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Introduction: To evaluate the feasibility of a WEKA-based machine learning 
pipeline for detecting post-treatment hemodynamic remodeling by comparing 
pre- and postoperative cerebral angiographic images in patients with middle 
cerebral artery aneurysms.
Methods: This retrospective, single-center study analyzed 60 patients (51 
women, 9 men; mean age, 58.2 ± 10.2 years) with unruptured middle cerebral 
artery aneurysms treated between January 2019 and June 2024. Thirty patients 
underwent microsurgical clipping, and 29 underwent endovascular intervention. 
A WEKA-based Random Forest classifier was trained on 15 manually annotated 
pre- and postoperative digital subtraction angiography (DSA) image pairs and 
then applied to the remaining dataset. Custom Python-based post-processing 
was used to denoise and refine the segmented images. Vascular surface area 
changes were assessed by comparing pixel counts before and after treatment. 
Statistical analysis included paired and unpaired t-tests, Mann-Whitney U tests, 
and effect size estimation.
Results: Among 51 analyzable image pairs, 75% showed increased vascular 
pixel counts postoperatively, particularly in the endovascular group (segmented 
pixels: p = 0.034; refined pixels: p = 0.017). No statistically significant differences 
were observed in the neurosurgical group. Between-group comparisons of 
postoperative images did not reach significance.
Conclusion: The WEKA pipeline enabled quantification of vascular remodeling 
but remained limited by manual preprocessing and lack of external validation. 
Machine learning–guided segmentation of angiographic images can detect 
treatment-induced vascular changes, particularly following endovascular 
therapy. This method demonstrates promise for future development of 
automated imaging biomarkers to support outcome monitoring and clinical 
decision-making in neurovascular care.
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Introduction

The successful treatment of brain aneurysms requires a 
multidisciplinary approach, integrating advanced imaging modalities 
with clinical expertise. Digital subtraction angiography (DSA) 
remains the gold standard in both preoperative planning and 
postoperative monitoring due to its unmatched resolution and ability 
to assess vascular anatomy and aneurysm occlusion (1, 2) accurately. 
It enables precise localization and morphological analysis of 
aneurysms, guiding optimal therapeutic strategies (3, 4), and serves as 
a critical tool in confirming treatment success, with complete 
angiographic occlusion significantly reducing recurrence risk (5, 6). 
Despite improvements in microsurgical and endovascular techniques, 
postoperative vascular remodeling remains a dynamic process that is 
best evaluated through high-resolution imaging. Post-treatment DSA, 
complemented by CT or MR angiography, is essential for detecting 
residual or recurrent aneurysms, vessel narrowing, or delayed 
complications (7, 8). However, inconsistent follow-up imaging, 
particularly in surgically treated patients, can result in missed 
detections of critical changes such as aneurysm remnants, de novo 
aneurysm formation, pseudoaneurysms, or procedural complications 
(8–11). DSA also provides unparalleled insight into dynamic vascular 
processes such as vasospasm and thrombosis, especially after 
subarachnoid hemorrhage (11, 12). When performed both pre- and 
postoperatively, DSA enables objective assessment of vascular changes 
over time and supports outcome tracking for clinical decision-making 
and research.

Technological advances such as 3D rotational angiography have 
further improved spatial resolution and vascular visualization (13). At 
the same time, artificial intelligence (AI) and machine learning (ML) 
are transforming neuroimaging by automating complex tasks, 
increasing detection accuracy, and facilitating large-scale image 
analysis. Deep learning models, particularly convolutional neural 
networks (CNNs), have demonstrated strong performance in 
neurovascular segmentation tasks (14, 15). Within this evolving 
landscape, the WEKA platform offers a versatile and accessible tool 
for machine learning–based image segmentation. Specifically, WEKA 
is leveraged for pixel-wise vascular segmentation of DSA images, 
enabling quantitative assessment of blood vessel surface area and its 
modifications across treatment stages. We hypothesized that WEKA-
based machine learning segmentation could quantitatively detect 
vascular changes between pre- and postoperative angiographic 
images, particularly in the endovascular cohort, due to its greater 
propensity for hemodynamic remodeling. In this study, vascular 
remodeling is defined as image-based morphological change, 
specifically, variation in segmented vessel surface area between pre- 
and postoperative angiographic images, which may indirectly reflect 
hemodynamic adaptation following treatment.

Previous studies have documented post-treatment changes in 
vessel morphology, including diameter, angle, and curvature, that 
are interpreted as indirect evidence of vascular remodeling, 
particularly after stenting or coiling procedures (16, 17). Building 
on this foundation, the present study applies a WEKA-based 
segmentation approach to evaluate postoperative hemodynamic 
remodeling in patients with middle cerebral artery aneurysms 
treated by clipping or endovascular intervention. By quantifying 
pixel-level changes between pre- and postoperative images, this 
method provides an objective, data-driven measure of vascular 

response to treatment. While sample size and manual 
preprocessing limit this preliminary analysis, it lays the 
groundwork for future development of fully automated, AI-guided 
imaging pipelines and highlights the clinical potential of machine 
learning in enhancing precision and reproducibility in 
neurovascular outcome evaluation.

Methods

This retrospective, single-center study included 60 consecutive 
adult patients diagnosed with unruptured middle cerebral artery 
(MCA) aneurysms. We limited the analysis to MCA aneurysms to 
minimize anatomical and imaging variability and to ensure uniform 
projection angles during acquisition. All patients were treated at the 
Department of Neurosurgery and the Clinical Department of 
Diagnostic and Interventional Radiology, University Hospital 
Center Sestre Milosrdnice, Zagreb, Croatia, between January 1, 
2019, and June 30, 2024. Treatment decisions were made by a 
multidisciplinary team consisting of neurosurgeons, neurologists, 
and radiologists. Patients were thoroughly informed about the risks 
and benefits of both treatment options before providing written 
informed consent. Based on the selected treatment modality, 
patients were divided into two cohorts. The neurosurgical group 
consisted of 30 patients (27 women, 3 men; mean age, 
57.5 ± 11.4 years) who were treated with microsurgical clipping. The 
endovascular group initially consisted of 30 patients; however, one 
was excluded due to non-compliance with dual antiplatelet therapy, 
resulting in fatal thrombotic occlusion of a flow diverter. The final 
endovascular cohort consisted of 29 patients (24 women, 5 men; 
mean age, 59.0 ± 9.0 years). Additionally, eight cases were excluded 
from the final analysis due to technical limitations that prevented 
reliable image segmentation. These included cases with severe pre- 
or postoperative image misalignment, missing follow-up 
angiograms, or low-quality contrast enhancement. Exclusions were 
not related to treatment outcomes and were applied uniformly based 
on objective imaging criteria. The patient selection and exclusion 
process is summarized in Figure 1.

Exclusion criteria were ruptured aneurysms, anatomical variants 
precluding accurate assessment (e.g., severe vessel tortuosity, distal 
stenosis), non-compliance with prescribed therapy, and lack of 
postoperative DSA follow-up. All DSA procedures—both preoperative 
(1–3 days before intervention) and postoperative (6–12 months after 
treatment)—were performed using the same biplane angiographic 
system (Siemens Artis zee, Germany) with standardized acquisition 
parameters. Imaging protocols were strictly matched across timepoints 
to eliminate technical variability and ensure consistent pixel-based 
analysis. This included consistent patient positioning, identical 
contrast agent dose and injection timing, and use of the same biplane 
DSA system for all acquisitions. These measures were taken to 
minimize variability in vascular contrast enhancement and geometric 
projection, thereby enhancing the comparability of segmented images 
across timepoints. Operator consistency was maintained by having all 
procedures performed by the same neurosurgeon or 
interventional neuroradiologist.

The study received institutional ethics approval and was 
conducted following the Declaration of Helsinki. Written informed 
consent was obtained from all participants (2021/602-04/21-08/07).
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Baseline aneurysm and clinical 
characteristics

Baseline morphometric analysis revealed that patients in the 
neurosurgical group had larger aneurysms on average compared to 
those in the endovascular group. Specifically, the mean neck width 
was 3.01 ± 0.61 mm and mean fundus size was 8.03 ± 2.01 mm in the 
neurosurgical group, versus 2.85 ± 0.59 mm and 5.13 ± 1.73  in 
the endovascular group, respectively. Furthermore, 45% of patients in 
the neurosurgical group had aneurysms larger than 7 mm, compared 
to 27% in the endovascular group. All patients presented with a 
preoperative Glasgow Coma Scale score of 15. There were no major 
intraoperative or postoperative complications. Functional recovery 
was comparable across groups, with all patients achieving a Glasgow 
Outcome Scale - Extended score of 8 at follow-up.

WEKA-based image segmentation and 
post-processing

To assess vascular changes, we applied a WEKA-based machine 
learning pipeline to pre- and postoperative angiographic images. The 
objective was to quantify treatment-induced remodeling by calculating 
differences in segmented vessel area. The analytic workflow is 

illustrated in Figure 2. WEKA (Waikato Environment for Knowledge 
Analysis, version 3.9.6., University of Waikato, New Zealand) is an 
open-source machine-learning platform with a graphical interface 
that supports supervised learning techniques, including classification 
and regression (18). It was accessed through the Trainable WEKA 
Segmentation (TWS) plugin integrated into Fiji/ImageJ (19, 20), a 
widely used biomedical image analysis suite (21).

The classification pipeline involved a two-step process: training 
and application. During training, the Random Forest algorithm (22, 
23) was iteratively taught to distinguish vessel structures (Class 1) 
from background (Class 2) using 15 angiographic image pairs. These 
images were manually annotated and selected for their variability, 
ensuring model generalizability. Visual validation was conducted at 
each iteration to refine accuracy. The resulting classifier, exceeding 
100 MB in size, was optimized for batch analysis. Standardized 
preprocessing was performed using Fiji/ImageJ and included 
cropping, rotation alignment, contrast normalization, and resizing. 
These steps addressed technical variation in image orientation, head 
positioning, and acquisition field, minimizing artifacts due to 
non-biological factors such as differing injection contrast timing or 
device settings. The 15 pre- and postoperative image pairs used for 
classifier training were manually annotated using pixel-level 
segmentation in Fiji (ImageJ), referencing visible angiographic vessel 
boundaries. The WEKA classifier was trained using the 
FastRandomForest algorithm with default parameters. Segmentation 
was performed iteratively for each image pair (typically 3–5 rounds) 
until satisfactory vessel boundary separation was achieved. Each 
classifier was applied to its corresponding matched image pair (i.e., 
intra-subject), and cross-validation was not performed, as the goal was 
not to generalize across cases but to optimize pairwise segmentation 
fidelity. All preprocessing steps, including image rotation, cropping, 
and contrast adjustment, were performed in Fiji (ImageJ) to enhance 
vessel visualization and achieve spatial alignment between pre- and 
postoperative images. To minimize variability, the same reviewer 
processed both images in each pair using consistent parameters and 
anatomical landmarks. The trained classifier was applied to 53 image 
pairs, of which 51 were successfully segmented. Two image sets were 
excluded due to severe misalignment that precluded meaningful 
comparison. Segmentation outputs were further refined using a 
custom-built Python post-processing script (available upon request), 
leveraging the scikit-image library (24). The denoising workflow 
included grayscale conversion, morphological filtering, region 
labeling, and size-based exclusion of small artifacts. Final masks 
retained the largest connected vascular region to enhance specificity 
(Figures 2C,F). In this context, we define “refined pixels” as the total 
number of vascular-classified pixels remaining after post-processing, 
which includes noise suppression, removal of non-connected or 
spurious regions, and masking to preserve only the primary vascular 
structure. This metric reflects a cleaner and more specific measurement 
of vessel area than the raw segmented output, accounting for 
variability in contrast, acquisition artifacts, and misclassifications. 
Final refined pixel counts were obtained by summing all white (i.e., 
segmented) pixels within the middle cerebral artery region, separately 
for each pre- and postoperative image. These values served as a 
surrogate for relative vessel surface area. Although a single trained 
reviewer performed all image preprocessing to ensure consistency, 
future applications of this pipeline may require inter-rater 
reproducibility testing to ensure objectivity and scalability.

FIGURE 1

Flowchart of patient inclusion and exclusion criteria for final analysis. 
This figure illustrates the inclusion and exclusion process for the final 
patient cohort. Of 60 initially enrolled patients, 1 was excluded due 
to a fatal thrombotic complication, and 8 were excluded due to 
severe image misalignment or incomplete data, resulting in 51 image 
pairs eligible for final analysis.
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Across the 51 analyzable image pairs, 38 (approximately 75%) 
exhibited a postoperative increase in vessel pixel count, particularly 
among endovascularly treated patients. This pattern suggests 
postoperative vascular remodeling is potentially linked to altered flow 
dynamics. Despite variability in image quality and limited training 
data, the WEKA-based Random Forest classifier proved robust. To 
promote reproducibility and transparency, the segmentation pipeline 
(including the Python post-processing tool) will be made available as 
supplementary material upon publication. Future development should 
focus on deep learning models, e.g., convolutional neural networks, 
semi-supervised learning, and AutoML approaches, to enhance 
scalability and reduce manual input.

Statistical analysis

All statistical analyses were performed using MedCalc Statistical 
Software (version 12.5.0, Ostend, Belgium). Continuous variables 
were expressed as mean ± standard deviation for normally distributed 
data, or as median and interquartile range (IQR) for non-normally 
distributed data. Normality was assessed using the Shapiro–Wilk test 
for all continuous variables. Since all images were acquired with 
consistent spatial resolution and processed using standardized 
preprocessing parameters, relative differences in segmented pixel 
counts were treated as proportional surrogates for vascular surface 

area changes. To compare preoperative and postoperative values 
within each treatment group, the Wilcoxon Signed-Rank test was used 
for non-normally distributed data, and paired t-tests were applied 
when normality was confirmed. For between-group comparisons 
(microsurgical vs. endovascular), the Student’s t-test was used for 
normally distributed variables, while the Mann–Whitney U test was 
applied when normality assumptions were not met or when group 
sizes were unequal. A p-value of < 0.05 was considered 
statistically significant.

Results

In the endovascularly treated group (n = 21), segmentation 
analysis revealed a statistically significant increase in the number 
of blood vessel pixels following treatment (preoperative: 
15098.095 ± 9456.801 vs. postoperative: 17624.571 ± 10701.154; 
T = 2.274, DF = 20, p = 0.034), as shown in Figure  3A. The 
analysis of refined (denoised) pixels also demonstrated a 
statistically significant increase in postoperative images 
(preoperative: 8273.809 ± 4090.084 vs. postoperative: 
9739.000 ± 4259.035; T = 2.776, DF = 20, p = 0.017), supporting 
the observation of vascular modifications following endovascular 
intervention (Figure 3B). Both effects corresponded to a small-to-
moderate effect size (Cohen’s d = 0.35), which may hold clinical 

FIGURE 2

Workflow for WEKA-Based segmentation and denoising of angiographic images. This figure illustrates the sequential steps of the image analysis 
pipeline applied to preoperative and postoperative DSA images. (A) Original preoperative image showing unprocessed vascular anatomy with visible 
aneurysmal dilation (white arrow). (B) Machine learning–based segmentation using the trained WEKA classifier highlights vascular structures and the 
aneurysmal region. (C) Post-processing of the segmented image (denoising) removes background artifacts and isolates the target vascular segment. 
(D) Original postoperative angiographic image acquired following aneurysm treatment. (E) Application of the trained classifier to the postoperative 
image, enabling direct comparison with the preoperative segmentation. (F) Refined output after denoising, showing the treated vessel segment. The 
aneurysmal dilation visible preoperatively (top row) is absent in the postoperative segmentation (bottom row), indicating successful obliteration.
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relevance in the context of subtle post-treatment vascular 
remodeling. A summary of within-group comparisons is presented 
in Table 1.

In the neurosurgically treated group (n = 30), the analysis of 
segmented pixels from preoperative and postoperative angiographic 
images did not demonstrate a statistically significant difference 
(preoperative median = 13271.000, 95% CI = 11387.649–18083.089; 
postoperative median = 13352.000, 95% CI = 9998.115–16582.134; 
U = 444.00, Z = 0.08, p = 0.929). The corresponding effect size was 
negligible (r  = −0.08). Similarly, the Wilcoxon Signed-Rank test 
applied to the segmented pixels did not yield statistical significance 
(Npos = 17, Nneg = 13, Z = −0.463, p = 0.643), with a small effect size 
(r = −0.08), despite visible individual differences (Figure 4A). Further 
analysis of refined pixels, accounting for noise reduction and precise 
segmentation, also showed no statistical significance (preoperative 
median = 6398.000, 95% CI = 4836.149–8148.228; postoperative 
median = 6367.500, 95% CI = 5337.444–8215.686; U = 428.00, 
Z = 0.325, p = 0.745), with Wilcoxon test results confirming no 
significant change (Npoz = 21, Nneg = 9, Z = −1.079, p = 0.280), and 
a small effect size (r = −0.20) (Figure 4B).

To assess the differences between treatment approaches, 
segmented and refined pixel counts from postoperative images were 
compared. Although the median number of segmented pixels was 
higher in the endovascular group (median = 15622.000, 95% 
CI = 10699.135–22484.857) compared to the neurosurgical group 
(median = 13352.000, 95% CI = 9998.115–16582.134), the difference 
was not statistically significant (U = 279.00, Z = 0.689, p = 0.491) 
(Figure 5A), with a small effect size (r = 0.10). Similarly, analysis of 
refined pixels showed no statistically significant difference between 
groups (endovascular median = 9844.000, 95% CI = 7171.779–
12291.201; neurosurgical median = 6367.500, 95% CI = 5337.444–
8215.686; U = 226.00, Z = 1.703, p = 0.080) (Figure 5B), though the 
effect size suggested a trend toward moderate difference (r = 0.24). 
These results suggest that, while numerical differences are evident, the 
postoperative vascular modifications quantified via pixel-based 
analysis were not statistically different between endovascular and 

neurosurgical treatments. Post-treatment intergroup comparisons are 
summarized in Table 2.

Discussion

This study provides one of the first detailed applications of 
WEKA-based machine learning segmentation in the context of 
cerebral aneurysm treatment assessment, specifically analyzing 
vascular changes on pre- and postoperative angiographic images. 
While prior studies have successfully implemented WEKA in dental 
and radiographic contexts (25), its application to complex 
neuroradiological datasets such as DSA remains novel and 
underexplored. Moreover, we acknowledge that vascular changes are 
expected following intervention. However, the novelty of our approach 
lies in leveraging pixel-based image analysis to systematically quantify 
these changes, even in the absence of direct hemodynamic data. 
Importantly, while vascular changes are expected following 
intervention, our method offers a systematic, quantitative way to 
assess such changes from standard imaging data. Rather than 
replacing hemodynamic modeling, pixel-based quantification 
provides an accessible surrogate for morphological remodeling, with 
potential value as a future adjunctive biomarker for treatment response.

Our results underscore the potential clinical value of pixel-based 
vascular quantification. In the endovascularly treated group, 
we identified a statistically significant increase in both segmented 
and refined vessel pixels post-treatment, suggesting vascular 
remodeling beyond the immediate site of aneurysm occlusion. 
Importantly, while vascular changes are expected following 
intervention, our method offers a systematic, quantitative way to 
assess such changes from standard imaging data. Rather than 
replacing hemodynamic modeling, pixel-based quantification 
provides an accessible surrogate for morphological remodeling, with 
potential value as a future adjunctive biomarker for treatment 
response. Prior imaging studies have linked post-intervention 
vascular geometry changes, such as vessel dilation, curvature, or 

FIGURE 3

Pixel-based analysis of preoperative and postoperative angiographic images in the endovascular treatment group. (A) Segmented blood vessel pixels 
show a statistically significant increase postoperatively (p = 0.034, Student’s t-test). (B) Refined (denoised) pixel count also increases significantly 
following treatment (p = 0.017, Student’s t-test). Bars represent group means; whiskers denote ±1 standard deviation. This plot is not a traditional 
boxplot but illustrates mean-centered group differences and variability. p-values are annotated above the comparisons.
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angular remodeling, to remodeling processes, supporting the 
plausibility of using segmented surface area as a morphological 
surrogate in this context (26, 27). This may reflect altered 
hemodynamics, compensatory vessel dilation, or flow 

redistribution  - phenomena previously linked to endothelial 
responses and arterial wall adaptation following flow diverter 
placement (5, 28). It is important to clarify that, in the context of this 
study, vascular remodeling refers specifically to image-based 

TABLE 1  Summary of pre- and postoperative segmented and refined pixel counts for endovascular and neurosurgical treatment groups, including 
p-values.

Treatment 
group

Preoperative 
segmented 

pixels (Mean ± 
SD)

Postoperative 
segmented 

pixels (Mean ± 
SD)

p-value 
(segmented)

Preoperative 
refined pixels 
(Mean ± SD)

Postoperative 
refined pixels 
(Mean ± SD)

p-value 
(refined)

Endovascular 15.098 ± 9.457 17.625 ± 10.701 0.034 8.274 ± 4.090 9.739 ± 4.259 0.017

Neurosurgical 13.271

(median)

13.352

(median)

0.929 6.398

(median)

6.368

(median)

0.745

FIGURE 4

Pixel-based analysis of preoperative and postoperative angiographic images in the neurosurgical treatment group. (A) Segmented pixel counts do not 
differ significantly between pre- and postoperative images (p = 0.929, Mann-Whitney U test). (B) Refined pixel counts also show no statistically 
significant change (p = 0.745, Mann-Whitney U test). Bars represent group means; whiskers denote ±1 standard deviation. This plot is not a traditional 
boxplot but illustrates mean-centered group differences and variability. p-values are annotated above the comparisons.

FIGURE 5

Comparison of postoperative angiographic images between endovascular and neurosurgical treatment groups. (A) Segmented pixel counts are higher 
in the endovascular group, but without statistical significance (p = 0.491, Mann-Whitney U test). (B) Refined pixel counts also show no significant 
difference between the groups (p = 0.080, Mann-Whitney U test). Bars represent group means; whiskers denote ±1 standard deviation. This plot is not 
a traditional boxplot but illustrates mean-centered group differences and variability. p-values are annotated above the comparisons.

https://doi.org/10.3389/fneur.2025.1650932
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Rotim et al.� 10.3389/fneur.2025.1650932

Frontiers in Neurology 07 frontiersin.org

morphological changes, namely, differences in segmented surface 
area observed on angiographic images, and does not directly capture 
functional or histological vessel wall adaptation. Previous studies 
have reported post-treatment vascular remodeling following flow-
diverter placement, often linked to endothelial response and altered 
hemodynamics, particularly changes in wall shear stress and local 
flow distribution (5, 28). While our study cannot directly confirm 
these physiological changes, the observed increase in segmented 
vessel area may serve as a surrogate imaging marker. Nonetheless, 
we  acknowledge that this finding requires validation through 
correlation with direct hemodynamic parameters in future studies. 
In contrast, the neurosurgical group showed no statistically 
significant change, suggesting that microsurgical clipping may exert 
a more focal and mechanically stable impact on local vasculature, 
consistent with previous findings that highlight its durability and 
limited impact on adjacent vascular territories (6). In addition, while 
the increase in segmented and refined pixel counts reached statistical 
significance, the corresponding effect size (Cohen’s d = 0.35) was 
small. This suggests that the observed morphological changes were 
modest. In the context of aneurysm follow-up imaging, even subtle 
post-treatment modifications may carry prognostic value, but 
further research is needed to determine their true clinical significance.

Clinically, these findings support the utility of machine-learning-
enhanced imaging analysis as a powerful adjunct to standard 
postoperative evaluation. Traditional visual assessment of angiograms 
often lacks reproducibility and is subject to observer variability. The 
integration of tools like WEKA allows for quantitative, objective 
comparisons of vascular states over time, potentially improving 
decision-making around follow-up imaging, retreatment, or 
surveillance strategies. Compared to subjective classifications such as 
the Raymond-Roy occlusion scale, pixel-based segmentation enables 
continuous, high-resolution quantification of vascular structures, 
which may be particularly valuable in borderline or ambiguous cases. 
This approach may complement or even enhance conventional 
occlusion grading by providing objective, numerical indicators of 
vascular change that extend beyond simple binary or categorical 
scales. Importantly, this methodology has the potential to substitute 
or augment several aspects of current practice: first, by offering 
automated measurements where radiologists currently rely on visual 
estimation; second, by detecting subtle hemodynamic changes that 
may precede clinical or radiographic recurrence; and third, by 
enabling standardized comparisons in multicenter trials where visual 
assessment may vary. From a technical standpoint, the segmentation 
pipeline based on WEKA, Fiji/ImageJ, and Python post-processing 
provided reliable vessel detection and noise reduction. The apparent 
discontinuities in segmented images are related to classifier specificity 
thresholds and projection artifacts, particularly in regions of low 
contrast or overlapping structures. These were mitigated through 
post-processing to remove noise and non-connected regions. 
Quantitative pixel counts were derived from these refined 
segmentations to ensure consistency. Although not yet fully 

automated, the ability to segment angiographic datasets with relatively 
limited training data demonstrates the accessibility and adaptability 
of this approach across centers. Once refined and validated on larger 
datasets, this pipeline could be  integrated directly into radiology 
workstations, enabling real-time quantitative feedback during 
aneurysm follow-up.

Future directions should include the integration of CNNs and 
semi-supervised learning architectures capable of learning from 
larger, more heterogeneous datasets. CNNs have already demonstrated 
superior performance in radiology, particularly in neurovascular 
applications, enabling pixel-level classification and large-scale pattern 
recognition with minimal human input (29, 30). These methods offer 
improved generalizability and reduced manual burden, while AutoML 
frameworks may further streamline segmentation and post-
processing, enabling high-throughput analysis in both research and 
clinical settings. Importantly, quantitative tools such as this have the 
potential to enhance reproducibility, scalability, and precision in 
aneurysm assessment, which are all essential pillars of emerging 
precision medicine paradigms.

The broader implication is clear: as we move toward precision 
medicine in neurovascular care, machine learning will play an 
essential role in transforming how vascular pathologies are detected, 
quantified, and monitored. This study provides foundational evidence 
that pixel-based, machine-learning-guided segmentation can detect 
subtle, treatment-induced vascular changes, offering a reproducible, 
scalable alternative to subjective image interpretation. As AI continues 
to be integrated into medical workflows, attention must also be paid 
to reproducibility, bias mitigation, and validation across diverse 
clinical populations and institutions (31). While preliminary, these 
results validate the clinical feasibility of integrating AI-driven tools 
into routine neuroimaging workflows and reinforce the importance of 
interdisciplinary collaboration among neurosurgeons, 
neuroradiologists, and data scientists. It is important to contextualize 
our findings within the baseline anatomical and clinical differences 
between groups. The neurosurgical cohort presented with larger and 
more complex aneurysms on average, including a higher proportion 
of lesions exceeding 7 mm. These anatomical differences likely 
contributed to observed variations in clinical course, such as longer 
hospitalization, and may also influence the extent and pattern of 
vascular remodeling. While hemodynamic data were not uniformly 
available, these morphometric observations provide additional 
interpretive depth and emphasize the importance of future prospective 
data collection.

As machine learning techniques evolve, future research should 
focus on developing fully automated, scalable pipelines that incorporate 
deep learning architectures for real-time, high-throughput angiographic 
analysis. Such systems could improve reproducibility and reduce 
observer dependence. Moreover, validation across larger, multicenter 
and heterogeneous datasets will be essential to ensure robustness and 
generalizability. Ultimately, pixel-based vascular analysis may 
contribute to the development of standardized imaging biomarkers to 

TABLE 2  Post-treatment intergroup comparisons of segmented and refined pixel counts.

Metric Endovascular
(Median [95% CI])

Neurosurgical
(Median [95% CI])

p-value Effect size
(r)

Segmented pixels 15.622 [10.699–22.485] 13.352 [9.998–16.582] 0.491 0.10

Refined pixels 9.844 [7.172–12.291] 6.368 [5.337–8.216] 0.080 0.24
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assist in post-treatment surveillance, vascular remodeling assessment, 
and clinical decision support in neurovascular care.

While this study provides compelling early evidence for the 
application of machine learning in postoperative aneurysm 
assessment, several important limitations must be acknowledged to 
contextualize the findings and guide future research. First, the 
retrospective and single-center design limits the external validity of the 
results. Although the inclusion of 60 patients offers a meaningful 
dataset for exploratory analysis, a larger, multicenter cohort would 
strengthen statistical power, enhance generalizability across diverse 
clinical contexts, and reduce the impact of site-specific biases. 
Additionally, variability in baseline characteristics, such as age, sex, 
and pre-treatment symptom duration, was not controlled, potentially 
introducing confounding effects. Second, certain complex aneurysm 
cases were excluded due to their eligibility for only one treatment 
modality, which may have skewed the comparative analysis between 
surgical and endovascular outcomes. This selection bias could affect 
the observed pixel-based differences in vascular remodeling. One 
particularly illustrative case involved a patient excluded due to 
non-adherence to dual antiplatelet therapy, resulting in flow-diverter 
thrombosis and a fatal outcome. This underscores the clinical 
importance of post-procedural compliance, an often underestimated 
but critical factor in long-term treatment success that merits further 
study. Third, socioeconomic and systemic variables known to influence 
aneurysm behavior, access to care, and long-term outcomes were not 
examined. Future studies should aim to integrate these dimensions to 
better reflect the multifactorial nature of neurovascular disease 
progression and recovery. Fourth, while all interventions were 
performed by the same neurosurgeon and interventional radiologist 
to maintain procedural consistency, this design limits the ability to 
assess inter-operator variability. In real-world, multi-center 
environments, operator experience, technique, and protocol adherence 
can significantly impact procedural outcomes. Fifth, variability in 
image acquisition, such as differences in contrast injection timing, 
patient positioning, and the technical parameters of angiographic 
systems, was minimized in this study by using a single Siemens biplane 
device under standardized settings. However, the generalizability of 
the segmentation model across different vendors (e.g., Philips, GE) 
and acquisition protocols remains untested. Focusing exclusively on 
MCA aneurysms limits the generalizability of our findings to other 
aneurysm locations, which may present distinct morphological and 
imaging characteristics. Cross-platform reproducibility should be a 
key focus in future validations. Sixth, image quality and signal-to-
noise ratio (SNR) were not formally assessed. Although the WEKA 
classifier was trained on a diverse dataset, its performance under 
conditions of low contrast or image degradation remains unknown. 
Evaluating model robustness under suboptimal imaging conditions 
will be essential for clinical translation. Seventh, and most critically 
from a technical standpoint, the machine learning pipeline employed 
in this study was semi-manual and lacked external validation. WEKA’s 
segmentation framework, although accessible and reproducible, 
depends heavily on manual classifier training and preprocessing steps 
such as rotation correction, contrast alignment, and resizing. These 
operations are labor-intensive and limit scalability. Moreover, the 
model’s performance was not tested on an independent dataset, 
leaving its generalizability and overfitting risk unaddressed. In future 
studies, full automation via deep learning models (e.g., convolutional 
neural networks) and validation on external, multi-institutional 

datasets are required to support clinical integration. Additionally, 
while all angiograms were acquired using standardized parameters, the 
influence of residual technical variables, such as injection timing, 
contrast dispersion, and patient positioning, cannot be completely 
excluded. As such, the observed increase in segmented vessel area may 
be  influenced not only by true vascular remodeling, but also by 
imaging-related artifacts. Our current pixel-based approach lacks 
direct validation against physiological hemodynamic indicators, which 
limits the interpretability of the findings. Importantly, as this 
methodology evolves, it holds promise for the development of 
standardized, quantitative imaging biomarkers of vascular remodeling 
and aneurysm occlusion. The single-center design and limited sample 
size, particularly in the endovascular group, limit the generalizability 
of our findings. While procedural standardization was implemented 
to reduce institutional bias, the sample size may still be underpowered 
to detect nuanced inter-group differences. Furthermore, although 
we  minimized overfitting by avoiding iterative tuning on the full 
dataset, small samples inherently constrain the robustness of machine 
learning outcomes. Future multi-center studies with larger, more 
heterogeneous populations will be  essential for validation. An 
additional limitation is the potential influence of image preprocessing 
on pixel counts. Although the same reviewer applied standardized 
rotation, cropping, and contrast settings for each image pair, manual 
operations may still introduce minor variability unrelated to biological 
remodeling. Furthermore, the manual nature of image preprocessing 
poses potential variability if applied by multiple users. Future work will 
include consistency checks across reviewers to validate reproducibility. 
Future studies will explore automated, standardized preprocessing 
workflows to reduce this source of bias. Future studies will benefit 
from more standardized and automated pipelines that reduce observer 
dependence and increase reproducibility. Additionally, the reliance on 
2D DSA images without volumetric or hemodynamic reconstruction 
limits the anatomical and physiological interpretability of observed 
surface area changes. Additionally, our method simplifies inherently 
3D vascular structures into a 2D representation, which may introduce 
variability related to projection angle and segmentation artifacts. 
While standardized imaging protocols mitigate some of this variability, 
future work should include volumetric or cross-sectional imaging to 
capture remodeling with greater anatomical fidelity.

Despite these constraints, this study serves as a robust proof-of-
concept for integrating AI-driven tools into neurovascular imaging 
workflows. At this stage, the approach should be  considered 
exploratory; however, with proper validation and refinement, it may 
reach the level of a class IIb clinical decision-support tool, particularly 
for post-treatment surveillance in endovascular therapy. These 
findings lay the foundation for future work aimed at scalable, 
automated analytics to support data-informed aneurysm management.

Conclusion

This pilot study demonstrates the feasibility of WEKA-based 
machine learning segmentation for quantifying post-treatment 
vascular changes in patients with middle cerebral artery aneurysms. 
In a retrospective cohort of 60 patients, the method detected 
postoperative increases in segmented and refined pixel counts in a 
majority of cases, particularly in the endovascular group. These image-
based morphological changes may reflect underlying vascular 
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remodeling, although their precise clinical and hemodynamic 
significance remains to be validated.

While promising, the methodology requires further development 
to improve reproducibility and clinical applicability. Future work should 
aim to automate preprocessing steps, incorporate advanced machine 
learning models, and validate findings across larger, multicenter datasets.
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