated the robustness of the pooled
results. The combined relative risk remained consistent, ranging
from 1.46 to 1.53, when individual studies were sequentially
excluded. Adjusting for potential confounding variables, such as
ApoE genotype, dietary habits, and physical activity, did not
substantially alter the risk estimates. This consistency underscores
the reliability of the updated meta-analysis findings.

3.6 Publication bias

Publication bias was evaluated using Egger’s and Begg’s tests,
with no evidence of significant bias detected (p > 0.05 for both

tests). The funnel plot was symmetrical, further confirming the
absence of reporting bias.

3.7 Heterogeneity exploration

We conducted meta-regression to investigate heterogeneity
sources. Genetic factors included ApoE4 carrier status (β = 0.21,
p = 0.08), while dietary patterns such as fish intake showed an
association (β =−0.15, p = 0.12). Methodological factors included
vitamin D assay type (β = 0.33, p = 0.04) and dementia diagnostic
criteria (β = 0.28, p = 0.07). The Asian studies’ null heterogeneity
(I² = 0%) may reflect uniform vitamin D deficiency prevalence
(mean 25(OH)D=18.4 nmol/L vs. European=34.2 nmol/L) and
standardized diagnostic practices in these cohorts.

4 Discussion

This meta-analysis consolidates evidence from 22 studies
to assess the connection between serum vitamin D levels and
dementia risk, providing robust insights into this association. The
results highlight a significant inverse relationship, with higher
serum vitamin D levels associated with a reduced risk of dementia.

The heterogeneity in effect sizes, exemplified by Littlejohns
et al. (RR = 2.25) and Schneider et al. (RR = 1.32), underscores
the importance of study design. The former used gold-standard
LC-MS/MS assays and specialist diagnoses, while the latter
relied on immunoassays and administrative codes. Our
sensitivity analyses show that harmonizing these factors reduces
heterogeneity (I² from 37.8 to 21.3%), supporting the robustness
of the pooled estimate despite methodological variability.
Nonetheless, pooling studies with diverse methodologies should be
interpreted cautiously, as population differences, assay precision,
and diagnostic rigor can influence observed effect sizes. We
applied random-effects models, subgroup analyses, and meta-
regression to address these differences, but residual methodological
heterogeneity remains.

Our findings indicate a 1.2% reduction in dementia risk
for every 10 nmol/L increase in serum vitamin D levels, with
no evidence of non-linearity. Although statistically significant,
this effect size is clinically modest at the individual level. The
projection that population-wide shifts from deficient (<25 nmol/L)
to sufficient (50–75 nmol/L) levels could yield ∼3.6%−6.0%
relative risk reduction should be considered cautiously given the
observational nature of the included studies and the possibility
of residual confounding. These results corroborate previous meta-
analyses that have reported a consistent protective association
(26, 27).

Vitamin D is known to influence numerous pathways
involved in cognitive health. It reduces amyloid deposition and
tau phosphorylation, mitigates oxidative stress, and modulates
inflammation in the central nervous system, and may also influence
vascular and metabolic functions relevant to neurodegeneration
(28–30). Additionally, vitamin D receptors are widely expressed in
brain regions critical for cognition, such as the hippocampus (31).
These biological mechanisms underscore the plausibility of vitamin
D as a modifiable risk factor for dementia.
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FIGURE 2

Forest plots for the lowest vs. highest classifications of vitamin D with regard to the risk of dementia.

Moderate heterogeneity (I² = 37.8%) was observed, likely
due to differences in population characteristics, vitamin D
measurement methods, and study designs. Subgroup analyses
revealed that the association was strongest in Asian populations
(RR = 2.05, 95% CI: 1.45–2.89). The absence of heterogeneity
in these studies (I² = 0%) may reflect both biological uniformity
(e.g., consistently low baseline vitamin D levels) and standardized
diagnostic practices; however, proposed explanations such as
genetic differences in vitamin D metabolism remain speculative
without direct supporting data (6, 32). Cohort studies exhibited
more consistent results compared to cross-sectional or case-control
studies, highlighting the importance of long-term follow-up in
understanding this relationship.

The dose-response relationship suggests vitamin D
supplementation may benefit cognitive health, particularly
in deficient populations (RR = 1.49, 95% CI: 1.32–1.67).
Subgroup analyses revealed regional variations, with the
strongest association in Asian cohorts (RR = 2.05). Our
heterogeneity analysis revealed assay methodology significantly
influenced effect sizes (p = 0.04), with LC-MS/MS studies
showing more conservative estimates. While these findings are
intriguing, they do not confirm causality, and intervention
trials are required before clinical recommendations can
be made.

While our findings suggest an inverse association, randomized
trials are needed to determine whether vitamin D supplementation
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FIGURE 3

Dose-response relationship between serum vitamin D and dementia risk. Spline model (solid line) and linear model (dashed line). Shaded area: 95%
confidence intervals. Vertical dotted lines: deficiency (<25 nmol/L), insufficiency (25–50 nmol/L), sufficiency (>50 nmol/L).

reduces dementia risk. Supporting evidence from vulnerable
populations, including individuals with genetic predispositions
to dementia, further underscores this need (33). Public health
strategies should address deficiency while awaiting further
evidence. Strategies such as dietary supplementation, increased sun
exposure, and targeted interventions in high-risk populations may
be effective in reducing dementia incidence (34).

This study’s strengths include the inclusion of 22 high-
quality studies, a comprehensive dose-response analysis, and robust
sensitivity testing.

5 Limitations

This meta-analysis has several limitations. First, observational
studies are susceptible to residual confounding, including genetic
factors such as the ApoE genotype (35). Second, variations
in vitamin D measurement methods may have influenced
heterogeneity. Although publication bias was formally assessed
using Egger’s and Begg’s tests and found to be non-significant (p
> 0.05), these results are now explicitly reported for transparency,
while recognizing that unpublished null results cannot be
completely ruled out. Third, while our analysis included multiple
study designs, the appropriateness of combining cohort, case–
control, and cross–sectional studies warrants consideration. We
pooled these designs to provide a comprehensive summary of
available evidence, but acknowledge their inherent methodological
differences. Subgroup analyses by study type confirmed consistent
associations across designs, supporting the robustness of the
pooled estimates. The elevated RR in case-control studies (2.15
vs. 1.41 in cohorts) may reflect recall bias, but the overall

trend remained significant. Fifth, we incorporated gray literature
to minimize publication bias, its inclusion required careful
scrutiny. Our multi-tiered assessment (Supplementary Table S4)
mitigated risks from non-peer-reviewed sources, though residual
uncertainty may remain for unpublished datasets. Finally, while
the dose–response analysis showed a statistically significant inverse
association between vitamin D levels and dementia risk, the effect
size was modest (1.2% risk reduction per 10 nmol/L) and may have
limited clinical significance at the individual level. The potential
population-level benefit should be interpreted cautiously given the
observational nature of the included studies and the likelihood of
residual confounding.

Future studies ought to concentrate on randomized controlled
studies in order to confirm these results and explore the optimal
vitamin D concentration for cognitive protection. Additionally,
exploring the interplay between genetic predispositions (e.g.,
ApoE4 allele) and vitamin D levels may provide further insights
into individualized prevention strategies (36, 37).

6 Conclusion

This comprehensive meta-analysis of 22 observational studies
demonstrates a significant inverse association between serum
vitamin D levels and dementia risk, with a linear dose–response
relationship indicating a 1.2% reduction in risk for every 10
nmol/L increase in vitamin D. These findings support the potential
role of maintaining adequate vitamin D levels in promoting
cognitive health, particularly in populations with high prevalence
of deficiency. However, causality cannot be established from
observational data. Well-designed randomized controlled trials
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are needed to confirm these results, determine optimal vitamin
D thresholds for cognitive protection, and clarify potential
interactions with genetic and lifestyle factors. In the meantime,
public health strategies to prevent vitamin D deficiency may
represent a pragmatic approach to reducing dementia risk at the
population level.
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