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Introduction: Multiple system atrophy (MSA) is a rapidly progressive neuro-
degenerative disorder characterized by autonomic dysfunction, levodopa-
unresponsive parkinsonism, cerebellar ataxia, and corticospinal tract
involvement. Early diagnosis remains challenging due to overlapping clinical
manifestations and the absence of reliable biomarkers. This study aimed to
develop a radiomics-based diagnostic model using multimodal MRI to improve
MSA detection.
Methods: A retrospective cohort of 62 clinically probable MSA patients
(per the 2022 Movement Disorder Society criteria), and 73 matched healthy
controls underwent 3.0-T MRI (T1WI, T2WI, FLAIR, DWI). Seven brain regions
(bilateral cerebellar hemispheres, middle cerebellar peduncles, putamen, and
pons) were manually segmented. A total of 1,502 radiomics features were
extracted per region, using PyRadiomics (IBSI-compliant). Features with an
intraclass correlation coefficient (ICC) ≥ 0.75 were retained, and the least
absolute shrinkage and selection operator (LASSO) regression identified the
top discriminative features to construct region-specific radiomics scores (Rad-
scores). A logistic regression (LR) model integrated Rad-scores from all regions.
Model performance was evaluated via precision, recall, and F1-score in training,
testing, and validation cohorts (split ratio 6:2:2), and compared with visual
assessments by two radiologists.
Results: The LR model achieved high performance: accuracy was 0.98 in
the training cohort, 0.97 in the testing cohort, and 0.95 in the validation
cohort. Notably, classification precision for MSA reached 1.0 (indicating
no false positives) across all cohorts. SHapley Additive exPlanations (SHAP)
analysis revealed that the left putamen Rad-score as the most influential
predictor. The model significantly outperformed radiologists’ visual assessments
(radiologist AUCs: 0.559 and 0.535; P < 0.001). Asymmetry was observed,
with left-hemisphere structures (putamen/cerebellar) exhibiting greater
diagnostic contributions.
Conclusion: Multimodal MRI radiomics accurately differentiates MSA from
healthy controls, even in the absence of conventional MRI markers. The Rad-
score model demonstrates high sensitivity (89% recall in the validation cohort)
and perfect specificity (100% precision), providing a clinically actionable tool for
early MSA diagnosis.
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Introduction

Multiple system atrophy (MSA) is a neurodegenerative
disorder of unknown etiology and insidious onset, characterized
primarily by autonomic dysfunction, poorly levodopa-responsive
parkinsonism, cerebellar ataxia, and corticospinal tract dysfunction
(1). MSA diagnosis remains challenging due to overlapping clinical
manifestations with other neurodegenerative diseases and the lack
of reliable biomarkers (2, 3). Epidemiological studies indicate that
MSA progresses rapidly with shortened survival, underscoring the
critical importance of early diagnosis for symptom management,
prognosis evaluation, precision therapy development, and drug
discovery (4).

Historically, MSA diagnosis relied on clinical symptoms, signs,
and neuroimaging findings (5, 6). Although neuropathological
examination remains the gold standard, biopsy-associated risks
and patient reluctance limit its utility. Clinical diagnosis alone
faces limitations due to phenotypic heterogeneity and symptom
overlap across neurodegenerative disorders. Consequently,
neuroimaging has been incorporated as supportive evidence in
diagnostic criteria (7, 8). Previous studies identified key MRI
features: in the MSA-P subtype: Hypointensity in the putamen
on T2-weighted imaging (T2WI) and susceptibility-weighted
imaging (SWI), with hyperintensity on T2∗ sequences (9); in the
MSA-C subtype: the “hot cross bun sign” (pontine cruciform
hyperintensity on T2WI/FLAIR) and middle cerebellar peduncle
(MCP) hyperintensity. The “hot cross bun sign” exhibits 99%
specificity and 45% sensitivity in differentiating MSA-C from
spinocerebellar ataxias, while MCP hyperintensity shows 99%
specificity and 68% sensitivity (10). The grading of pontine “hot
cross bun sign” (11) correlates positively with cerebellar ataxia
severity in MSA-C. These characteristic MRI markers aid in
distinguishing MSA from Parkinson’s disease (PD), progressive
supranuclear palsy (PSP), and sporadic late-onset ataxia, though
sensitivity in early-stage disease remains suboptimal (12). While
PET-CT and SPECT offer diagnostic value, high cost and
radiation exposure hinder widespread clinical adoption (13, 14).
Transcranial sonography further suffers from limited sensitivity
and specificity (15).

In 2022, the International Movement Disorder Society
updated diagnostic criteria, stratifying MSA into four tiers:
Neuropathologically established, Clinically established,
Clinically probable, Possible prodromal MSA (6). The same
year, China released its expert consensus, aligning with
international standards while incorporating regional evidence
(16). This consensus explicitly mandates multimodal MRI—
including T1 (axial/sagittal), T2, ADC, SWI, and T2 FLAIR
sequences—as essential for diagnosis, differential evaluation,
and disease monitoring. It emphasizes that precise diagnosis
requires integrating clinical, imaging, and laboratory data,
highlighting the need for novel methods to enhance diagnostic
accuracy (12).

Despite these advances, there remains a pressing need for more
sensitive and objective imaging diagnostic model. This study aims
to develop optimal diagnostic model for MSA based on radiomics
features derived from multimodal MRI, providing a novel and
precise diagnostic tool for clinical practice.

Materials and methods

Subjects

This retrospective study analyzed image data from 69 patients
with multiple system atrophy (MSA) admitted to the Second
People’s Hospital of JiuLongPo district between October 2022
and June 2024. All patients underwent brain MRI prior to
admission. Patients were included if they met the following
criteria: (1) Diagnosis of clinically probable MSA according
to the 2022 International Movement Disorder Society (MDS)
diagnostic criteria (6); (2) Completion of standardized brain MRI
protocols, including T1-weighted imaging (T1WI), T2-weighted
imaging (T2WI), fluid-attenuated inversion recovery (FLAIR), and
diffusion-weighted imaging (DWI); (3) No treatments potentially
affecting MRI findings within 3 months before enrollment. Patients
were excluded for: (1) Comorbid neurological disorders (e.g.,
stroke, other neurodegenerative diseases); (2) Use of neuroactive
medications within 3 months; (3) History of neurosurgery altering
brain structure; (4) Incomplete MRI sequences (missing T1WI,
T2WI, or T2-FLAIR) or significant artifacts compromising image
quality. Based on these criteria, 7 patients were excluded (1
with a history of cerebral hemorrhage, 4 with cerebral infarction
lesions, 2 with severe MRI artifacts). Ultimately, 62 patients
with clinically probable MSA were included. Healthy normal
controls (n = 73) were selected from individuals undergoing
routine brain MRI at the hospital’s health examination center
during the same period. Controls were matched to patients for
age, sex, and educational level. Exclusion criteria for controls:
Family history of neurological disorders; Use of centrally acting
medications; MRI evidence of asymptomatic cerebral infarction or
white matter hyperintensities.

This retrospective study was approved by the Ethics Committee
of the Second People’s Hospital of JiuLongPo district. Written
informed consent was waived in accordance with national ethical
guidelines due to the retrospective nature of the research (17).

MRI acquisition protocol

All participants underwent brain MRI in the supine position
using a 3.0-T scanner (Siemens VIDA, Siemens Healthineers,
Erlangen, Germany). Imaging was performed with body coil
transmission and 20-channel phased-array head/neck coil for signal
reception. The standardized protocols included:

1. T1-weighted Imaging (T1WI): Sequence: fast low-angle shot
(FLASH), Orientation: Axial, Parameters: TR = 236 ms, TE =
2.46 ms, Slice thickness = 5 mm, FOV = 220 × 220 mm², Matrix
= 202 × 288, Averages = 1.

2. T2-weighted Imaging (T2WI): Sequence: turbo spin echo (TSE),
Orientation: Axial, Parameters: TR = 1,500 ms, TE = 80 ms,
Echo train length = 198, Slice thickness = 5 mm, FOV = 220
× 220 mm², Matrix = 256 × 320, Averages = 1.

3. T2-fluid-attenuated inversion recovery (FLAIR): Sequence:
turbo inversion recovery spin echo, Orientation: Axial,
Parameters: TR = 9,000 ms, TE = 84 ms, Inversion time (TI)
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= 2,500 ms, Slice thickness = 5 mm, FOV = 220 × 220 mm²,
Matrix = 192 × 256, Parallel imaging acceleration factor = 1.

4. Diffusion-weighted Imaging (DWI): Sequence: single-shot echo
planar imaging (SS-EPI), Orientation: Axial, Parameters: TR =
4,200 ms, TE = 68 ms, b-values = 0 and 1,000 s/mm², Slice
thickness = 5 mm, FOV = 220 × 220 mm², Matrix = 116 ×
120, Number of diffusion directions = 3.

Imaging coverage extended from the vertex to the foramen
magnum, encompassing the entire cerebrum, brainstem,
and cerebellum.

Image processing and feature extraction

All imaging data were exported from the scanner in
DICOM format and converted to NIfTI format using
MRIcroGL software (v2.1.60; Chris Rorden, University of
South Carolina, USA). The resulting NIfTI files were imported
into the open-source medical imaging platform 3D Slicer
(18) (v5.7.0; Slicer Community, http://www.slicer.org) for
subsequent processing.

Segmentation of seven brain regions was independently
performed by two certified radiologists (each with more than
10 years of specialized experience): left cerebellar, left middle
cerebellar peduncle (MCP), left putamen, pons, right cerebellar,
right MCP, and right putamen (6).

The segmentation workflow included: the ROIs of T1WI,
T2WI, FLAIR and ADC sequences were manually delineated along
the boundaries of the above brain regions, and the volume of
interest (VOI) of each brain region was constructed by ROI
interpolation (19, 20).

Standardized radiomics feature extraction was performed
through a three-stage protocol: (1) Segmented images underwent
isotropic resampling to a uniform voxel resolution of 1 mm3

using third-order B-spline interpolation to minimize interpolation
artifacts; (2) Feature calculation was executed via the open-source
Python library PyRadiomics (v3.1.0a2) (21), with all parameters
strictly compliant with the Image Biomarker Standardization
Initiative (IBSI) guidelines (21) to ensure reproducibility; (3)
Four feature classes were extracted, including morphological
features from original images to quantify volumetric and
shape characteristics (e.g., sphericity, surface area), texture
features from original images capturing spatial intensity
heterogeneity (e.g., gray-level co-occurrence matrix metrics),
frequency- domain features derived from wavelet-transformed
images for multiscale frequency component analysis (e.g.,
Haar wavelet decompositions), and edge-enhanced features
generated via Laplacian of Gaussian (LoG) filtering (σ =
1.0–7.0 mm) to accentuate microstructural boundaries and
high-frequency details.

Multimodal radiomics feature integration was achieved by
concatenating 1,502 radiomics features extracted from each brain
region in each sequence.

Mathematical definitions of texture features followed the
PyRadiomics documentation (https://pyradiomics.readthedocs.io/
en/latest/features.html).

The complete technical workflow is illustrated in Figure 1.

Radiomics feature selection

To ensure robustness of radiomics features, 70% of randomly
selected samples (n = 94/135) were allocated for feature extraction.
Regions of interest (ROIs) were independently delineated by
two certified radiologists (each with > 10 years of experience)
following a standardized workflow described above, and features
were extracted uniformly. Inter-observer agreement was evaluated
using the intraclass correlation coefficient (ICC). Features
demonstrating high reproducibility (ICC ≥ 0.75) were retained for
subsequent analysis.

Retained features were Z-score normalization to eliminate
scale differences, followed by application of the least absolute
shrinkage and selection operator (LASSO) algorithm for region-
specific feature selection. The optimal penalty coefficient (λ)
was determined via 10-fold cross-validation (22), and the top
five features with highest discriminative power per brain region
were selected.

Diagnostic model development and
evaluation

The radiomics score (Rad-score) for each brain region was
calculated as

Rad − score = Σ(Feature Value×Feature Weight) + b0, (1)

where Feature Weight denotes the coefficient derived from selected
features, and b0 represents the intercept term.

For all 135 samples, region-specific Rad-scores were calculated
to generated a multi-regional biomarker matrix comprising seven
Rad-scores per subject. The dataset was split into training, testing,
and validation cohorts in a 6:2:2 ratio (n = 81/27/27). A logistic
regression (LR) model integrated the seven regional Rad-scores.
In order to improve the stability of model evaluation, hierarchical
10-fold cross-validation is used on the training set (22), and
the hyperparameters of each algorithm were optimized by grid
search to determine the optimal parameter combination. The
training curve was plotted on the training set to assess model
performance. Classification reports were computed for both testing
and validation cohorts.

The machine learning model was implemented using the scikit-
learn Python library (version 1.5.1). The model performance was
assessed using the area under the receiver operating characteristic
curve (AUC) of the test set and the classification report, and
the SHapley Additive exPlanations (SHAP) method was used to
analyze the feature contribution and the decision logic of the model
(23, 24). Finally, a nomogram was constructed to visualize the
prediction results.

Visual assessment of MRI scans

Two certified radiologists (each with >10 years of experience)
independently performed a blinded assessment of 135 samples
to evaluate suspicion of multiple system atrophy (MSA)
diagnosis. This evaluation was based strictly on the MRI
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FIGURE 1

Technical workflow of this research.

markers described in the 2022 International Movement Disorder
Society (MDS) diagnostic criteria for MSA (6), without access to
clinical information.

Statistical analysis

Data analyses were performed using R software (v4.4.2) and
Python (v3.9). Continuous variables conforming to a normal
distribution were expressed as mean ± standard deviation (SD)
and compared between groups using the independent samples
t-test. Non-normally distributed data were presented as median
(interquartile range) [M (IQR)] and analyzed via the Mann–
Whitney U test. Categorical variables were reported as frequency
(percentage) with intergroup comparisons conducted using Chi-
square tests.

Machine learning model performance was evaluated using:
AUC, Class-specific accuracy, recall, F1-score. Statistical
differences in AUC values between machine learning models
and interpretations by two radiologists were assessed using
DeLong’s test. Model interpretability was analyzed via the SHAP
package (v0.43.0) in Python to quantify feature contributions.
Inter-observer agreement of the visual judgments of MRI images

between radiologists was evaluated using Cohen’s kappa coefficient.
A threshold of P < 0.05 was defined for statistical significance.

Results

Demographic characteristics

A total of 62 patients with clinically probable MSA (mean age
66.3 ± 7.8, 35 females), 73 healthy controls (mean age 67.6 ±
10.5, 31 females), and the same 62 MSA patients were enrolled.
Statistical analysis showed that there was no significant difference
in age between groups (Mann–Whitney U test, two-tailed test, P >

0.05), and there was no significant difference in gender distribution
between groups (chi-square test, two-tailed test, P > 0.05). Detailed
data on demographic characteristics are provided in Table 1.

Feature selection and construction of
Rad-score

Robust features demonstrating intraclass correlation
coefficients (ICC) ≥ 0.75 were selected from multimodal
composite features within each brain region. These features
were subsequently subjected to least absolute shrinkage and
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TABLE 1 Demographic characteristics of study participants.

Characteristic Normal group
(n = 73)

MSA group
(n = 62)

P-value

Gender, n (%)

Female 38 (52.1%) 24 (38.7%) 0.168a

Male 35 (47.9%) 38 (61.3%)

Age (years)

Median [Min, Max] 65.0 [38.0, 88.0] 67.0 [47.0, 83.0] 0.575b

IQR [Q1, Q3] 23.0 [54.0, 77.0] 15.0 [55.0, 70.0]

aGender differences were analyzed using the Chi-square test; bage data violated the normality
assumption (Shapiro–Wilk test: P = 0.0291 for Normal, P = 0.0304 for MSA group);
therefore, intergroup age comparisons were performed with the Mann–Whitney U test.

selection operator (LASSO) regression analysis with 10-fold cross-
validation. The five features exhibiting the strongest predictive
weights (Supplementary Figure 1) were retained to construct
the radiomics biomarker (Rad-score) using the formulas in
Supplementary Table 2.

The radiomics signature (Rad-score) for each brain region
was calculated using the aforementioned formula. Composite
distribution plots of Rad-scores were subsequently generated
(Figure 2). Intergroup differences were observed between
the MSA cohort and healthy controls, indicating distinct
distribution patterns.

Composite plot showing Rad-score distributions in specific
brain regions. Figures 2.1–2.7 represent the left cerebellar,
left medipeduncle, left putamen, pons, right cerebellar, right
medipeduncle, and right putamen, respectively. Figure 2.8 displays
the overall Rad-score distribution, with bimodal peaks indicating
distinct mean values between groups.

The LR model

The LR model was identified as the optimal predictive
model and underwent further evaluation. The logistic equation is
as follows:

log (P/(1 − P)) = (1.4005∗ LeftCerebellar_RADscore)

+(0.5226∗LeftMedipeduncle_RADscore)

+(2.0314∗LeftPutamen_RADscore)

+(0.7332∗Pons_RADscore)

+(0.9171∗RightCerebellar_RADscore)

+(1.4922∗RightMedipeduncle_RADscore)

+(1.6966∗RightPutamen_RADscore)

−4.2657

As evidenced by the learning curve derived from the training
cohort (Figure 3), both training and test scores of the logistic
regression (LR) model converged asymptotically toward 0.98. This
convergence indicates the absence of overfitting and confirms
robust generalization capabilities.

Performance metrics for the LR model across training, test,
and validation sets are summarized in Table 2. The model’s

discriminative power and generalization characteristics for the
two sample classes were comprehensively evaluated using four
core metrics: Precision, Recall, F1-Score, and Support. All datasets
exhibited high classification performance (Macro Avg F1 ≥ 0.95),
establishing model robustness. The near-identical accuracies of the
training set (Accuracy = 0.98) and test set (Accuracy = 0.97)
further substantiate the absence of overfitting. In the validation set,
moderately reduced recall (0.89) was observed for multiple system
atrophy (MSA) samples relative to other datasets. Conversely,
normal group samples achieved perfect recall (1.00) universally,
demonstrating complete capture of this class. Notably, MSA
classification consistently yielded precision of 1.00, indicating zero
false positives.

SHAP-based model interpretability analysis

SHAP analysis was performed to interpret the contribution
of regional radiomics signatures (RADscore) and the model’s
decision-making mechanism. Figure 4A illustrates the hierarchical
feature importance in the prediction model, where the vertical axis
ranks features by descending importance and the horizontal axis
denotes the mean absolute SHAP value. The analysis identified the
left putamen rad-score as the most influential predictor. Figure 4B
provides a detailed summary plot of this ranking: each point
represents an individual sample, with a color gradient (blue to
red) indicating low-to-high feature magnitudes. The vertical axis
sorts features by importance, while the distribution illustrates
correlations between feature values and their corresponding SHAP
values. SHAP analysis revealed significant lateralized contributions
of imaging biomarkers across these brain regions.

Construction of nomogram

Based on the established logistic regression model, a nomogram
(Figure 5) predicting the probability of multiple system atrophy
(MSA) was constructed using the following predictors: rad-
scores of the left cerebellar hemisphere, left medipeduncle, left
putamen, pons, right cerebellar hemisphere, right medipeduncle,
and right putamen.

Visual assessment of radiologists

Two radiologists performed independent assessments on 135
cases blinded to clinical information. Radiologist A classified 127
cases as normal and 8 as multiple system atrophy (MSA), while
Radiologist B classified 124 as normal and 11 as MSA. Consensus
diagnoses identified 118 normal cases and 2 MSA cases (Figure 6).
The Cohen’s kappa coefficient for inter-rater agreement was 0.152.
Receiver operating characteristic (ROC) curves for the logistic
regression (LR) model and both radiologists are shown in Figure 7,
with areas under the curve (AUC) of 0.559 (95% CI: 0.48–0.63)
for Radiologist A and 0.535 (95% CI: 0.45–0.62) for Radiologist
B. The DeLong test comparing diagnostic performance between
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FIGURE 2

Regional distribution of Rad-scores across brain regions. The horizontal axis indicating the group categories and the vertical axis displaying the
specific Rad-score values.
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FIGURE 3

Illustrates the learning curve on the training cohort. As revealed by the learning curve, once the sample size surpasses 15, the test accuracy overtakes
the training accuracy and steadily converges to 0.98 with further increases in sample size.

TABLE 2 Classification report of the logistic regression model across training, test, and validation cohorts.

Dataset Class/statistic Precision Recall F1-score Support Accuracy

Training Normal 0.96 1.00 0.98 27 –

MSA 1.00 0.96 0.98 27 –

Macro avg 0.98 0.98 0.98 – –

Weighted avg 0.98 0.98 0.98 54 –

Overall – – – – 0.98

Testing Normal 0.96 1.00 0.98 24 –

MSA 1.00 0.94 0.97 16 –

Macro avg 0.98 0.97 0.97 – –

weighted avg 0.98 0.97 0.97 40 –

Overall – – – – 0.97

Validation Normal 0.92 1.00 0.96 22 –

MSA 1.00 0.89 0.94 19 –

Macro avg 0.96 0.95 0.95 – –

Weighted avg 0.96 0.95 0.95 41 –

Overall – – – – 0.95

Radiologist A and Radiologist B yielded no significant difference
(Z = 0.803, P = 0.422).

Discussion

Multiple system atrophy (MSA) is a rare disease; because
samples are hard to collect, studies are often characterized by small
sample sizes and high-dimensional feature spaces, which can easily

lead to overfitting if not handled properly. In this study, 70% of
the samples were randomly selected for feature extraction of brain
regions, aiming to reduce the excessive dependence of the model on
the training data, thereby reducing the risk of overfitting. The core
logic of this approach, a subsampling approach, is to use a random
masking mechanism similar to Dropout to form regularization to
improve generalization through data-level randomness (25–27).
Previous studies have shown the utility of feature screening in
small, high-dimensional data such as the one used in our study (28).
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FIGURE 4

Interpretability analysis of LR models. (A) Importance ranking plot of features in the LR model. (B) SHAP dendrogram showing feature importance,
correlations, and distributions in the LR model.

FIGURE 5

Nomogram for predicting the probability of multiple system atrophy (MSA).

To efficiently identify the most discriminative features from
extensive feature pools, we performed Z-score normalization
on intraclass correlation coefficient (ICC)-validated features per
brain region (29), then integrated four sequences (T1, T2, T2
FLAIR, ADC) into multimodal representations (30). Subsequently,
LASSO regression was applied to extract key features from
each region’s multimodal set (31). Least absolute shrinkage and
selection operator (LASSO) regression is a linear regression
method combining feature selection and regularization. The core
of LASSO regression is to realize sparse modeling by introducing
L1 regularization term. Lasso regression can solve the problem of
high-dimensional data redundancy by compressing the coefficients
of unimportant features to zero and automatically screening
key variables. Only a few nonzero coefficients are retained in
the generated model, which improves the interpretation of the
model. L1 regularization can deal with multicollinearity problems
more effectively than ridge regression (L2 regularization) (32).
Due to these characteristics, Lasso regression has been widely
used in radiomics. Radiomics features are often in thousands
of dimensions, and Lasso can simplify model parameters by
filtering out 99% redundant features from the original features

(33). Features were selected using internal 10-fold cross validation
in the training set by the minimum mean squared error (MSE)
(22). Among the non-zero weight features obtained from lasso
regression, the five features with the greatest weight influence
were selected as the variables to calculate the Rad-score. Based on
the weight of feature variables and regression intercept construct
of LASSO regression, Rad-score construction formulas (see
Supplementary material) for seven brain regions were established
as biomarker (34). The combined plot shows that the rad-score of
each brain region has some discrimination power.

In order to maximize the model performance, a total of
seven RAD-scores from seven brain regions in each sample were
combined into a new research sample for logistic regression
modeling. In order to improve the generalization ability, the total
135 samples were randomly divided into training group, test group
and validation group according to 6:2:2 (35). The training group
was used for modeling, and the learning curve within that group
was plotted. The learning curve began to converge when the
training sample reached 15, and the test score and training score
increased with the training sample, and tended to converge to a
curve pattern with the same value, indicating that the model did
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not overfit, showing that the model had good generalization ability
(36). Among the key indicators, only MSA in the validation group
achieved a recall rate of 0.89, while the others achieved an accuracy
rate and recall rate of more than 0.9, showing excellent classification
functions on the validation set and the test cohorts (37). This

FIGURE 6

Confusion matrices of diagnostic assessments by two radiologists.

0.89 sensitivity highlights the model’s potential as a screening tool
for MSA.

In this study, we demonstrated that the radiomics-based Rad-
score exhibited greater sensitivity than conventional MRI imaging
markers currently incorporated in diagnostic criteria for multiple
system atrophy (MSA). The seven brain regions delineated in this
study are the MRI imaging biomarkers mentioned in the diagnostic
criteria of MSA, and can serve as on basis for clinical diagnosis of
MSA (6). Although MRI abnormalities in MSA patients have high
specificity, their sensitivity is usually low. Moreover, the clinical
utility of these MRI findings in improving diagnostic accuracy
remains to be fully elucidated (38). All cases included in this
study were diagnosed as clinically probable multiple system atrophy
(MSA) due to the absence of characteristic MRI findings. For
further validation, 135 samples were evaluated by two radiologists
with more than 10 years of experience. The AUCs for Radiologist
A and Radioligist B were 0.559 and 0.535, and the kappa coefficient
of agreement between them was 0.152. These results demonstrate
that macroscopic MRI features alone were insufficient for accurate
diagnosis in this study. In contrast, the diagnostic model based on
the Rad-score derived from seven brain regions showed excellent
classification performance, supporting its practical utility.

The weights of the RADscores of these seven brain regions
in the model found in this study are also consistent with the
laterality characteristics of MSA found by other research methods.
The SNAP diagram of the Logistic regression model shows that
among the seven brain regions, the influence weights are ranked
as follows: left putamen > right putamen > right medipeduncle

FIGURE 7

Diagnostic performance comparison. ROC curves demonstrate superior AUC of the LR model (0.976) vs. radiologists (A: 0.559, B: 0.535). Dashed line
indicates random chance (AUC = 0.5).
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> left cerebellar > right cerebellar > pons > left medipeduncle.
The results showed that the influence of the left putamen was
greater than that of the right medipeduncle, and the influence
of the left cerebellar hemisphere was greater than that of the
right cerebellar hemisphere. These findings may be related to
the pathogenesis of MSA. There is also an important tendency
of hemisphere lateralization in the process of PD. Therefore,
PD is considered an inherently asymmetric disease in clinical
practice. This clinical asymmetry is associated with more severe
contralateral nigrostriatal degeneration (39). Some studies have
shown a “left hemisphere susceptibility” in this condition, as the left
nigrostriatal pathway is more affected than the right (40). Previous
PET imaging studies based on altered 18F-DOPA uptake have
confirmed that the loss of 18F-DOPA uptake rate in the nigrostriatal
system in selected populations of drug-naive Parkinson’s disease
cohorts is predominantly on the most affected side, so that the
left hemisphere image depicts the more affected side. While the
less affected side (LAS) corresponds to the right hemisphere,
the reduced topography was mainly in the putamen of the left
hemisphere with maximum uptake loss in the anterior-posterior
axis and dorsoventral axis, respectively (41). In the study by Van
Laere and colleagues, left putamen uptake was observed in 24
of 38 patients (63.1%) with right-sided predominant disease (P
< 0.001), indicating that this laterality is also present in IPD
such as MSA (42). The dopaminergic system is thought to be
primarily responsible for this lateralization due to its critical
role in motor control. Inherent interhemispheric imbalances in
nigrostriatal dopamine (DA) levels in humans and animals have
been shown to be associated with lateralization of motor behavior
(43). This change can cause the corresponding changes in the
images of the putamen. Although such changes cannot be detected
in the macroscopic image features, the RADscore constructed by
radiomics can accurately detect the changes in the left and right
putamen. In the MSA group in the present study, the changes of the
left putamen were greater than those of the right putamen, which is
consistent with previous studies.

Minori Furuta et al. found that MSA patient exhibited
laterality changes in the middle cerebellar peduncle on SPECT
(44). While conventional MRI failed to reveal these alterations,
radiomics captured them and confirmed laterality patterns
reported previously. Similarly, Francesca Caso observed atrophy
of the left cerebellar hemisphere but not the right cerebellar
hemisphere in patients with MSA-P by 1.5T magnetic resonance
imaging, suggesting that atrophy of the left cerebellar hemisphere
may be more easily observed at the macroscopic level than that of
the right (45). This study found that the effect of the left cerebellar
hemisphere is also called right hemisphere enlargement, which is
consistent with this. These results are consistent with the laterality
of previous studies, and further support the proposed RADscore as
a biomrker to not only preferentially screen out highly suspected
MSA cases. In addition, Eun Hye Jeong et al. found through 123I-
FP-CIT SPECT study that the asymmetry of putamen was more
obvious in the early stage of the disease, and this asymmetry
decreased with the extension of follow-up time (46). The patients
in this study belonged to the early stage of the disease when none
of the macroscopic imaging markers required by the guidelines
were found, so the RADscore difference of the putamen was more
significant. The Rad-score may serve as a potential biomarker

for the early diagnosis of multiple system atrophy (MSA). The
diagnostic model based on the Rad-score demonstrates promising
diagnostic performance in identifying MSA cases.

Conclusion

In conclusion, for patients with clinically suspected multiple
system atrophy (MSA) but lacking definitive MRI markers, the
radiomics-based RAD score offers a sensitive imaging biomarker
that enables the construction of a diagnostic model capable of
distinguishing MSA from healthy controls and improving overall
diagnostic accuracy.

Limitations

This study has several limitations. First, it was a single-center
retrospective analysis, which may limit the generalizability of the
findings to broader or more diverse populations. Second, although
we included patients with clinically probable MSA and healthy
controls, the diagnosis was primarily based on clinical criteria,
which may introduce selection bias. Third, the radiomics model
was built using manually delineated regions of interest (ROIs),
and thus may be subject to inter- and intra-observer variability;
future studies incorporating automated segmentation techniques
are warranted. Finally, external validation using an independent
cohort is needed to further confirm the robustness and clinical
applicability of the RAD score as a diagnostic biomarker.
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