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Objectives: To accurately assess the predictive ability of radiomics and deep 
learning (DL) features in intrathrombus and perithrombus regions for the risk of 
malignant cerebral edema (MCE) after acute ischemic stroke (AIS).
Materials and methods: A retrospective study was conducted, enrolling 406 
AIS patients who underwent admission CT before endovascular thrombectomy 
(EVT). Center A patients were randomly divided (7:3) into training/testing sets; 
Centers B and C formed the external validation cohort. Regions of interest (ROIs) 
of thrombus and perithrombus were manually delineated and automatically 
expanded in margin by one pixel. Four hundred twenty-eight radiomic features 
were extracted from CT images of intrathrombus and perithrombus regions, 
and 128 DL features were obtained by inputting these images into a VGG16 
architecture. Following features fusion, least absolute shrinkage and selection 
operator (LASSO) regression was employed for dimensionality reduction. 
Eleven machine learning classifiers were used for model development. Models’ 
performance was evaluated using Matthews correlation coefficient (MCC) 
and area under the receiver operating characteristic curve (AUC), with AUC 
differences tested using DeLong’s method.
Results: MCE occurred in 49 patients (12.1%). In the validation cohort, the 
logistic regression (LR) models demonstrated discriminative performance 
with perithrombus (LR-peri: MCC = 0.857, AUC = 0.891), intrathrombus, (LR-
intra: MCC = 0.328, AUC = 0.626), and combined (LR-combined: MCC = 0.41, 
AUC = 0.869) models. The LR-combined model exhibited a significantly superior 
predictive capacity to that of LR-intra (p < 0.05).
Conclusion: Perithrombus features enhance MCE prediction after AIS, enabling 
optimized medical resource allocation.
Clinical relevance statement: Emphasis is placed on the critical significance of 
radiomics extracted from the area in and around the thrombus in predicting MCE 
after AIS, which has far-reaching significance for improving patient prognosis.
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Highlights

	•	 Machine learning models related to thrombosis can effectively 
predict the occurrence of MCE after AIS.

	•	 The proposed LR-peri radiomics model reached a higher area 
under the curve (AUC: 0.891, 95% CI: 0.762–1.000).

	•	 Its application provides a beneficial approach for formulating 
personalized treatment strategies for patients with AIS.

Introduction

Stroke ranks as the second leading cause of death globally, and 
MCE is one of the severe complications, with an incidence rate of 
approximately 10% (1). Cytotoxic edema usually peaks 3 to 4 days 
after brain injury, but reperfusion of necrotic tissue can cause 
malignant edema within the first 24 h. Decompressive craniectomy 
within 48 h improves outcomes and reduces mortality in large-scale 
infarctions, but unnecessary surgery is highly invasive (2–4). Thus, 
early and accurate prediction of complications is essential.

CT is the first-line imaging modality for stroke patients on 
admission and can predict ischemic brain tissue progression. Wen et al. 
conducted a study on predicting MCE by extracting the CT radiomics 
features of the middle cerebral artery (MCA) blood supply area from 
non-contrast computed tomography (NCCT) images of patients with 
cerebral infarction. Shi et al. demonstrated that the combined Alberta 
stroke program early CT score and net water uptake (ASPECTS-NWU) 
could serve as a quantitative predictor of MCE after MCA territory 
large vessel occlusion, with a moderate positive correlation with the 
grade of brain edema, indicating that quantitative measurements of 
ASPECT score, net water uptake, and enhancement ratio based on CT 
imaging are effective predictive factors for MCE (5, 6). Prior studies 
have primarily focused on the infarct core, with less research focusing 
on the impact of the culprit thrombus and surrounding tissue on post-
stroke edema. In ischemic stroke, disruption of the blood–brain barrier 
leads to vasogenic edema, hemorrhagic transformation, and increased 
mortality. This pathological process is influenced by thrombus 
characteristics, as research indicates that thrombi with low red blood 
cell content, high fibrin levels, and elevated extracellular DNA are less 
likely to achieve first-pass recanalization (FPR). Some studies have also 
confirmed that the serum inflammatory factor levels and BBB 
disruption after AIS are associated with the occurrence of vasogenic 
cerebral edema (7). It is reasonable to assume that the characteristics of 
the thrombus and surrounding brain tissue can more precisely reflect 

the inflammatory response and BBB disruption in post-stroke brain 
tissue (8). Moreover, extracting high-dimensional quantitative radiomic 
features and deep learning features from medical images to construct 
machine learning predictive models has its advantages of reducing 
physician subjective judgment factors and improving accuracy (9–11).

Thrombus and perithrombus radiomic features can predict the 
origin and prognosis of thrombi. For example, according to our team’s 
previous research, it was found that (1) thrombus radiomic features 
could predict the origin and composition of stroke thrombi, and (2) 
the logistic regression model combining radiomic features from both 
inside and around the thrombus could effectively assess clinical 
prognosis after EVT (12–14). However, our previous studies did not 
involve deep learning features. DL features refer to high-dimensional 
data representations automatically extracted by multi-layer neural 
networks, which can effectively capture complex patterns and 
structures in the data (15). The application of deep learning in the field 
of stroke covers multiple aspects, from the detection of acute cerebral 
infarction, lesion segmentation, ASPECTS quantification, to 
prognostic prediction (16–19). In addition to imaging biomarkers, 
clinical predictors—including decreased consciousness, nausea or 
vomiting, and heavy smoking—have been associated with malignant 
middle cerebral artery (MCA) infarction in hospital-based 
cohorts (20).

This study aims to fill the gap in the research on predicting MCE 
using radiomic and deep learning features of the thrombus and its 
surrounding areas. It deeply explores the possibility of predicting the 
development of AIS into MCE based on CT thrombus region features, 
providing strong support for neurosurgeons to formulate personalized 
treatment strategies.

Materials and methods

Patients

This retrospective study adhered to the 1964 Declaration of Helsinki 
and its amendments, and was approved by our local ethics committee. 
All participating centers obtained ethics committee approval with a 
waiver of written informed consent. We analyzed data from stroke 
patients admitted to three centers (A: Shanghai Jiao Tong University 
Affiliated Sixth People’s Hospital, B: Affiliated Hospital of Nantong 
University, and C: Wuxi Second People’s Hospital) between December 
2018 and December 2023. Inclusion criteria: (1) acute stroke due to 
anterior-circulation large-vessel occlusion (LVO); (2) admission 
non-contrast computed tomography (NCCT) and computed 
tomography angiography showing visible thrombus; (3) EVT performed 
immediately after CT; (4) follow-up images of sufficient quality taken 
within 24 h post-EVT; (5) complete demographic and clinical data. 
Exclusion criteria: (1) inadequate imaging clarity due to motion or 
metal artifacts; (2) incomplete clinical records. Figure  1 shows a 
flowchart of the patient selection process. The clinical data collected 
from medical and follow-up records included age, gender, National 
Institutes of Health Stroke Scale (NIHSS) scores, lesion location, 

Abbreviations: DL, Deep learning; MCE, Malignant cerebral edema; AIS, Acute 

ischemic stroke; EVT, Endovascular thrombectomy; ROIs, Regions of interest; 

LASSO, Least absolute shrinkage and selection operator; MCC, Matthews 

correlation coefficient; AUC, Area under the receiver operating characteristics 

curve; MCA, Middle cerebral artery; NCCT, Non-contrast computed tomography; 

ASPECTS-NWU, Alberta stroke program early CT score and net water uptake; 

FPR, First-pass recanalization; DCA, Decision curve analysis.
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comorbidities (atrial fibrillation, hypertension, hyperlipidemia, diabetes 
mellitus, and coronary heart disease), and smoking history. MCE was 
defined as a midline shift of ≥5 millimeters accompanied by signs of 
local cerebral swelling (21, 22), whose identification was based on 
follow-up imaging.

CT scan and thrombosis segmentation

NCCT and CTA examinations were performed using multi-
detector CT scanners from three manufacturers: Philips (Brilliance 
ICT), Toshiba (Aquilion ONE/PRIME), and Siemens (Somatom 
Sensation). Prior to thrombus segmentation, each CT image 
underwent an intensity normalization process as described in our 
previous studies. ROIs for thrombus were outlined using ITK-SNAP 
software [Version 3.6.0; (ITK-SNAP Home1)]. Following segmentation 
of the intrathrombus areas, perithrombus areas were automatically 
demarcated by expanding the radius of the initial 1-mm ROIs. To 
ensure segmentation accuracy, thrombi were segmented by two 
radiology residents (SHW and XYX) who reached a consensus after 

1  http://www.itksnap.org/pmwiki/pmwiki.php

consultation, and their work was reviewed by a radiology attending 
physician (JXJ). Evaluators were blinded to clinical details.

Feature extraction, selection, and model 
building

After the identification of regions within and surrounding the 
thrombus, radiomic features were derived utilizing the 
PyRadiomics.2 The NCCT and CTA images of the area inside and 
around the thrombus were cropped into fully-covered 
two-dimensional images. The size of each image was adjusted to 
224 × 224 and then input into the VGG16 model. Features were 
extracted from the final fully connected layer (fc2) of the VGG16 
model, which enables the capture of high-level semantic 
representations of intrathrombus and perithrombus regions. 
Finally, 107 radiomic features and 32 deep learning features were 
extracted from the intrathrombus and perithrombus regions on 
NCCT and CTA images, respectively.

2  https://pypi.org/project/pyradiomic/

FIGURE 1

Flow chart of the patient-selection process.
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The features with p < 0.05 were retained by Mann–Whitney U 
test, and the features with correlation coefficients greater than 0.9 
were eliminated according to the Spearman correlation coefficient 
to achieve dimensionality reduction. After performing feature 
screening using the LASSO, which included radiomic features and 
deep learning features, these features were input into machine 
learning model using 11 different algorithms: Logistic Regression 
(LR), Naive Bayes (NB), Support Vector Machine (SVM), 
K-Nearest Neighbors (KNN), Random Forest (RF), Extra-Tree, 
XG Boost, Light GBM, Gradient Boosting (GB), AdaBoost, and 
Multilayer Perceptron (MLP). The five-fold cross-validation 
method was employed to verify the predictive performance of 
each model. MCC was used to screen optimal algorithm for 
constructing machine learning models. The performance of these 

models were evaluated using the ROC curve, along with the AUC, 
accuracy, precision, specificity, and other metrics. The DeLong 
test was used to statistically assess the differences in the predictive 
performance of the machine learning models (intrathrombus, 
perithrombus, and combined models). The workflow of this study 
is shown in Figure 2.

Statistical analysis

Clinical characteristics were analyzed by the t-test, Mann–
Whitney U test, or chi-squared test, as appropriate. The model’s 
predictive performance for MCE following AIS were evaluated by 
conducting ROC curve analysis to calculate metrics like the AUC, 

FIGURE 2

The workflow of this study.
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sensitivity, specificity, positive and negative predictive values, and 
DeLong’s test was employed to compare ROC curves and assess the 
model’s clinical utility via decision curve analysis (DCA).

Results

Patient characteristics

In this study, 406 AIS patients were, respectively, selected 
according to the inclusive criteria. Eligible patients from Center A 
were randomly assigned to the training group (n = 178) and the 
testing group (n = 77) at a 7:3 ratio, while those from Centers B and 
C formed the validation group (n = 151). The incidence of MCE 
after cerebral infarction was 49 cases (12.1%). Table 1 systematically 
presents the detailed demographic information of the patients in 
different cohorts classified according to the occurrence of 

MCE. There was a significant statistical difference in the National 
Institutes of Health Stroke Scale (NIHSS) score in the training 
cohort. However, there was no significant statistical difference of 
NIHSS scores in the testing and validation cohorts. There was also 
no significant statistical difference among the three groups in terms 
of other clinical features. For detailed information about the 
stroke-related characteristics, please refer to the 
Supplementary material.

Feature extraction and selection

After dimensionality reduction, a total of 12 DL features and 4 
radiomic features (including 9 CTA features and 7 NCCT features) 
were used to construct machine learning models based on 
intrathrombus image features. Regarding the models established based 
on perithrombus images, they incorporate 14 DL features and 4 

TABLE 1  Baseline clinical characteristics of the patients.

Clinical 
characteristics

Training 
(MCE−)

Training 
(MCE+)

p-value Test 
(MCE−)

Test 
(MCE+)

p-value Validation 
(MCE−)

Validation 
(MCE+)

p-value

(n = 148) (n = 30) (n = 70) (n = 7) (n = 139) (n = 12)

Age 71.72 ± 11.96 69.00 ± 11.88 0.213 62.47 ± 11.74 62.14 ± 17.22 0.946 69.58 ± 11.26 66.42 ± 11.61 0.283

NIHSS 15.08 ± 8.28 10.90 ± 6.26 0.01 13.46 ± 6.24 9.43 ± 4.58 0.101 12.05 ± 5.93 12.92 ± 5.33 0.549

Gender 0.507 1 0.763

 � Female 67 (45.27) 11 (36.67) 22 (31.43) 2 (28.57) 57 (41.01) 6 (50.00)

 � Male 81 (54.73) 19 (63.33) 48 (68.57) 5 (71.43) 82 (58.99) 6 (50.00)

Atrial fibrillation 

fibrillation
0.064 0.97 0.539

 � Absence 89 (60.14) 24 (80.00) 44 (62.86) 5 (71.43) 111 (79.86) 11 (91.67)

 � Presence 59 (39.86) 6 (20.00) 26 (37.14) 2 (28.57) 28 (20.14) 1 (8.33)

Smoke 0.592 0.477 0.4

 � Absence 118 (79.73) 22 (73.33) 54 (77.14) 4 (57.14) 113 (81.29) 8 (66.67)

 � Presence 30 (20.27) 8 (26.67) 16 (22.86) 3 (42.86) 26 (18.71) 4 (33.33)

Hypertension 0.969 0.785 0.547

 � Absence 36 (24.32) 8 (26.67) 21 (30.00) 3 (42.86) 51 (36.69) 6 (50.00)

 � Presence 112 (75.68) 22 (73.33) 49 (70.00) 4 (57.14) 88 (63.31) 6 (50.00)

Hyperlipidemia 0.668 0.234 1

 � Absence 126 (85.14) 24 (80.00) 65 (92.86) 5 (71.43) 138 (99.28) 12 (100.00)

 � Presence 22 (14.86) 6 (20.00) 5 (7.14) 2 (28.57) 1 (0.72) 0

Diabetes 0.85 0.362 0.247

 � Absence 103 (69.59) 22 (73.33) 56 (80.00) 4 (57.14) 108 (77.70) 7 (58.33)

 � Presence 45 (30.41) 8 (26.67) 14 (20.00) 3 (42.86) 31 (22.30) 5 (41.67)

Coronary disease 1 0.571 1

 � Absence 119 (80.41) 24 (80.00) 61 (87.14) 5 (71.43) 130 (93.53) 11 (91.67)

 � Presence 29 (19.59) 6 (20.00) 9 (12.86) 2 (28.57) 9 (6.47) 1 (8.33)

Location 0.839 0.104 0.613

 � MCA 105 (70.95) 22 (73.33) 49 (70.00) 5 (71.43) 90 (64.75) 8 (66.67)

 � ICA 31 (20.95) 5 (16.67) 20 (28.57) 1 (14.29) 39 (28.06) 4 (33.33)

 � MCA + ICA 12 (8.11) 3 (10.00) 1 (1.43) 1 (14.29) 10 (7.19) 0
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radiomic features (including 10 CTA features and 8 NCCT features). 
Simultaneously, the models developed according to the features of 
combined are equipped with 24 DL features and 8 radiomics features 
(including 16 CTA features and 16 NCCT features). Feature selection 
is shown in Figure  3A. The shapely additive explanation (SHAP) 
summary dot plot for logistic regression algorithms are shown in 
Figure 3B.

Model performance and comparison

The performance of 11 classifiers were evaluated based on MCC 
values. In the training sets, most classifiers (8 in 11) performed well 
(MCC >0.7). Figure 4A illustrates the MCC results.

When evaluating the performance of eleven models in the 
validation set for the perithrombus models, LR performed the best 
(AUC: 0.891, 95% CI: 0.762–1.000). For the combined models, LR also 
showed the optimal performance (AUC: 0.869, 95% CI: 0.778–0.9618). 
For the intrathrombus models, SVM performed well (AUC: 0.733, 
95% CI: 0.546–0.921). Figure 4B shows the AUC results. In view of all 
factors, LR, which performed the best in the predictive task, was 
selected to construct the prediction models. For detailed information 
about these models, please refer to Table  2 and the 
Supplementary material.

In the validation set, the LR-intra model had the lowest AUC 
value (0.626), showing relatively weak performance in the task. The 
AUC value of the LR-combine (0.869) was close to that of the LR-peri 
model. The comparison between LR-intra and LR-combine showed a 
significant difference (p = 0.007), while the comparisons between 

LR-intra and LR-peri, as well as between the LR-combined and the 
LR-peri, did not show significant differences (p = 0.063 and 
p = 0.788). Figure 4C shows the DeLong test results between SVM 
and LR models of two categories. During the model validation stage, 
the DCA indicated that the combined model showed a higher net 
benefit (0.069), while the perithrombus model had a wider effective 
threshold probability range (0.08–0.97). Specific cases are shown in 
Figure 5.

Discussion

The common cause of AIS is the sudden blockage of the proximal 
middle cerebral artery or the distal internal carotid artery. The BBB is 
damaged, leading to excessive water infiltration into brain tissue, with 
a mortality rate that may be as high as 80% (23, 24). Currently, clinical 
diagnosis of MCE relies on observing midline shift or brain herniation 
via CT, which are usually late signs of the disease. The main goal of 
our research is to develop a model for more early prediction of MCE 
in AIS patients after EVT. In our study, the perithrombus model 
exhibited superior predictive capacity in the validation cohort 
(MCC = 0.857, AUC = 0.891). The model can serve as a tool for early 
prediction of AIS complications when applied to clinical scenarios, 
thereby improving the quality of survival of AIS patients after EVT.

Previous developed models mainly extracted image features of the 
brain infarction area of NCCT images or segmented the MCA supply 
area of NCCT images. However, it is difficult to accurately delineate 
the infarcted area on CT images, making it hard to be popularized. 
Zhang et al. (25) constructed a machine learning model based on the 

FIGURE 3 (Continued)
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brain infarction area of NCCT images to predict the occurrence of 
MCE. The model had an AUC of 0.912, showing good predictive 
ability. Fu et al. (26) evaluated the predictive ability of the IP–NWU 
value in the middle cerebral artery supply area of NCCT for MCE. The 
radiomic model had a maximum AUC of 0.96. However, these studies 
ignored the impact of the responsible blood vessels on the prognosis 
of brain infarction, and there was little research on deep learning 
features related to the thrombus area. Additionally, Sarioglu et al. (27) 
found that thrombus-based radiomic features could effectively predict 
the first-pass effect (FPE) in patients with AIS. Similar findings were 
also reported by Xiong et al. (28). When a patient develops AIS, the 
ischemia and hypoxia of brain tissue caused by the thrombus will 
damage the BBB, leading to the leakage of macromolecules in the 
plasma into the brain tissue interstitium due to the increased vascular 
permeability. The inflammatory response caused by the thrombus will 

further damage the vascular endothelial cells and exacerbate the 
vasogenic brain edema. Subsequent reperfusion after revascularization 
may also aggravate brain injury, thus triggering or exacerbating brain 
edema. The area surrounding a thrombus includes structures such as 
vascular wall cells and perivascular fat. It can be  seen that the 
radiomics features around the thrombus can effectively predict MCE 
and this prediction is interpretable. Li et  al. (29) conducted a 
retrospective analysis of studies related to CT scans before EVT. The 
research showed that the LR model combining intrathrombus and 
perithrombus radiomics features was very effective in predicting the 
prognosis of thrombectomy, with an AUC value as high as 0.87 in the 
validation cohort. Lu et al. (30) developed a two-stage deep learning 
model to identify early occult AIS in NCCT. However, we have not 
seen any relevant research based on the deep learning features of 
thrombus so far. Inspired by these studies, we constructed a machine 

FIGURE 3

(a) Feature selection process. (b) SHAP summary dot plot of logistic regression.
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learning prediction model for predicting MCE using radiomics and 
deep learning features extracted from the thrombus and its 
surrounding areas in NCCT and CTA. The integration of NCCT and 
CTA radiomics leverages routine clinical imaging to enable rapid 
MCE risk stratification without additional scans. This approach 
seamlessly fits into acute stroke workflows, where both modalities are 
standardly acquired. By extracting predictive intrathrombus and 
perithrombus features from existing data, our model generates real-
time risk scores during the initial interpretation of images. This 
facilitates early, targeted interventions-such as intensified 
neuromonitoring for high-risk patients or avoiding unnecessary 
decompressive surgery in low-risk cases-while optimizing resource 
allocation in time-critical settings. Future automation could further 
streamline this process, transforming standard imaging into a 
prognostic tool for personalized stroke care. Compared with complex 
models, LR is favored for its statistical simplicity, interpretability, and 
robust performance in binary classification tasks. Although complex 
models, like SVM, KNN, RF, Extra Trees, XG Boost, MLP, GB, NB, 
and AdaBoost, have advantages in handling high-dimensional data, 

they are prone to overfitting without a large amount of data and 
careful adjustment. Since the Light GBM model performed poorly in 
different cohorts of this experiment, which may be related to factors 
such as the feature distribution of the data, sample size, noise, and the 
parameter settings of the model, this model should be avoided in 
future related research. Whereas the consistent performance of LR in 
the validation cohort confirms its applicability and reliability in 
clinical diagnosis. Given its effective generalization ability across 
different datasets, the choice of LR is reasonable.

In the validation cohort, compared with using only the 
intrathrombus area and the combined area, the radiomics features of 
the perithrombus area significantly improved the predictive ability for 
MCE after acute cerebral infarction (AUC: 0.891, 95% CI: 0.761 to 
1.000). In validation, the perithrombus model’s high MCC (0.857) 
versus the combined model (0.41) reflects its perfect specificity in this 
cohort. While AUC values were comparable (0.891 vs. 0.869), 
clinicians prioritizing avoidance of overtreatment may prefer the 
perithrombus model given its extremely high specificity. Conversely, 
settings emphasizing early case detection may tolerate the combined 

FIGURE 4

(a) Illustrates the MCC results. (b) Shows the AUC results. (c) Shows the DeLong test results between SVM and LR models of two categories.
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model’s lower specificity for its higher sensitivity. During model 
validation, the combined model demonstrated a higher net benefit 
(0.069) compared to the perithrombus model, which demonstrated a 
broader effective threshold probability range (0.08–0.97). Clinicians 
should therefore adopt a dual consideration of net benefit and 
threshold probability range in clinical decision-making. For instance, 
integrating the complementary strengths of the combined and 
perithrombus models may optimize risk stratification compared with 
the unstable predictive effect of intrathrombus radiomics features, the 
radiomic features extracted from the perithrombus area play an 
important role in the prediction model.

In this study, except for the significant statistical difference in the 
NIHSS index of the training cohort, other clinical variables with or 
without MCE did not show significant statistical differences in either 
the training cohort or the validation cohort. Although this study has 
innovation and important findings, it is still restricted by various 
factors. The retrospective design inherently limits its causal inference 

ability, and the relatively insufficient sample size weakens the 
universality and robustness of the conclusions. Differences in contrast 
agent selection may interfere with the cross-scenario application of the 
model. Although the reliability of radiomics feature extraction is high, 
manual drawing of ROIs may introduce human errors and 
uncertainties. Future work should explore automated segmentation 
technologies (e.g., U-Net, nnU-Net) to augment efficiency while 
preserving diagnostic rigor. The integration of such deep learning 
tools represents a critical next step for enhancing precision in large-
scale applications. Another essential line of future research would 
be  precisely to evaluate the impact of the differences of vascular 
topography in this topic (31). Anatomical differences in cerebral 
arterial blood vessels can also predict the prognosis of cerebral 
infarction. Future studies will investigate data balancing techniques 
(e.g., SMOTE, class weighting) to further enhance the sensitivity of 
minority class prediction. Another research direction is to perform 
spatial multi-omics analysis on thrombectomy specimens to establish 

TABLE 2  Performance of LR models.

Models Intra-thrombus Peri-thrombus Combined

Training Test Validation Training Test Validation Training Test Validation

Accuracy 0.876 0.87 0.887 0.888 0.831 0.974 0.938 0.753 0.808

AUC 0.968 0.741 0.626 0.976 0.908 0.891 0.993 0.927 0.869

95% CI 0.9458–0.9907

0.5063–

0.9754 0.4325–0.8205 0.9563–0.9950

0.7826–

1.0000 0.7615–1.0000 0.9854–1.0000

0.8473–

1.0000 0.7776–0.9611

Sensitivity 0.967 0.429 0.333 0.933 0.714 0.667 0.967 0.857 0.75

Specificity 0.858 0.914 0.935 0.878 0.843 1 0.932 0.743 0.813

PPV 0.58 0.333 0.308 0.609 0.312 1 0.744 0.25 0.257

NPV 0.992 0.941 0.942 0.985 0.967 0.972 0.993 0.981 0.974

F1 0.725 0.375 0.32 0.737 0.435 0.8 0.841 0.387 0.383

Threshold 0.196 0.376 0.257 0.182 0.12 0.353 0.2364 0.04271 0.09833

MCC 0.71 0.415 0.328 0.718 0.485 0.857 0.836 0.456 0.41

FIGURE 5

Specific cases are shown. Model prediction in endovascular thrombectomy (EVT) patients. A 45-year-old female predicted and confirmed with post-
EVT MCE (case 1), and a 60-year-old male predicted and found without post-EVT MCE (case 2).
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associations between imaging biomarkers and drivers of blood–brain 
barrier disruption (e.g., MMP-9, SUR1-TRPM4). Notwithstanding, 
challenges including limited multi-center validation, inadequate 
integration of clinical covariates, and the necessity for advanced 
hybrid modeling techniques persist. Future investigations should 
prioritize overcoming these barriers to elevate both research quality 
and clinical translational value.

Conclusion

The LR model proposed in this study integrates the NCCT and 
CTA image features of the perithrombus areas after cerebral infarction 
through machine learning methods, providing a way to predict 
MCE. This may help clinicians decide earlier whether to perform 
decompressive craniectomy or adopt other intensive monitoring 
measures, ultimately benefiting stroke patients.
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