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1 Introduction

Parkinson’s disease (PD), also known as “shaking palsy,” is the second most common
neurodegenerative disease in the world. Its main symptoms are divided into motor: static
tremor, bradykinesia, postural balance disorder, and myotonia (1); and non-exercise:
constipation, memory loss, frequent urination, urgent urination, depression, decreased
sense of smell (2), etc. Epidemiological data show that both PD incidence rate and
prevalence rate show a significant age-dependent growth trend (3, 21, 25). Male incidence
rate is 1.5 times higher than female (29). Although the average survival time of patients
after diagnosis is long and most of them die due to complications, due to the significant
difficulties in early diagnosis, most patients have irreversible loss of dopaminergic neurons
in substantia nigra when they are diagnosed. Limited by the existing medical cognition and
technical level, there is no radical cure for Parkinson’s disease at present. Clinical treatment
still takes symptomatic intervention and delaying disease progress as its core goal. With
the acceleration of global human-aging process, the number of Parkinson’s disease patients
continues to rise, which brings severe challenges to medical resource allocation and long-
term care system. Therefore, achieving early and precise diagnosis of Parkinson’s disease
is of great clinical significance for improving the cure rate of the disease, prolonging the
survival period of patients and enhancing their quality of life.

The current clinical diagnosis of Parkinson’s disease mainly relies on typical symptom
recognition, but this diagnosis method based on subjective symptom description of
patients has significant limitations. The heterogeneity of symptoms between individuals
can easily lead to missed diagnosis and misdiagnosis. In addition, the early symptoms of
Parkinson’s disease are hidden and some symptoms overlap with nervous system diseases
such as multi-system atrophy and progressive supranuclear palsy (PSP), which further
aggravates the difficulty of diagnosis. Although multimodal medical imaging techniques
such as ultrasound computed tomography (CT), magnetic resonance imaging (MRI)
have been applied to the diagnosis of Parkinson’s disease, due to the lack of specific
biology markers, the diagnosis based solely on conventional imaging features is still highly
dependent on clinical experience. This diagnostic mode not only has insufficient sensitivity
and poor stability, but also often has atypical imaging manifestations, which is difficult to
meet the precise needs of early diagnosis. Finding an objective and accurate inspection
method is a problem to be solved at present.
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With the rapid development of artificial intelligence technology
(22), the medical auxiliary diagnosis system model based on
multimodal images has opened up a new path for the early
diagnosis of Parkinson’s disease. Deep mining of massive medical
image data through advanced algorithms such as deep learning
and convolutional neural network can effectively identify atypical
microscopic image features of early Parkinson’s disease and
significantly improve diagnostic efficiency and accuracy (4,
30). Compared with traditional diagnosis methods, artificial
intelligence-assisted diagnosis system shows higher stability and
reliability, which provides an objective and quantitative basis for
clinical decision-making.

In view of the key position of early diagnosis in the
treatment of Parkinson’s disease, the core of breaking through
the bottleneck of existing diagnostic technology lies in integrating
multimodal medical imaging technologies such as Positron
emission tomography (PET), MRI, and single photon emission
computed tomography (SPECT) (28, 32). Each imaging technology
can obtain disease information from metabolism, structure,
function and other dimensions based on different principles.
Through technological integration, complementary advantages can
be achieved, which is helpful for comprehensively capturing disease
characteristics. On this basis, an early diagnosis auxiliary model
framework based on artificial intelligence is constructed to deeply
analyze the potential features in multimodal image data through
optimization algorithms, which is expected to further improve
the accuracy and stability of diagnosis. By combining multimodal
medical imaging and artificial intelligence technology, it provides
clinicians with efficient and reliable intelligent decision-making
tools to promote the development of accurate and intelligent early
diagnosis of Parkinson’s disease.

2 Current status of multimodal
medical imaging artificial
intelligence-assisted early diagnosis of
Parkinson’s disease

In recent years, the cross-fusion of artificial intelligence
and medical images has brought new breakthroughs for early
diagnosis of PD. For example, rediomics can extract quantitative
features such as texture and shape from medical images with
high-throughput manner, which are invisible to the naked eye,
and transform images into analyzable data matrices; artificial
intelligence algorithms, especially deep learning models, can
deeply mine these high-dimensional features to achieve accurate
pattern recognition.

2.1 Research progress of artificial
intelligence combined with MRI in PD
diagnosis

As a high-resolution structural imaging technology, magnetic
resonance imaging (MRI) can provide high-resolution three-
dimensional images of patients’ brains, which helps to enhance the
interpretability of models (33). For example, the significance map
of convolutional neural network (CNN) generated by Camacho
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et al. (5) through MRI images, with an area under the receiver
operating characteristic curve (AUC-ROC) of 0.87, clearly reveals
the key function of frontal cortex and several deep gray matter
structures in the diagnosis of early Parkinson’s disease. However,
similar to other studies based on retrospective data, this study
has the problem of heterogeneity of inclusion/exclusion criteria
and overall diagnostic criteria for Parkinson’s disease, which
may weaken the adaptability between early characteristic clinical
picture and diagnostic criteria for Parkinson’s disease. With the
continuous development of imaging omics technology, the clinical
diagnosis process has gradually evolved to carry out targeted
multimodal MRI evaluation after routine MRI examination. The
fused multimodal MRI data can provide effective support for the
specific diagnosis of early Parkinson’s disease with the advantage
of machine learning algorithm in big data integration analysis.
Chougar et al. (6) used MRI data to build a machine learning
algorithm, and successfully distinguished Parkinson’s disease (PD),
progressive supranuclear palsy (PSP) and multi-system rhomboid
contraction (MSA), especially in distinguishing PD from MSA.
However, MRI misdiagnosis was also found during the study.
Therefore, in the follow-up study, high-field MRI or dynamic
enhanced MRI technology can be explored to further tap the
potential of multimodal MRI combined with artificial intelligence
in the specific diagnosis of Parkinson’s disease. In addition, Ye
et al. (7) used two different structural MRI (sMRI) sequences
(T2-FLAIR and T1WI) to build an imaging model, and achieved
AUC of 0.896 and 0.899, respectively, which confirmed the good
clinical practicality of the model through decision curve analysis.
Pahuja and Prasad (8) focused on the optimization of model
framework, and explored PD classification performance under
different frameworks based on T1-weighted MRI and single photon
emission computed tomography (SPECT) images. Based on the
above studies, it is not difficult to find that the clinical effect
of Chougar et al. (6) may not be satisfactory in the case of
classification characteristics. However, when meeting the clinical
effect, such as Ye et al. (7), the data limitations are relatively
large; As for the study by Camacho et al. (5), although it also
has clinical limitations, thanks to the introduction of CNN, it is
possible to determine high-precision markers for specific regions
and enhance the interpretability of the model. Therefore, MRI, as
a high-resolution structural imaging technique, can enhance the
interpretability of the model, but there is a problem of heterogeneity
in diagnostic criteria in retrospective studies; meanwhile, MRI
technology can assist in the classification of different diseases
and subtypes, but it is also limited by clinical application. With
the development of imaging omics, multimodal MRI evaluation
has become a clinical trend, and its fusion data combined with
machine learning algorithm can effectively assist early diagnosis of
Parkinson’s disease.

2.2 Research progress of artificial
intelligence combined with PET/MRI in PD
diagnosis

One of the core strategies for accurate diagnosis of early
Parkinson’s disease is to explore its characteristic differences from

similar diseases. Magnetic resonance imaging (MRI) is often used

frontiersin.org


https://doi.org/10.3389/fneur.2025.1650968
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Lu et al.

to assist in the classification of Parkinson’s disease subtypes due to
its ability to image high-resolution anatomical structures. Positron
emission tomography (PET) imaging technology can quantify the
function of dopaminergic system and glucose metabolism pattern,
and provide specific biology markers. The multimodal fusion of the
two not only realizes the correlation analysis between function and
structure, but also significantly improves the diagnostic accuracy,
making PET-MRI technology an important tool to identify
similar neurodegenerative diseases. Sun et al. (9) showed that
the constructed multimodal model outperformed the single-modal
model regardless of how PET and MRI data were combined and
sequenced. The developed PET/MRI radiomics-clinical combined
model achieved an area under the receiver operating characteristic
curve (AUC) of 0.993, fully demonstrating the significant potential
of this technology in the clinical differentiation of Parkinson’s
disease (PD) and multiple system atrophy (MSA). Another study
focused on [18F] FDG PET/MRI (10), by training an artificial
intelligence model integrating metabolic, structural and functional
information, confirmed that the comprehensive imaging model
was significantly superior to the simple clinical diagnosis model
in distinguishing PD from MSA, which mutually confirmed the
conclusions of Sun et al. (9). However, the study also points out
that although automatic region of interest segmentation improves
efficiency, its accuracy is still not as good as manual labeling, and
finding a more accurate automatic sketching algorithm is the key to
achieve fully automated diagnosis. Silva-Rodriguez et al. (11) used
[18F] FDGPET/MRI technology to evaluate the effectiveness of
structural MRI (sMRI) and diffusion magnetic resonance imaging
(dAMRI) assisted by machine learning algorithms in detecting
mild cognitive impairment (PD-MCI) and dementia (PDD) in
Parkinson’s disease, and found that dMRI has more advantages in
revealing microstructural changes in early brain regions of patients.
It is worth noting that neither of the first two studies included
the gold standard of pathological results. Sun et al. (9) conducted
a retrospective study, sample heterogeneity cannot be ruled out.
Hu et al. (10) also cannot guarantee the accuracy of automatic
segmentation. While the third study (11) lacked control group and
follow-up data, and only conducted a cross-sectional study. To sum
up, in order to fully utilize the application value of the hybrid
PET/MRI technology in the early diagnosis of Parkinson’s disease, it
is urgent to establish a large-scale and long-term follow-up control
database, providing solid data support for the feature extraction
and optimization of artificial intelligence models.

2.3 Research progress of artificial
intelligence combined with PET/CT to
assist PD diagnosis

At present, it is believed that the main cause of Parkinson’s
disease is the loss of dopaminergic neurons in substantia nigra.
For early Parkinson’s patients (23), the new PET/CT technology
has higher resolution on minor changes in small lesions (24), such
as dopamine transporter (DAT) or presynaptic membrane vesicle
monoamine transporter (31, 34), and is more sensitive to striatal
dopaminergic neurons. Combined with artificial intelligence
technology, it can help ultra-early Parkinson’s diagnosis. Comte
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et al. (12) used [18F] FDOPA PET/CT to mark scans with or
without dopaminergic neurons, and selected biology markers to
build a regression model. In the external test set, the study achieved
an AUROC of 0.96, confirming the potential of PET/CT imaging
techniques in combination with artificial intelligence to identify
early Parkinson’s dopaminergic neurons. However, this research
has not undergone clinical trials, and the specific performance of
the model is also uncertain due to the influence of the research
methods. Seo et al. (13) analyzed the changes of striatal dopamine
transporter (DAT) uptake in PD by PET/CT imaging technology,
and found that DAT uptake was related to the decrease of glucose
metabolism in brain region, while only some visual functions
were significantly affected by DAT, and DAT uptake decreased in
the order of PP AP and caudate nucleus, and then the average
standard uptake ratio decreased, resulting in visuospatial cognitive
dysfunction. However, this study is still retrospective, and the
control of some variables and the universality of the results are not
up to the expected level. We also learned that, as mentioned in
the Wu et al. (14) study, the 3D parameters of the new striatum
of PD patients included in the study based on good consistency
of quantitative parameters between 11C-CFT PET/CT planar and
3D images are more associated with disease progression than
planar parameters, providing another potential evidence for future
Parkinson’s diagnosis.

2.4 Summary

With the rapid iteration of artificial intelligence technology,
intelligent diagnostic models based on multimodal medical
images have become an important research direction for early
identification of Parkinson’s disease (PD), and new high-
performance models are constantly emerging. However, the current
single medical imaging technology still has significant limitations
in clinical application: although computed tomography (CT)
and magnetic resonance imaging (MRI) are widely used, they
lack specificity in detecting the loss and dysfunction of tiny
neurons in the early stage of PD, and their imaging markers
tend to overlap with other neurodegenerative diseases. Although
functional magnetic resonance imaging is highly sensitive to
changes in brain function, it is difficult to achieve large-scale
clinical promotion because of its complex technical operation and
strong device dependence. Positron emission tomography (PET)
and single photon emission computed tomography (SPECT) can
visually reflect the functional status of dopaminergic system in
the brain, but their clinical application is limited due to high
examination cost, radiation exposure risk and low popularity of
equipment. In view of the above technical bottlenecks, building
an artificial intelligence model integrating multimodal image data
has become a breakthrough direction. Based on the existing
multimodal combinations such as MRI-PET, MRI-SPECT and
PET-CT, it is expected to achieve significant improvement in
model stability and diagnostic accuracy by deeply integrating
complementary information of different imaging technologies
(such as high-resolution anatomical structure of MRI and
metabolic and functional specificity of PET/SPECT) (20). This
unified multimodal model can not only enhance the recognition
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ability of early pathological features of PD, but also provide richer
and more representative data sets for model verification, thus
providing reliable technical support for early accurate diagnosis
of PD.

3 Our thoughts

Based on the development status and bottleneck of multimodal
artificial intelligence model in the field of early diagnosis of
Parkinson’s disease, building an end-to-end intelligent screening
system for early Parkinson’s disease has become an important path
to realize visual intelligent diagnosis and decision-making in the
whole clinical process. At the same time, relying on large-scale
Parkinson’s patient queue data for deep learning model training and
digging up potential disease characteristic patterns, it is expected to
find biology markers with high specificity and sensitivity for early
diagnosis. By optimizing the algorithm architecture and model
parameters, we can promote the transformation of Parkinson’s
disease diagnosis and treatment mode to intelligence and precision,
and bring new hope for overcoming early diagnosis problems and
improving patient prognosis.

3.1 Organically integrate multimodal
images

In the early diagnosis of Parkinson’s disease, the multimodal
imaging fusion task such as MRI, PET, CT can be systematically
divided into four core steps. The first is the acquisition
and preprocessing of raw data, converting the collected data
into the Digital Imaging and Communications in Medicine
(DICOM) standard format, verifying the integrity of metadata,
and performing denoising processing for PET and CT data; using
rotation translation, ANTs, etc. to achieve spatial registration,
bridging resolution differences, and enhancing image contrast
to highlight edge features. The second is the feature fusion
stage, adopting multi-dimensional fusion strategies: directly
superimposing MRI and PET images through image registration;
combining MRI volume features with PET metabolic features and
other different modal features; using deep learning algorithms to
achieve more complex feature fusion.

Based on the above content, further supplements are given.
It is recommended that the selection parameters of the spatial
registration threshold be set to rigid registration: the maximum
mutual information error threshold was 0.3 bits to balance accuracy
and efficiency and nonlinear registration were adopted, and the
original RMSE root mean square error threshold was <2.0 mm (15)
to meet the resolution requirements of substantia nigra nucleus
in Parkinson’s diagnosis. In addition, it is recommended to use
third-order B-spline interpolation to preserve image texture to
help better identify specific markers. Based on existing literature
(16, 17) and theoretical analysis in this paper, we recommend using
a deep learning-based U-Net architecture to process PET images,
with input as 4D dynamic time frames, and the loss function
employing Poisson and SSIM weighted (weight ratio of 0.7:0.3) to
better preserve functional metabolic texture. Additionally, a multi-
channel local attention module is developed for feature extraction
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from CT images. A five-fold stratified cross-validation strategy
is adopted, along with the NAdamW optimizer configuration,
to avoid training instability caused by differences in gradient
magnitudes between modalities. Since clinical trials have not been
carried out in this paper, the real parameters are expected to be
supplemented and improved in real applications.

3.2 Establish an end-to-end artificial
intelligence model for early diagnosis of
Parkinson’s disease based on multimodal
images

The construction of an end-to-end intelligent early Parkinson’s
diagnosis model based on standardized multimodal image data can
be promoted according to the following processes. First, feature
extraction of multimodal data is carried out, and a combination of
manual and deep learning is adopted. The CT ventricular volume
and PET standard uptake values were extracted manually, and
the global features of each mode were obtained by using the pre-
training model. With the help of Python library, 3D Slicer, MONAI
and other tools, various types of radiological features such as shape,
texture and functional metabolism can be extracted. Secondly,
the model architecture is designed, and 3D CNN is selected to
process volume image based on its ability to stably maintain good
accuracy (18), Transformer to process multimodal sequences and
global features, and a multi-branch fusion network is constructed.
By designing key modules, multi-level image fusion is realized to
form an end-to-end network in which the original data can be
input and the diagnostic results can be output. Then, the model
training and optimization are carried out, and the continuous and
discrete features are randomly enhanced. The loss function and
optimizer are selected, and the model with the best performance in
the verification set is retained under the scenario of multi-center
data sharing. Finally, the model is verified and iterated, taking
AUG, sensitivity and accuracy as evaluation indicators, visualizing
key areas to improve interpretability, and regularly fine-tuning
according to new case data to realize dynamic update of the model
and ensure continuous optimization of diagnostic efficiency.

3.3 Applying end-to-end models to clinical
diagnosis of Parkinson’s disease

The application of end-to-end intelligent diagnosis model in
clinical auxiliary diagnosis of Parkinson’s disease needs to be
promoted from three aspects: visual integration, system docking
and clinical verification. At the level of visual integration, by
generating heat maps of MRI images, the key lesion areas such as
iron deposition in the substantia nigra and density changes can be
visually highlighted. After dimensionality reduction of multimodal
image features, the distribution differences between healthy people
and patients were displayed by scatter diagram, and the decision-
making basis of the model was clearly presented. Moreover, by
calculating the contribution values of each pattern to the final
diagnosis and visual attention weights, the model’s interpretability
is enhanced to ensure the reliability of the diagnostic logic. For

frontiersin.org


https://doi.org/10.3389/fneur.2025.1650968
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Lu et al.

example, using GradientSHAP technology to generate heatmaps
primarily focused on striatal dopamine transporter activity
improves interpretability. The model shall be deeply integrated
with the picture archiving and communication system (PACS)
system during system docking. On the one hand, it ensures that
the model can directly analyze standard DICOM format data and
unify metadata cleaning rules of different manufacturers. On the
other hand, encrypted communication and patient anonymity are
adopted, only necessary metadata such as age and gender are
reserved, data access rights are strictly restricted to authorized
medical care and development teams, and operation logs are
recorded. In addition, a doctor feedback channel is established to
collect cases of misdiagnosis and missed diagnosis in real time, and
the model is continuously optimized through automatic sample
recovery function and regular performance report of PACS system.
In the clinical verification stage, case samples can be collected from
several large hospitals to verify the sensitivity and accuracy of the
model through independent input data; or carry out controlled
trials with traditional diagnostic methods, and use statistical means
to evaluate the clinical value of the model, so as to provide a solid
basis for its clinical promotion.

In fact, the aforementioned viewpoints still have deficiencies
in clinical application, so we further improved the relevant
mechanisms. First, retrospective data validation was conducted
to check if the technical test imaging data can be seamlessly
transmitted and to confirm its bidirectional synchronization with
the RIS system. Second, prospective comparative studies were
carried out, such as rolling deployment in three large hospitals
each month, using real-time tracking of diagnostic decision-
making paths through doctor group interviews. Finally, federated
learning frameworks were utilized to achieve cross-institutional
model optimization. Despite this, we still acknowledge the potential
shortcomings of this deployment strategy.

We believe that the future early Parkinson’s clinical diagnosis
model will realize the automation and intelligence of the
whole process to build a closed-loop system from data input
to decision output. This will help clinicians to efficiently use
artificial intelligence models to accurately judge the condition in
PACS environment, and promote the diagnosis and treatment of
Parkinson’s disease to a new height.

4 Challenges of early diagnosis of
Parkinson'’s disease based on artificial
intelligence

At present, artificial intelligence models have shown great
advantages in screening, diagnosis and treatment of early
Parkinson’s disease, but (26, 27) and challenges.

4.1 Interpretability of artificial intelligence
models
Although artificial intelligence technology is widely used in the

medical field at present, in order to convincingly prove the great
potential of artificial intelligence in early Parkinson’s diagnosis, a
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clearer and more visual data output interpretation system is needed,
which is one of the difficulties faced by artificial intelligence at
present. We can only effectively observe the input and final output
results of data, how to get this result, and the unclear principle
behind the result is like a “black box” (4), which also leads to
people’s difficulty in understanding the processing flow to a certain
extent. Coupled with the small impact of changing the internal
structure of the model on the algorithm performance, whether the
artificial intelligence model can be widely used in the medical field
depends on whether it can overcome the uninterpretability of the
large algorithm model.

4.2 Standardized data collection and
processing

In the early diagnosis of Parkinson’s disease, standardized data
acquisition and processing is the key foundation for building
an efficient multi-modal artificial intelligence model. Different
medical imaging technologies have significant differences in data
acquisition stage. The imaging principles, equipment parameters
and scanning protocols of CT, MRI, PET, and SPECT are different.
In addition, the operation specifications and equipment models of
different medical institutions are different, resulting in the lack of
uniform standards for original data in terms of format, resolution
and gray value, which brings great challenges to subsequent data
integration and model training. In the process, data standardization
process is particularly important. First of all, the original data
must be converted into DICOM standard format to ensure the
standardization of data storage and transmission. At the same
time, strict quality control shall be carried out to eliminate
unqualified data with excessive noise and obvious artifacts. Before
multimodal data fusion, spatial registration techniques, such as
affine transformation and nonlinear registration based on ANTs,
must be used to eliminate the spatial positional deviations between
different modal images, and interpolation algorithms should be
adopted to unify the resolution. In addition, the quantitative data
of radioactive tracers for PET and SPECT shall be standardized to
eliminate measurement errors caused by different equipment and
batches of tracers. Only by establishing a perfect standardized data
acquisition and processing system can the stability and diagnostic
efficiency of multimodal models be effectively improved.

4.3 Ethical and legal issues

As an emerging technology, artificial intelligence faces many
ethical and legal challenges in the development process. Model
training relies on the continuous updating of a large amount of
data, but if the principle of informed consent is not strictly followed
in data collection, it will easily lead to the risk of data abuse and
leakage (19). At the same time, the lack of responsibility definition
mechanism has become a prominent problem. When artificial
intelligence technology generates benefits or causes damage, there
is no clear legal basis for the division of responsibilities among
developers, users and the system itself. In addition, at present,
the regulation of artificial intelligence technology by international
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laws and regulations lags behind, and a perfect data tracing
and supervision system has not yet been established. Under the
traditional legal framework, the restraint mechanism for non-
human subjects is almost blank, which leads to a large number of
regulatory blind spots in artificial intelligence applications. These
problems make the large-scale promotion of artificial intelligence in
the medical and clinical field face great obstacles, and it is necessary
to build a safe and compliant technology application environment
through legal system innovation and ethical norms improvement.

4.4 Clinical realism

Unfortunately, the model proposed in this study is a conceptual
framework and not yet be carried out in clinical trials, so the specific
clinical application of the model is not clear. Future work will be
dedicated to filling the gap between theoretical development and
clinical application.

5 Conclusion

The continuous iteration of artificial intelligence technology
has opened up a new path for early diagnosis of Parkinson’s
disease and brought hope for optimizing treatment schemes. Future
research can deeply integrate artificial intelligence and multimodal
medical imaging technology to build an end-to-end automatic early
screening system. The system will realize seamless connection with
the medical system and achieve intelligent visualization of the
whole process from data collection to diagnosis decision. Through
this efficient and convenient diagnosis mode, it is expected to
promote the early diagnosis and treatment of Parkinson’s disease,
reduce the proportion of patients in the middle and advanced
stage, and provide a new direction for overcoming the “incurable”
problem of Parkinson’s disease.
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