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Objective: Parkinson’s disease (PD) is a common neurodegenerative disorder, 
and the early and accurate differentiation of its motor subtypes is of significant 
importance for clinical diagnosis and treatment planning. Research has shown 
that deep brain nuclei such as the thalamus, caudate nucleus, putamen, and 
globus pallidus play a critical role in the pathogenesis of different motor 
subtypes of Parkinson’s disease. This study aims to utilize deep learning and 
radiomics technology to establish an automated method for differentiating 
motor subtypes of Parkinson’s disease.
Methods: The data for this study were obtained from the Parkinson’s Progression 
Markers Initiative (PPMI) database, including a total of 135 Parkinson’s disease 
patients, comprising 43 cases of the Postural Instability/Gait Difficulty (PIGD) 
subtype and 92 cases of the Tremor Dominant (TD) subtype. High-resolution 
MRI scans were used to extract 2,264 radiomics features from 8 deep brain 
nuclei, including bilateral thalamus, caudate nucleus, putamen, and globus 
pallidus. After dimensionality reduction, five independent machine learning 
classifiers [AdaBoost, Bagging Decision Tree (BDT), Gaussian Process (GP), 
Logistic Regression (LR), and Random Forest (RF)] were trained on the training 
set and validated on the test set. Model performance was evaluated using the 
Area Under the Curve (AUC) metric.
Results: After feature selection, 17 most discriminative radiomics features were 
retained. Among the models, the BDT-based diagnostic model demonstrated 
the best performance, achieving AUC values of 1.000 and 0.962 on the training 
and test sets, respectively. DeLong’s test results indicated that the BDT model 
significantly outperformed other models. Calibration curve analysis showed that 
the Parkinson’s disease subtype classification model based on MRI radiomics 
features exhibited good calibration and stability. Clinical decision curve analysis 
revealed that the BDT model demonstrated significant clinical net benefits 
across a wide probability range, indicating high clinical utility.
Conclusion: The BDT model based on MRI radiomics features constructed in 
this study exhibited excellent performance in differentiating motor subtypes 
of Parkinson’s disease and can serve as an effective tool for clinical auxiliary 
diagnosis. This fully automated model is capable of processing MRI data and 
providing results within 3 min, offering an efficient and reliable solution for 
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the early differentiation of Parkinson’s disease motor subtypes, with significant 
clinical application value.
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1 Introduction

Parkinson’s disease (PD) is a complex, progressive 
neurodegenerative disorder characterized by an insidious onset, high 
morbidity, and significant disability rates, posing a severe challenge to 
global public health systems. PD not only threatens the physical and 
mental health of middle-aged and elderly people but also markedly 
reduces their quality of life (1). The primary clinical manifestations of 
PD include motor symptoms (e.g., tremor, rigidity, bradykinesia, and 
postural instability) and nonmotor symptoms (e.g., sleep disturbances, 
olfactory dysfunction, autonomic dysfunction, cognitive impairment, 
and psychiatric disorders). According to the World Health 
Organization (2), the global number of PD patients exceeded 11.9 
million in 2021 and is projected to rise to 25.2 million by 2050, 
representing a 112% increase. With increasing population ageing, the 
prevalence of PD is growing at an annual rate of 1.7% (3), imposing a 
substantial burden on patients, families, and society (4). PD can 
be classified into two major subtypes on the basis of clinical symptoms: 
tremor-dominant (TD) and postural instability–gait disturbance 
(PIGD) (5). The former is characterized by resting tremor (4–6 Hz), 
rigidity, and bradykinesia, often accompanied by cogwheel rigidity, 
whereas the latter manifests as balance impairment (positive Romberg 
sign), freezing of gait, and festination, which are frequently associated 
with autonomic dysfunction. These subtypes exhibit significant 
differences in dopaminergic drug responsiveness, disease progression 
rates, and nonmotor symptom profiles (6, 7). Therefore, developing a 
rapid and objective diagnostic method to distinguish these subtypes 
is a critical unmet need for improving patient outcomes.

Currently, PD subtyping relies heavily on subjective clinical 
assessments, which are prone to cognitive biases and variability in 
patient cooperation. As a result, clinicians often accurately diagnose 
PD subtypes only at advanced disease stages (5), delaying targeted 
treatment. Magnetic resonance imaging (MRI), a noninvasive, 
radiation-free, high-resolution imaging technique, is widely used for 
diagnosing and staging neurological disorders. Previous studies have 
identified structural alterations in the thalamus, caudate nucleus, 
putamen, and globus pallidus as key factors underlying TD and PIGD 
subtypes (8, 9). For example, Rosenberg-Katz et al. (10) reported that 
TD is more closely associated with thalamic damage, whereas PIGD 
is associated with more severe nigrostriatal degeneration. Dehghan 
et al. (11) reported widespread grey matter atrophy in PIGD patients, 
particularly in the frontal lobe, supplementary motor area (SMA), 
and basal ganglia. Bunzeck et al. (12) demonstrated differences in 
iron deposition between PD subtypes, with TD patients showing 
higher basal ganglia iron levels than PIGD patients. However, these 
studies focused primarily on macroscopic changes and failed to 
capture subtle structural variations, which limits their diagnostic 
accuracy and contributes to clinical misclassification. Such 
misdiagnosis may delay optimal treatment or exacerbate symptoms 
due to the use of inappropriate medication (13). Moreover, the lack 

of understanding of microstructural changes hinders the discovery of 
novel biomarkers.

Radiomics, introduced by Lambin et al. (14), is a computer-aided 
imaging technique that quantifies subtle, visually imperceptible 
features in medical images to assist in disease diagnosis and 
differentiation. It has been widely applied to PD, Alzheimer’s disease 
(AD), and brain tumours (1, 15, 16). However, existing radiomic 
models suffer from low accuracy and time-consuming workflows, 
limiting their clinical adoption (17). Prior to this study, we developed 
a convolutional neural network (CNN)-based AI model for automated 
segmentation and measurement of 109 brain regions, completing the 
process in under 30 s. This study leverages this network to rapidly 
segment brain nuclei, extract radiomic features, and construct 
machine learning models to differentiate TD and PIGD.

2 Materials and methods

2.1 Participants

All PD patients in this study were recruited from the Parkinson’s 
Progression Markers Initiative (PPMI) database (18). The PPMI 
patients were newly diagnosed and had not received any medication 
for at least 6 h. PD diagnosis followed the Movement Disorder Society 
guidelines. T1-weighted MR images were acquired using a 3 T 
Siemens scanner with the following parameters: acquisition type = 3D; 
flip angle = 9.0°; field of view (FOV) = 256 × 256 mm; 
matrix = 256 × 256; repetition time (TR) = 2300.0 ms; echo time 
(TE) = 3.0 ms; slice thickness = 1.0 mm; and no slice gap. Exclusion 
criteria: Patients with head motion >2 mm/° during scans were 
excluded (n = 5). For mild motion, we used N4 bias correction and 
rigid registration. The study included 135 PD patients (43 PIGD, 92 
TD), who were randomly divided into training (80%) and testing 
(20%) sets.

2.2 Brain subregion segmentation

Brain subregion segmentation was performed using a deep learning 
algorithm based on VB-NET. The preprocessing module performed a 
series of operations on the MR images for training and testing, including 
rotation, resampling, resizing, skull stripping, bias field correction, 
histogram matching, and intensity normalization. All images were 
standardized to 256 × 256 × 256 mm3 in the standard Cartesian LPI 
coordinate system, with intensity values scaled to (−1, 1). The network 
training module used an end-to-end deep convolutional neural network, 
with each sample image and its corresponding brain parcellation atlas as 
training data. The sample image served as the network input, with the 
output being the brain parcellation label matching the input image. The 
network parameters were adjusted on the basis of differences between 
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the output and ground truth parcellations, with training continuing until 
convergence when the output labels matched the reference parcellations. 
The network adopted a coarse-to-fine cascaded segmentation strategy, 
progressively decomposing the complex brain segmentation problem. 
Upper-level networks provided additional information to enhance 
lower-level network performance, enabling hierarchical segmentation of 
large brain regions, medium regions, and fine substructures. The model 
was trained on 1,800 subjects and achieved a mean Dice coefficient of 
0.92 against manual segmentations in 295 test cases. The detailed 
segmentation methodology is described in our previous publication.

The whole brain was automatically segmented into 109 subregions, 
including 22 temporal, 20 frontal, 12 parietal, and 8 occipital lobe 
regions; 8 cingulate and 2 insular subregions; 12 subcortical nuclei; 
white matter structures; ventricles; cerebellar structures; and other 
regions (Supplementary material 1). Each patient’s segmentation was 
completed in under 30 s.

2.3 Feature extraction and dimensionality 
reduction

This study employed the VB-NET deep learning model to 
automatically quantify the volumes of 109 brain subregions for each 
patient while simultaneously extracting 2,264 radiomics features from 
8 deep brain nuclei (in the bilateral thalamus, caudate nucleus, 
putamen, and globus pallidus). These features comprehensively 
captured multidimensional information: 18 first-order statistics and 
14 shape features precisely characterized basic morphological 
properties, reflecting nuclei size proportions and spatial configurations. 
Texture features were derived from a multimatrix analytical 
framework, including 21 grey-level cooccurrence matrix (GLCM) 
features, 16 grey-level run-length matrix (GLRLM) features, 16 grey-
level size-zone matrix (GLSZM) features, 5 neighbouring grey-tone 
difference matrix (NGTDM) features, and 14 grey-level dependence 
matrix (GLDM) features, enabling in-depth analysis of voxel intensity 
distribution patterns. For advanced feature construction, we employed 

a multimodal filtering and frequency-domain transformation strategy 
to generate hierarchical feature subsets: 24 filters (including the box 
mean, additive Gaussian noise, binomial blur, etc., and Gaussian filters 
with σ = 0.5, 1, 1.5, 2) were applied for spatial convolution, whereas 
wavelet transforms extracted 8 directional frequency components (e.g., 
LLL, LLH) to construct features that integrate spatial and frequency-
domain information. All radiomic features underwent z score 
normalization and complied with the Image Biomarker Standardization 
Initiative (IBSI) guidelines, with systematic evaluation of feature 
reproducibility to ensure scientific rigor and cross-cohort applicability.

Feature selection included Relief and least absolute shrinkage and 
selection operator (LASSO) methods to identify the most robust 
features. LASSO hyperparameters were optimized via grid search with 
stratified 5-fold cross-validation on the training set, selecting 
parameters yielding the highest cross-validated AUC.

2.4 Model construction and evaluation

Using the selected features, five independent machine learning 
classifiers (AdaBoost, BDT, GP, LR, RF) were trained on the training 
set and validated on the test set. Model performance was evaluated in 
terms of the mean accuracy, sensitivity (recall), specificity, precision 
with 95% confidence intervals (95% CI), F scores, and area under the 
receiver operating characteristic curve (AUC). Delong’s test was used 
to compare the performance between models. Calibration curves were 
used to assess the agreement between the predicted probabilities and 
actual outcomes, whereas decision curve analysis (DCA) was used to 
quantify the clinical net benefit across threshold probabilities to 
validate the clinical utility (Figure 1).

2.5 Statistical analysis

Statistical analyses were performed using R (Version 4.0.4)and 
Python. For continuous variables, normality was first assessed, followed 

FIGURE 1

Flowchart of segmentation of deep brain nuclei (bilateral thalamus, caudate nucleus, putamen, and globus pallidus), radiomics feature extraction, and 
model construction.
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by Student’s t test for normally distributed data or the Mann–Whitney 
U test for nonnormally distributed data. Categorical variables were 
compared using chi-square tests, with two-tailed p < 0.05 considered 
statistically significant. For model comparisons, Delong’s test revealed 
significant differences in the AUC between classifiers’ ROC curves.

3 Results

The study included 135 PD patients (43 PIGD, 92 TD). In the 
training set, 2,264 radiomics features were extracted from 8 deep brain 
nuclei. Automated technology precisely quantified the volumes of 109 
brain subregions for each patient. For bilateral thalamic regions, the 
maximum relevance minimum redundancy (MRMR) algorithm 
initially selected 1,000 representative features from 4,528 radiomic 
features. Recursive feature elimination cross-validation (RFECV) 
further refined these to 17 optimal features. Similar feature selection 
pipelines were applied to the caudate nucleus, putamen, and globus 
pallidus, yielding region-specific optimal feature sets. Finally, features 
from all regions were integrated: correlation coefficients first selected 
2,195 highly associated features from the full set, MRMR reduced 

these to 1,000 key features, and RFECV ultimately identified 17 highly 
discriminative combined features for model construction.

On the basis of single-region (thalamus, caudate, putamen, globus 
pallidus) and combined features, we constructed 45 prediction models 
using five algorithms (AdaBoost, BDT, GP, LR, RF), with detailed 
performance metrics shown in Table 1. Delong’s test revealed that the 
BDT model with combined features (5 pallidal, 4 putaminal, and 4 
caudate features) performed best, achieving training and testing AUCs 
of 1.000 and 0.962, respectively (Figure 2), demonstrating excellent 
classification and generalization capabilities. Calibration curves 
revealed high agreement between the predicted and actual 
probabilities (Figure 3), whereas DCA demonstrated significant net 
clinical benefit across decision thresholds (Figure  4), providing a 
quantitative tool for personalized treatment decisions (see Table 2).

4 Discussion

TD and PIGD differ not only in motor symptoms (resting 
tremor vs. gait freezing) but also in nonmotor symptom patterns 
(e.g., sleep disturbances, autonomic dysfunction) (19), leading to 

TABLE 1  Detailed performance indicators of 45 predictive models.

Radiomics 
features of 
regions

Models AUC Sensitivity Specificity Accuracy

Training 
set

Testing 
set

Training 
set

Testing 
set

Training 
set

Testing 
set

Training 
set

Testing 
set

Caudatum L 

features

AdaBoost 1 0.5 1 0.923 1 0.375 1 0.714

BDT 0.999 0.587 1 0.769 0.906 0.25 0.964 0.571

Gaussian Process 0.885 0.644 0.904 1 0.688 0.375 0.821 0.762

Logistic 0.944 0.587 0.981 0.846 0.688 0.375 0.869 0.667

Random Forest 0.867 0.654 0.885 1 0.656 0.5 0.798 0.81

Caudatum R 

features

AdaBoost 1 0.548 1 0.769 1 0.25 1 0.571

BDT 0.999 0.606 1 0.615 0.969 0.5 0.988 0.571

Gaussian Process 0.889 0.481 0.942 0.692 0.656 0.125 0.833 0.476

Logistic 0.867 0.538 0.942 0.692 0.594 0.125 0.81 0.476

Random Forest 0.945 0.692 1 0.769 0.531 0.125 0.821 0.524

Pallidum L 

features

AdaBoost 1 0.577 1 0.769 1 0.375 1 0.619

BDT 0.996 0.548 1 0.846 0.844 0.375 0.94 0.667

Gaussian Process 0.893 0.673 0.981 0.846 0.594 0.125 0.833 0.571

Logistic 0.812 0.673 0.865 0.769 0.5 0.375 0.726 0.619

Random Forest 0.9 0.702 0.942 0.846 0.688 0.375 0.845 0.667

Pallidum R 

features

AdaBoost 1 0.779 1 0.769 1 0.625 1 0.714

BDT 1 0.769 1 0.769 0.844 0.625 0.94 0.714

Gaussian Process 0.859 0.769 0.904 0.846 0.594 0.625 0.786 0.762

Logistic 0.834 0.75 0.904 0.846 0.562 0.5 0.774 0.714

Random Forest 0.936 0.731 0.942 0.923 0.625 0.5 0.821 0.762

Putamen L 

features

AdaBoost 1 0.76 1 0.846 1 0.5 1 0.714

BDT 0.993 0.808 1 0.769 0.875 0.5 0.952 0.667

Gaussian Process 0.858 0.798 0.962 0.846 0.562 0.25 0.81 0.619

Logistic 0.816 0.76 0.904 0.769 0.5 0.25 0.75 0.571

Random Forest 0.922 0.885 0.981 0.846 0.688 0.25 0.869 0.619

(Continued)
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TABLE 1  (Continued)

Radiomics 
features of 
regions

Models AUC Sensitivity Specificity Accuracy

Training 
set

Testing 
set

Training 
set

Testing 
set

Training 
set

Testing 
set

Training 
set

Testing 
set

Putamen R 

features

AdaBoost 1 0.538 1 0.769 1 0.375 1 0.619

BDT 0.993 0.481 1 0.538 0.844 0.5 0.94 0.524

Gaussian Process 0.832 0.577 0.904 0.692 0.594 0.25 0.786 0.524

Logistic 0.82 0.606 0.865 0.692 0.625 0.375 0.774 0.571

Random Forest 0.915 0.587 0.981 0.769 0.656 0.375 0.857 0.619

Thalamus L 

features

AdaBoost 1 0.519 1 0.615 1 0.375 1 0.524

BDT 0.996 0.538 1 0.846 0.781 0.375 0.917 0.667

Gaussian Process 0.802 0.625 0.942 0.846 0.406 0.375 0.738 0.667

Logistic 0.802 0.625 0.885 0.846 0.531 0.375 0.75 0.667

Random Forest 0.888 0.644 0.981 0.846 0.562 0.375 0.821 0.667

Thalamus R 

features

AdaBoost 1 0.625 1 0.846 1 0.375 1 0.667

BDT 0.997 0.635 1 0.769 0.781 0.375 0.917 0.619

Gaussian Process 0.865 0.644 0.981 0.769 0.562 0.375 0.821 0.619

Logistic 0.925 0.635 0.962 0.846 0.531 0.375 0.798 0.667

Random Forest 0.817 0.587 0.885 0.615 0.531 0.375 0.75 0.524

Combined 

features

AdaBoost 1 0.865 1 0.846 1 0.5 1 0.714

BDT 1 0.962 1 0.923 0.969 0.75 0.988 0.857

Gaussian Process 0.994 0.837 1 0.923 0.906 0.625 0.964 0.81

Logistic 0.963 0.808 0.962 0.923 0.906 0.625 0.94 0.81

Random Forest 0.984 0.865 1 0.923 0.812 0.5 0.929 0.762

BDT, Bagging Decision Tree; AUC, Area Under Curve.

FIGURE 2

Receiver operating characteristic (ROC) curves for AdaBoost, BDT, GP, LR and RF models in the training set and testing set.

https://doi.org/10.3389/fneur.2025.1650985
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Hui et al.� 10.3389/fneur.2025.1650985

Frontiers in Neurology 06 frontiersin.org

varied responses to PD medications (e.g., dopamine agonists vs. 
levodopa) (20, 21) and novel therapies such as transcranial 
magnetic stimulation. However, current PD subtyping relies on 
clinical differentiation, which is often delayed until intermediate or 
advanced stages (18, 22), resulting in late intervention. Thus, 
establishing early, rapid, and accurate subtyping methods could 

optimize symptom management and enable timely 
targeted interventions.

This study implemented automated whole-brain subregion 
segmentation using VB-NET, a U-NET variant. As an efficient medical 
image segmentation model, VB-NET automatically learns spatial 
features and boundary information of brain subregions without 
manual annotation, reducing the processing time from hours to 
seconds while improving precision and consistency. Previous 
segmentation methods have relied on manual delineation or simple 
algorithms. For example, Jingnan et al. (23) manually outlined the 
caudate and putamen to calculate the striatal-to-occipital uptake ratios 
(SORs) of 18F-DOPA in PD patients versus controls. These manual 
approaches are time-consuming, subjective, and inconsistent. 
Crucially, our model uses routine 3D-T1WI without advanced 
functional imaging, significantly reducing costs and enhancing clinical 
accessibility. Furthermore, VB-NET automatically extracted 2,264 
radiomics features from key nuclei (the caudate, putamen, globus 
pallidus, and thalamus), capturing multidimensional morphological 
and textural information. Five machine learning algorithms (AB, BDT, 
GP, LR, and RF) were employed for automated TD/PIGD classification 
and were validated on independent test sets. The BDT classifier 
achieved exceptional performance (training AUC = 1.000; testing 
AUC = 0.962), demonstrating high accuracy and generalizability. 
Compared with prior studies, this work represents the first fully 
automated TD/PIGD classification pipeline, eliminating subjective 
clinical assessments and completing diagnosis within 3 min—offering 
clinicians a rapid, objective tool for personalized treatment planning.

Feature selection identified 17 core radiomic features with distinct 
regional distributions: caudate (8), globus pallidus (6), putamen (2), and 

FIGURE 3

Decision curves of different models. The red, green, and blue lines represent the AdaBoost, BDT, GP, LR and RF models, respectively. The Y-axis 
represents the net benefit, and the X-axis represents the threshold probability. Compared with AdaBoost, GP, LR and RF models, BDT with combined 
features (5 pallidal, 4 putaminal, and 4 caudate features) performed best.

FIGURE 4

Calibration curves for nomogram goodness of fit. The 45° line 
represents a perfect match between the actual (Y-axis) and predicted 
(X-axis) probabilities of the bar graph. The closer the distance 
between the two curves, the higher the accuracy.
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thalamus (1). This pattern aligns with PD pathophysiology: pallidal (6) 
and putaminal (2) texture features showed early pathological (24) 
sensitivity, with abnormalities detectable in preclinical stages (25) (e.g., 
REM sleep behaviour disorder), preceding macroscopic atrophy. TD 
was strongly correlated with putaminal texture features (26) (e.g., 
autocorrelation). As a key node in the direct pathway, putamen 
dysfunction directly contributes to classic PD motor symptoms (tremor, 
movement initiation difficulty) (27). There exist distinct patterns of iron 
deposition in the basal ganglia between Parkinson’s disease (PD) patients 
with postural instability/gait disorder (PIGD) and those with tremor 
dominance (TD). Compared with the TD group, the PIGD group 
exhibits significantly higher susceptibility values in the left putamen 
(PUT), particularly in patients whose major symptomatic side is the 
right limb. This indicates that the distribution of iron deposition in the 

basal ganglia is more extensive in the PIGD group, involving not only 
the substantia nigra (SN) but also regions such as the caudate nucleus 
(CN) and putamen, with a more severe degree of iron deposition in the 
putamen (28). From the perspective of the correlation between iron 
deposition and symptoms, the damaged putamen is likely to be the 
pathophysiological basis for gait and posture disorders in Parkinson’s 
disease. Reduced autocorrelation indicates disrupted textural periodicity, 
which is consistent with PET evidence of decreased dopamine receptor 
density (29), reflecting early synaptic degeneration. PIGD involved 
primarily pallidal (5) and thalamic (1) features. The globus pallidus, a 
core indirect pathway node, exhibits degeneration-related motor 
inhibition (rigidity, bradykinesia) (30). Changes in texture homogeneity 
may reflect iron deposition (T2*/SWI hypointensity) or neuronal loss 
(31), whereas the presence of thalamic abnormalities suggest upstream 

TABLE 2  Details of 17 selected features.

Feature name Filter type Feature class Biological 
interpretation

IBSI compliant Rank

Caudate_R_log_glszm_log-sigma-2-0-mm-3D-

GrayLevelNonUniformity

Laplacian of 

Gaussian (σ = 2)
GLSZM

Heterogeneity of gray-level 

zones
Yes 1

Caudate_L_additivegaussiannoise_firstorder_

Skewness

Additive 

Gaussian Noise
First-order

Intensity distribution 

asymmetry
Yes 1

Putamen_L_additivegaussiannoise_glrlm_

ShortRunHighGrayLevelEmphasis

Additive 

Gaussian Noise
GLRLM

Presence of short bright runs 

(iron deposition?)
Yes 1

Caudate_L_boxsigmaimage_gldm_

DependenceNonUniformityNormalized
Box Sigma GLDM

Spatial consistency of gray-

level dependencies
Yes 1

Caudate_L_boxsigmaimage_gldm_

DependenceVariance
Box Sigma GLDM

Variability in gray-level 

dependencies
Yes 1

Pallidum_R_boxmean_gldm_

SmallDependenceLowGrayLevelEmphasis
Box Mean GLDM

Small dark regions (possible 

microstructural gaps)
Yes 1

Caudate_R_boxmean_glszm_

GrayLevelNonUniformity
Box Mean GLSZM

Non-uniformity of gray-level 

zones
Yes 1

Thalamus_R_boxsigmaimage_glszm_

SmallAreaEmphasis
Box Sigma GLSZM

Prevalence of small areas 

(e.g., gliosis)
Yes 1

Pallidum_L_boxsigmaimage_glszm_

SmallAreaEmphasis
Box Sigma GLSZM Small lesion-like structures Yes 1

Pallidum_L_boxsigmaimage_glrlm_

LongRunHighGrayLevelEmphasis
Box Sigma GLRLM

Elongated bright regions 

(axonal integrity?)
Yes 1

Pallidum_L_log_firstorder_log-sigma-4-0-mm-

3D-Skewness
Wavelet (LLL) First-order

Intensity distribution tail 

direction
Yes 1

Caudate_R_boxsigmaimage_gldm_

DependenceNonUniformityNormalized
Box Sigma GLDM

Repeats spatial dependency 

measure
Yes 2

Pallidum_R_log_glrlm_log-sigma-4-0-mm-3D-

ShortRunHighGrayLevelEmphasis
Wavelet (LLH) GLRLM

Focal bright spots (iron 

clusters?)
Yes 3

Caudate_L_log_ngtdm_log-sigma-2-0-mm-3D-

Contrast
Wavelet (LHL) NGTDM Local intensity variation Yes 4

Caudate_L_log_glszm_log-sigma-2-0-mm-3D-

GrayLevelNonUniformity
Wavelet (LHH) GLSZM

Repeats heterogeneity 

measure
Yes 5

Putamen_L_additivegaussiannoise_glcm_

Autocorrelation

Additive 

Gaussian Noise
GLCM

Pattern repetition 

(dopaminergic terminal 

density)

Yes 6

Pallidum_L_log_glrlm_log-sigma-4-0-mm-3D-

ShortRunLowGrayLevelEmphasis
Wavelet (HLL) GLRLM

Short dark runs (possible 

neuronal loss)
Yes 7
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motor circuit disruption (32). GrayLevelNonUniformity frequently 
appeared in the bilateral caudate (Caudate_R, Caudate_L, Caudate_R_
boxmean), indicating microstructural heterogeneity from neuronal loss, 
iron deposition, or uneven Lewy body distribution. SmallAreaEmphasis 
in the right thalamus (Thalamus_R) and left globus pallidus 
(Pallidum_L) suggested early microstructural changes (e.g., enlarged 
perivascular spaces, focal gliosis), matching histopathological 
“nonuniform degeneration” patterns. These features not only enabled 
high-accuracy classification but also revealed spatiotemporal patterns of 
basal ganglia involvement in PD subtypes—early putamen/pallidum 
texture changes driving motor subtype differentiation, with thalamic 
features contributing to circuit-level dysfunction. Thus, these radiomic 
features provide quantifiable imaging biomarkers for precise subtyping 
and pathological investigation.

Our study had several limitations. This study had a retrospective 
cross-sectional design. Future prospective longitudinal studies should 
examine whether feature changes predict disease conversion (e.g., PD 
to dementia). The PD sample size was relatively small. All the data 
were acquired on 3 T Siemens scanners, but model generalizability 
requires validation across multicentre datasets. Future studies need to 
further verify the stability and universality of the conclusions of this 
study by expanding the sample size (including multi center and multi-
regional data) and conducting independent external cohort validation. 
The current research results cannot directly verify their predictive 
efficacy for subtype progression trajectories (such as the rate of motor 
symptom deterioration, patterns of cognitive decline, etc.). In the 
future, we will conduct a longitudinal follow-up study based on a 
multi-center cohort to verify the longitudinal stability and clinical 
practical value of potential predictive biomarkers. The sole focus of 
this study was imaging features. Future work should integrate clinical 
scores (UPDRS, MMSE) into diagnostic tools. Although radiomic 
features demonstrated high accuracy in PD subtyping, their 
underlying pathological basis requires further elucidation.

5 Conclusion

We developed an AI model that accurately differentiates PD 
subtypes within 3 min using routine MRI data. This fully automated 
approach significantly improves diagnostic efficiency and holds 
substantial clinical potential for precise PD subtyping.
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