& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY

Le Yang,

Air Force Medical University Tangdu Hospital,
China

REVIEWED BY

Marta Altieri,

Sapienza University of Rome, Italy
Irini Patsaki,

University of West Attica, Greece

*CORRESPONDENCE
Zheqi Han
hzg051994@163.com

RECEIVED 21 June 2025
ACCEPTED 24 September 2025
PUBLISHED 07 October 2025

CITATION
Chi K, Chen J, Zhou S and Han Z (2025) The
effectiveness of digital cognitive intervention
in patients with traumatic brain injury:
systematic review and meta-analysis.

Front. Neurol. 16:1651443.

doi: 10.3389/fneur.2025.1651443

COPYRIGHT

© 2025 Chi, Chen, Zhou and Han. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Neurology

Frontiers in Neurology

TYPE Systematic Review
PUBLISHED 07 October 2025
pol 10.3389/fneur.2025.1651443

The effectiveness of digital
cognitive intervention in patients
with traumatic brain injury:
systematic review and
meta-analysis

Kejia Chi, Jiangfeng Chen, Shiwei Zhou and Zheqi Han*

Department of Emergency, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China

Objective: This meta-analysis aims to quantitatively evaluate the effects of
digital cognitive intervention (non-immersive computer- and immersive virtual
reality (VR)-based) on cognitive function and psychosocial outcomes in patients
with traumatic brain injury (TBI), and to explore potential moderating factors.
Methods: A systematic search was conducted in PubMed, the Cochrane Library,
Embase, and Web of Science databases from their inception to April 3, 2025.
Standardized mean differences (SMDs) and 95% confidence intervals (Cls) were
calculated to estimate effect sizes, and heterogeneity was assessed using the I?
statistic.

Results: A total of 16 studies were included; 9 employed computer-based
cognitive interventions and 7 used VR-based interventions. The results showed
that both types of interventions significantly improved global cognitive function
(SMD: 0.64, 95% CI: 044 to 0.85, I> = 0%), executive function (SMD: 0.32, 95%
Cl: 0.17 t0 047, 12 = 15%), attention (SMD: 0.40, 95% Cl: 0.02 to0 0.78, I> = 0%) and
social cognitive function (SMD: 0.46, 95% Cl: 0.20 to 0.72, 12 = 0%) in TBI patients.
However, no significant improvements were observed in memory, processing
speed, activities of daily living, or psychosocial outcomes (self-efficacy, anxiety/
depression). Subgroup analysis indicated that VR-based interventions were
more effective than traditional cognitive therapy. Moreover, VR interventions
had a positive effect on depression in TBI patients. A greater number of training
sessions may further enhance cognitive benefits.

Conclusion: This meta-analysis supports the efficacy of digital cognitive
intervention in improving cognitive function in TBI patients. We recommend
individualized treatment programs to more effectively address cognitive
impairments.

KEYWORDS

digital cognitive intervention, computerized cognitive intervention, virtual reality
based cognitive intervention, cognition function, traumatic brain injury, meta-analysis

1 Introduction

Traumatic brain injury (TBI) refers to focal or diffuse neurological damage resulting from
various external mechanical forces, such as impact, rapid acceleration or deceleration, or
penetrating injury (1). TBI affects an estimated 55 million people worldwide each year and
remains a leading cause of injury-related mortality and long-term physical and cognitive
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disability, particularly among young adults (2-5). Given its substantial
health and socioeconomic burden, TBI represents a major public
health challenge (2). Patients with TBI commonly experience motor,
cognitive, and affective impairments that significantly impact their
quality of life and that of their caregivers alike (6). Among these,
cognitive deficits are particularly concerning, as they hinder
rehabilitation outcomes by limiting work capacity, social functioning,
and independence in daily activities, thereby compounding the overall
disease burden (7, 8).

Cognitive rehabilitation (CR) for TBI aims to restore impaired
cognitive functions and develop compensatory strategies to improve
daily functioning (9, 10). Over the past three decades, growing
evidence has demonstrated that CR can significantly enhance
functional outcomes in patients with TBI through both the recovery
of lost abilities and the implementation of adaptive strategies (11-14).
However, the practical delivery of CR presents notable challenges.
These interventions often require substantial time, resources, and
financial commitment, which can lead to reduced engagement and
poor adherence to treatment protocols, ultimately diminishing their
therapeutic effectiveness (15).

In recent years, technological advancements have enabled the
development of innovative rehabilitation approaches, such as digital
intervention including computer-assisted therapies and virtual reality
(VR) interventions (16-18). These methods have demonstrated
clinical effectiveness in treating various cognitive disorders, such as
those associated with stroke and dementia (19-21). Conventional
cognitive rehabilitation typically involves therapist-led interventions,
delivered either individually or in group settings, often with support
from family members or multidisciplinary teams (22). Technology-
mediated interventions (e.g., VR, computer-based training) are
increasingly being adopted as viable alternatives to traditional face-to-
face cognitive therapy due to their multiple advantages (23).

Computer-based cognitive intervention (CCI) employs digital
tools to enhance or restore cognitive functions, including memory,
attention, problem-solving, and work-related skills, through targeted
exercises and adaptive training programs (20). The potential benefits
of CCl include ease of self-administration, improved accessibility, and
greater cost-effectiveness (24). Additionally, CCI can boost participant
engagement through varied formats (e.g., videos, gamification),
unlimited responsiveness, and adaptive feedback, promoting a sense
of interactivity and enjoyment (25). Most CCI programs are delivered
through digital platforms or mobile applications, enhancing flexibility
and convenience-especially for those with mobility challenges or
limited access to rehabilitation services-thus significantly improving
care accessibility (24). Traditional CCI mainly presented on a standard
two-dimensional desktop or laptop monitor. Interaction is typically
achieved via mouse, keyboard, or touchscreen. While delivered via
computer, these programs offer a limited sense of immersion
and presence.

VR is an emerging computer-based technology that provides users
with dynamic, three-dimensional simulated environments in which
they can interact as if in real physical spaces (26). It primarily employs
head-mounted displays that provide a wide field of view and head-
tracking, creating a strong sense of presence and immersion. The
potential advantages of VR include: (1) dynamically adjusting stimulus
intensity and task difficulty based on patient performance, (2)
integrating cognitive and functional training to promote neuroplastic
recovery, and (3) enabling objective quantification of user behavior and
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performance metrics (27, 28). As a result, VR enhances training
specificity and patient engagement by reducing boredom and frustration
through a more sophisticated and ecologically valid methodology (29).
VR has demonstrated efficacy as both an assessment and therapeutic
tool for addressing motor impairments and cognitive dysfunction,
including executive function and functional activities (30, 31).

A systematic review by Alashram (32) reported that computerized
cognitive training (CCT) improved various cognitive domains in
patients with TBI and that combining CCT with other interventions
produced greater benefits than CCT alone. However, the findings were
qualitative rather than quantitative, and the review focused solely on
CCT, excluding newer technologies such as VR. Several studies
employing VR have shown that it can enhance cognitive and behavioral
functioning in patients with TBI (16, 17). A review by Andrei et al. (33)
further indicated that VR-based interventions significantly improved
cognitive functions in TBI patients, particularly in the domains of
attention, executive function, and visuospatial abilities. Nonetheless,
current evidence supporting the use of VR in cognitive
neurorehabilitation for TBI remains limited, and there is no clear
clinical consensus regarding its therapeutic efficacy (16). To the best of
our knowledge, no meta-analysis has yet examined the effects of digital
(computer- and VR-based) cognitive intervention in TBI. Therefore,
we conducted a meta-analysis to quantitatively assess the impact of
these interventions on cognitive function and to further investigate
differences in therapeutic efficacy and contributing factors when
compared to passive controls and traditional rehabilitation methods.

2 Methods

This meta-analysis was conducted in strict accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines (34).

2.1 Search strategy

A systematic literature search was performed using the PubMed,
Cochrane Library, Embase, and Web of Science databases to identify
studies published from inception to April 3, 2025. The following
Medical Subject Headings (MeSH) and keyword terms were used in
combination: (traumatic brain injury) AND (cognitive intervention
OR cognitive training OR cognitive therapy OR cognitive
rehabilitation) AND (computerized OR virtual reality). Search terms
within each thematic group were combined using “OR,” and the
thematic groups were then combined using “AND.” The full search
strategies are detailed in Supplementary Table S1. Additionally, the
reference lists of relevant articles were manually screened to identify
any additional eligible studies. Two authors (KJC and JFC)
independently performed the literature search and screening. Any
disagreements were resolved through discussion with a third
author (ZQH).

2.2 Study selection
Eligible articles were selected based on strict adherence to the

PICOS framework (Population, Intervention, Comparison, Outcome,
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Study design). Inclusion criteria were as follows: (1) population:
individuals with a confirmed diagnosis of TBI; (2) intervention: digital
cognitive intervention delivered using computer-based platforms or
VR; (3) comparison: control conditions including active controls
(participants engaged in non-structured interventions), passive
controls (participants who received no intervention or were placed on
waitlists), usual care, or traditional cognitive interventions; (4)
outcome: at least one reported outcome related to cognitive function—
either global cognition or specific cognitive domains (e.g., executive
function, memory, processing speed, social cognition, attention),
neuropsychiatric symptoms (e.g., anxiety, depression), activities of
daily living (ADL), or self-efficacy; and (5) study design: randomized
controlled trials (RCTs) or quasi-RCTs. Exclusion criteria included:
(1) publications in languages other than English; (2) studies involving
participants with other neurological conditions (e.g., ischemic or
hemorrhagic stroke); and (3) studies without full-text access or with
unavailable primary outcome data.

2.3 Data extraction

Two authors (KJC and JFC) independently extracted the
experimental details and outcome data. Any discrepancies were
resolved through discussion with a third reviewer (ZQH) until
consensus was reached. For each included study, the following
information was extracted: first author, year of publication, country,
participant characteristics (sex, age, sample size, diagnosis, and
baseline cognitive function), intervention design for both the
treatment group (including details of the cognitive intervention,
session length, frequency, and total duration) and the control group,
as well as outcome measures. Primary outcomes included global and
domain-specific cognitive functions (executive function, memory,
processing speed, social cognitive function, and attention). Secondary
outcomes included anxiety, depression, activities of daily living, and
self-efficacy. The measurement tools used for each outcome variable
are listed in Supplementary Table S2.

2.4 Quality assessment

Two authors independently assessed the risk of bias for each
included study using the Cochrane Collaboration’s Risk of Bias Tool
(35). The tool evaluates six domains: selection bias, performance bias,
detection bias, attrition bias, reporting bias, and other potential
sources of bias. Each domain was rated as having a ‘low; ‘high; or
‘unclear’ risk of bias. In cases of disagreement or uncertainty, a third
investigator (SWZ) was consulted to reach a final decision.

2.5 Statistical analyses

Means, standard deviations, and sample sizes were extracted or
calculated from the included studies. Hedges g, a variation of Cohen’s
d, was used to compute standardized mean differences (SMDs) as a
measure of between-group effect size (ES). For each outcome variable,
the ES was reported along with its corresponding 95% confidence
interval (CI). When studies reported multiple measures for a given
cognitive domain, data from all relevant comparisons were extracted
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and assessed. For cognitive tests where higher scores indicated poorer
performance, effect sizes were reversed to ensure that all positive
values consistently reflected improvements in cognitive function.
Effect sizes of 0.2, 0.5, and 0.8 were interpreted as small, moderate, and
large, respectively. A p-value < 0.05 was considered statistically
significant. A random-effects model was applied due to anticipated
methodological and clinical heterogeneity in treatment effects across
studies (36).

Heterogeneity was assessed using the I” statistic and Cochran’s Q
test. I? values of 25-50%, 50-75%, and >75% were interpreted as
indicating low, moderate, and high heterogeneity, respectively (37).
For Cochran’s Q test, a p-value < 0.10 was considered indicative of
significant heterogeneity (37). Sensitivity analyses were performed to
examine the robustness of the results. Subgroup analyses were
conducted to identify potential factors influencing outcomes and to
further investigate sources of heterogeneity. All statistical analyses
were conducted using Review Manager (RevMan) software version 5.3
(The Cochrane Collaboration) and Stata version 16 (StataCorp LP,
College Station, TX, United States).

3 Results
3.1 Identification of studies

The study selection process and reasons for exclusion are
illustrated in Figure 1. A total of 2,034 records were identified through
database searches. After removing duplicate records (n=414),
excluding studies based on keywords (n = 391) and screening titles
and abstracts (n = 1,023), 206 full-text articles were retrieved for
further evaluation. Of these, 190 articles were excluded for the
following reasons: ineligible population (n=115), ineligible
intervention (n = 41), ineligible experimental design (n = 17), and lack
of available outcome data (n=17). Ultimately, 16 studies were
included in this meta-analysis.

3.2 Characteristics of the included studies

The characteristics of the 16 included trials are summarized in
Table 1. Collectively, these studies involved 720 patients with
TBI. Half of the studies (n = 8) utilized non-immersive computer-
based cognitive interventions, seven employed VR-based cognitive
interventions (VR-CI), and one study used a gaming-based
rehabilitation approach. The duration of interventions ranged from a
single session to 13 weeks. The included studies covered TBI cases of
varying severity, from mild to severe. In terms of participant
demographics, 14 studies focused on adult patients, while the
remaining two involved pediatric participants. Regarding time since
injury, seven studies included both subacute and chronic TBI
patients, three focused exclusively on subacute cases, five on chronic
cases, and one study did not report the time since injury. Included
studies involved different types of control groups. Active control
groups (n =5) received alternative interventions not expected to
influence the targeted outcomes. Passive control groups (n =4)
consisted of participants who received no intervention or were placed
on a waiting list. Usual care control groups (n = 1) provided standard
rehabilitation services (e.g., physical therapy) without the
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FIGURE 1
Flow diagram of literature identification and selection process.
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Ineligible experimental designs (n=17)
Adequate outcome and data not
available (n=17)

experimental cognitive intervention. Conventional cognitive
intervention groups (n = 6) received traditional, non-digital cognitive
therapy, typically delivered sessions

through  in-person

with therapists.

3.3 Study quality

The comprehensive results of the risk of bias assessment are
shown in Figure 2. Of the 16 included studies, eight (50%) explicitly
described their methods of randomization, five (31.3%) did not
specify the randomization procedures used, and three (18.8%)
employed quasi-randomization for group allocation. Due to the
nature of the interventions and practical limitations, the majority of
studies did not implement or report blinding procedures for
participants, personnel, or outcome assessors. Four studies were
assessed as having an unclear risk of attrition bias due to insufficient
information regarding the reasons for participant withdrawal. In
terms of selective reporting and other sources of bias, all studies were
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rated as having a low risk. Overall, no serious concerns were identified
regarding the risk of bias across the included studies.

3.4 Results of the meta-analyses

3.4.1 Global cognitive function

Global cognitive function, representing a composite measure of
overall cognitive performance, was evaluated in six studies (n = 864)
using standardized assessments such as the Montreal Cognitive
Assessment (MoCA), Mini-Mental State Examination (MMSE),
Mattis Dementia Rating Scale (MDRS), Telephone Interview for
Cognitive Status-Modified (TICS-M), and NIH Toolbox Composite
Score. Pooled results are presented in Figure 3A and Table 2. Our
meta-analysis showed that digital (computer- and VR-based) cognitive
intervention significantly improved global cognitive function in
patients with TBI (SMD:0.64, 95% CI: 0.44 to 0.85, p < 0.001; I* = 0%).
As shown in Figure 4A, subgroup analyses were conducted by
stratifying intervention types and control group categories. The forest
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TABLE 1 Characteristics of included studies.

The first
author (Year)

Country

Mean age
()]

Patients

Time since
injury

Intervention

Control
group

Duration

Frequency

Follow-up
time

Outcomes

Man (2013) (26)

TBI

vocational training
(AIVTS)

vocational training
(PEVTS)

session)

P Rodriguez-Rajo Spain 39.87 (15.54) Moderate or severe | 73.02 days (sub- CCT-social Active control: 7 weeks (21 60 min/session, 3 / Social cognition
(2024) (52) TBI acute) cognition (GNPT) | CCT-nonsocial sessions) sessions/ week
cognition
Tobias Lohaus Germany 44.95 (16.70) TBI >3 months CCI (SoCoBo Active control: 12 weeks (48 30 min/session, 4 / Social cognition
(2024) (67) online) CCI (RehaCom) sessions) times/week
Sing-Fai Tam China 18-45 years closed head injury | >3 months CCT (self-paced, No intervention 2 weeks (10 20-30 min/session, | / Everyday memory
(2004) (59) feedback, sessions) 5 times/week
personalized and
visual
presentation)
Henry W USA 33.8(8.7) Mild TBI >3 months CCT (BrainHQ) Active control 13 weeks (65 60 min/session, 5 3 months Global cognitive
Mahncke (2021) (computer games) sessions) sessions /week function, TIADL,
(68) depression
Hei-Fen Hwang China 66.95 (11.12) TBI 3.75+4.89 months | CCT (RehaCom) Usual care 6 months At least 45 min/ 6 months Global cognitive
(2020) (50) session, 1 session/ function (multiple
week domains), ADL,
depression
Maritta Valimaki Finland 40.67 (12.19) TBI >12 months rehabilitation No intervention 8 weeks At least 30 min/ 3 months cognitive function
(2018) (49) gaming (CogniFit) day (multiple
domains),
depression, Self
efficacy
Gerald T Voelbel USA 44,52 (12.71) TBI >12 months CCT (Brain No intervention 12 weeks (40 60 min/session, / cognitive function
(2021) (51) Fitness Program) sessions) 3-4 sessions/week (multiple
domains),
depression, anxiety
Mark L Ettenhofer USA 52(8.97) TBI >12 months VR driving ‘Wait List 4 weeks (6 90 min/session / cognitive function
(2019) (28) rehabilitation sessions) (multiple
(NeuroDRIVE) domains),
depression,
David Wai Kwong China 18-55 years Mild to moderate 4 + 8.58 months AT VR based Conventional 1 months (12 20-25 min/session | / Executive function

(Continued)
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TABLE 1 (Continued)

The first
author (Year)

Country

Mean age

(SD)

Patients

Time since
injury

Intervention

Control
group

Duration

Frequency

Follow-up
time

Outcomes

WM memory

training

Rosaria De Luca Italy 44.6 (16.13) Moderate to severe = >6 months VR-CT Conventional CT 8 weeks (24 60 min/session, (3 / Global cognitive

(2023) (69) TBI sessions) sessions/week) function, executive
function

Andrew ] Darr USA 31.16 (7.92) closed mild TBI >3 months CCT (Lumosity or | Traditional CR 4 weeks (12 60 min/session, 3 / cognitive function

(2024) (24) UCR Brain sessions) sessions/week (multiple

Games) domains)

Michele Jacoby Israel 29.25 (12.69) TBI 113 + 62.85 days VR-CT (Virtual Standard CT (10 session) 45 min/ session, / executive function

(2013) (27) Mall) 3-4 sessions/week

Rosaria De Luca Italy 39.93 (10.1) Mild to moderate 3 to 6 months VR-CT (BTs Traditional CR 8 weeks (24 60 min/session, 3 / Global cognitive

(2019) (44) TBI Nirvana) sessions) sessions/week function (multiple
domains),
depression, anxiety

Rosaria De Luca Italy 43.56 (16.04) Severe TBI >3 months VR-CT (VRRS) Conventional CT 8 weeks (24 45 min/ session, 3 / Global cognitive

(2022) (55) sessions) sessions/week function (multiple
domains),
depression,

Jiabin Shen (2022) USA 12.96 (3.27) TBI NA VR-based Active control: VR | 20-30 min At least 1 training 2 months Global cognitive

(38) interactive CT game without CT session, about function

20-30 min
Nikita Tuli Sood Australia 10.62 (2.89) Mild to severe TBI | >6 months CCT (Cogmed) Active-control 5 weeks 50 min/day, 6 months WM
(2024) (46) (Lexia) with no 5 days/week

ADL, activities of daily living; Al artificial intelligent; AIVTS, artificial intelligent virtual reality-based vocational training system; CCI, computer-based cognitive intervention; CCT, computerized cognitive training; CI, cognitive intervention; CR, cognitive
rehabilitation; CT, cognitive training; GNPT®, the Guttmann Tele-Rehabilitation Platform, NeuroPersonalTrainer®; NeuroDRIVE, Neurocognitive Driving Rehabilitation in Virtual Environments; PEVTS, psycho-educational vocational training program; SoCoBo, the
Treatment Program for Deficits in Social Cognition and Social Competencies of the Ruhr University Bochum; TBI, traumatic brain injury; TIADL, timed instrumental activities of daily living; VR, virtual reality; VR-CT, virtual reality -based cognitive train; VRRS,

virtual reality rehabilitation system; WM, working memory.
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Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)

Other bias

0% 25% 50%

75%  100%

I:l Low risk of bias

.I Unclear risk of bias

Wl High risk of bias

FIGURE 2

Risk-of-bias assessments of the included studies based on the Cochrane collaboration tool.

plot demonstrated that non-immersive CCI significantly improved
global cognitive function compared to both usual care and active
control groups (SMD: 0.52, 95% CI: 0.26 to 0.79, p < 0.001; I = 0%).
Additionally, VR-CI demonstrated greater efficacy than conventional
face-to-face cognitive rehabilitation (SMD: 0.92, 95% CI: 0.59 to 1.26,
P <0.001; 12 = 0%).

Further subgroup analyses were conducted to examine potential
moderators by isolating one variable at a time, with results
summarized in Table 2. The analyses indicated that digital cognitive
intervention was significantly more effective in adult TBI patients
(SMD: 0.68, 95% CI: 0.47 to 0.88, p < 0.001; I* = 0%) compared to
minors, although only one study involved underage participants (38).
Moreover, interventions comprising more than 20 sessions showed
superior efficacy (SMD: 0.68, 95% CI: 0.47 to 0.88, p < 0.001; I* = 0%)
compared to shorter protocols (<20 sessions), though again, only one
study assessed interventions with fewer than 20 sessions (38). As such,
these comparisons should be interpreted with caution.

3.4.2 Executive function

Executive function refers to a set of higher-order cognitive
processes, including working memory, cognitive flexibility, and
inhibitory control, which regulate goal-directed behavior (39). Nine
studies (n =882) evaluated executive function using various
standardized tools, including the Trail Making Test Part B (TMT-B),
Wisconsin Card Sorting Test (WCST), Multiple Errands Test-
Simplified Version (MET-SV), Executive Function Performance Test
(EFPT), Simon Task, Behavior Rating Inventory of Executive
Functioning-Adult version (BRIEF-A), Tower of London, and the
Frontal Assessment Battery (FAB). Pooled results are presented in
Figure 3B and Table 2. The meta-analysis showed that digital cognitive
interventions significantly improved executive function in TBI
patients (SMD: 0.32, 95% CI: 0.17 to 0.47, p < 0.001; I* = 15%). As
shown in Figure 4B, further subgroup analyses based on intervention
type and control group indicated that VR-CI significantly enhanced
executive function compared to conventional face-to-face cognitive
therapy (SMD: 0.49, 95% CI: 0.33 to 0.66 p < 0.001; I* = 0%). However,
neither computer-based nor game-based cognitive interventions
showed significant improvements in executive function compared to
usual care or passive control groups. Additional subgroup analysis
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results related to executive function are summarized in Table 2.
Consistent with findings from the global cognitive function subgroup,
interventions involving more than 20 sessions demonstrated greater
efficacy (SMD: 0.32, 95% CI: 0.12 to 0.53, p < 0.001; I* = 40%) than
shorter interventions (<20 sessions).

3.4.3 Memory

Memory was assessed in seven studies (1 = 533) using the MDRS-
Memory, the Paced Auditory Serial Addition Test (PASAT), Rivermead
Behavioral Memory Test (RBMT), California Verbal Learning Test-
Second Edition (CVLT-II), and the Digit Span subtest of the Wechsler
Adult Intelligence Scale IV (WAIS-1V). Pooled and subgroup analysis
results are shown in Figure 5A and Table 2. The pooled results indicated
that digital cognitive intervention did not produce a statistically
significant improvement in memory among TBI patients (SMD: 0.06,
95% CI: —0.11 to 0.23, p = 0.500; I* = 0%). Moreover, subgroup analyses
revealed that variations in intervention type, control group, or memory
domain had no significant influence on the primary outcome.

3.4.4 Processing speed

Processing speed was assessed in seven studies (n = 538) using the
Trail Making Test Part A (TMT-A), Symbol Digit Modalities Test
(SDMT), WAIS-IV Symbol Search, WAIS-IV Coding, and Visual
Search tasks. Pooled and subgroup analysis results are presented in
Figure 5B and Table 2. The pooled results indicated that digital
cognitive intervention had no statistically significant effect on
processing speed in TBI patients (SMD: 0.16, 95% CI: —0.11 to 0.33,
p=0.070; I*=0%). Furthermore, subgroup analyses based on
intervention type and control group classification revealed no
significant effects on the primary outcomes.

3.4.5 Social cognitive function

Social cognitive function was assessed in two studies (n = 244)
using the Social Decision-Making Task (SDMT), Reading the Mind
in the Eyes Test (RMET), Moving Shapes Paradigm (MSP), Facial
Expressions of Emotion-Stimuli and Tests (FEEST), Emotion
Recognition Index (ERI), and the German version of the Interpersonal
Reactivity Index (IRI). Pooled results are shown in Figure 6A and
Table 2. The analysis indicated that non-immersive CCI significantly
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FIGURE 3
Forest plot of the digital cognitive intervention on (A) global cognitive function and (B) executive function in patients with traumatic brain injury. Cl,
confidence interval; SMD, standardized mean difference.

improved social cognitive function compared to active control
conditions in TBI patients (SMD: 0.46, 95% CI: 0.20 to 0.72, p < 0.001;
I> = 0%). Subgroup analyses were not conducted due to the limited
number of studies evaluating outcomes in this domain.

3.4.6 Attention

Attention was assessed in two studies (n = 110) using Attentive
Matrices test (AMT), MoCA-Attention, and the Attention subscale of
the MDRS-Attention. Pooled results are presented in Figure 6D and
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Table 2. The analysis showed that digital cognitive intervention
significantly improved attention in TBI patients (SMD: 0.40, 95% CI:
0.02 to 0.78, p = 0.040; I = 0%). As with social cognitive function,
subgroup analyses were not performed due to the small number of
included studies.

3.4.7 Anxiety and depression

Anxiety was assessed in two studies (n = 148) using the Beck
Anxiety Inventory (BAI) and the Hamilton Rating Scale for Anxiety
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TABLE 2 Results of subgroup analysis.

Outcome Comparisons (n) Sample size SMD with 95% ClI p value 12(%)

Global cognitive function 8 398 0.64 [0.44, 0.85] <0.001 0

Intervention type

VR 4 166 0.76 [0.35,1.17] <0.001 26

Computer 4 232 0.52 [0.26, 0.79] <0.001 0
Control type

Active and usual care 5 248 0.48 [0.23, 0.74] <0.001 0

Conventional CI 3 150 0.92 [0.59, 1.26] <0.001 0
Participants

Adult 7 382 0.68 [0.47, 0.88] <0.001 0

Underage 1 15 —0.12 [-1.11, 0.87] 0.81 /

Session number

<20 sessions 1 15 —0.12 [-1.11, 0.87] 0.81 /
>20 sessions 7 382 0.68 [0.47, 0.88] <0.001 0
Executive function 20 882 0.32[0.17,0.47] <0.001 15

Intervention type

VR 14 601 0.48 [0.32, 0.65] <0.001 0

Computer 3 146 0.09 [-0.24, 0.42] 0.58 0

Games 3 135 —0.10 [—0.44, 0.24] 0.56 0
Control type

Active and usual care 7 298 0.01 [—0.22, 0.24] 0.96 0

Conventional CI 13 584 0.49 [0.33, 0.66] <0.001 0

Session number

<20 sessions 7 201 0.27 [-0.01,0.55] 0.06 0
>20 sessions 13 681 0.32[0.12, 0.53] 0.002 40
Memory 18 533 0.06 [-0.11, 0.23] 0.50 0

Intervention type

VR 4 68 —0.04 [—0.54, 0.46] 0.87 0

Computer 11 332 0.13 [-0.09, 0.35] 0.23 0

Games 3 133 —0.07 [—0.41, 0.27] 0.69 0
Control type

Active and usual care 17 468 0.06 [—0.13, 0.24] 0.56 0

Conventional CI 1 65 0.09 [—0.40, 0.58] 0.72 /
Memory domains

Everyday Memory 4 58 —0.06 [—0.59, 0.46] 0.82 0

Working memory 10 374 0.04 [—0.16, 0.25] 0.68 0
Processing Speed 11 538 0.16 [—0.01, 0.33] 0.07 0

Intervention type

VR 6 281 0.23 [-0.00, 0.47] 0.05 0
Computer 3 163 0.20 [-0.11, 0.52] 0.20 0
Games 2 94 —0.13 [~0.54, 0.27] 0.52 0
Control type
Active and usual care 7 243 0.09 [—0.16, 0.35] 0.48 0
Conventional CI 4 295 0.21 [-0.02, 0.44] 0.07 0
Social cognitive function 6 244 0.46 [0.20, 0.72] <0.001 0
(Continued)
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TABLE 2 (Continued)
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Outcome Comparisons (n) Sample size SMD with 95% CI

Attention 3 110 0.40 [0.02, 0.78] 0.04 0
Anxiety 2 148 —0.31 [—0.76,0.14] 0.18 43
Depression 7 372 —0.19 [—0.49, 0.10] 0.20 47

Intervention type

VR 3 147 —0.64 [—0.97, —0.31] <0.001 0
Computer 2 132 0.05 [—0.29, 0.39] 0.78 0
Games 1 45 0.03 [-0.56, 0.61] 0.92 /
Activity of daily living 3 149 —0.18 [-0.62, 0.26] 0.42 35
Self-efficacy 5 103 0.12 [-0.27, 0.51] 0.55 0

CI, cognitive function; VR, virtual reality; SMD, standardized mean difference. The bold values represent those with statistical significance (p < 0.05).

(HRS-A). Pooled results are presented in Figure 6C and Table 2. The
analysis indicated that digital cognitive intervention had no significant
effect on anxiety in TBI patients (SMD: —0.31 95% CI: —0.76 to 0.14,
p=0.18 T = 43%).

Depression was assessed in seven studies (n = 372) using the
Hamilton Rating Scale for Depression (HRS-D), Beck Depression
Inventory-II (BDI-II), Center for Epidemiologic Studies Depression
Scale (CES-D), and the Patient Health Questionnaire-9 (PHQ-9).
Pooled and subgroup analysis results are shown in Figure 6B and
Table 2. The pooled results indicated that digital cognitive intervention
had no significant overall effect on depression (SMD: —0.19 95% CI:
—0.49 to 0.10, p=0.20; I*=47%), indicating low to moderate
heterogeneity. However, subgroup analysis revealed that VR-CI
significantly reduced symptoms of depression in TBI patients (SMD:
—0.64, 95% CI: —0.97 to —0.31, p < 0.001; I* = 0%). In contrast, neither
computer-based nor game-based cognitive interventions
demonstrated statistically significant effects on depression when
compared to usual care, active, or passive control groups (p > 0.05 for

all comparisons).

3.4.8 Activity of daily living and self-efficacy

Activity of daily living was assessed in three studies (1 = 149)
using the Timed Instrumental Activities of Daily Living (TIADL),
Activities of Daily Living (ADL) scale, and the Physical Component
Summary of the Medical Outcomes Study 36-Item Short-Form Health
Survey (SF-36 PCS). Pooled results are presented in Figure 6E and
Table 2. The analysis indicated that digital cognitive intervention had
no significant effect on activities of daily living (SMD: —0.18 95% CI:
—0.62 to 0.26, p=0.42; I=35%). Subgroup analysis was not
conducted due to the limited number of included studies.

Self-efficacy was assessed in two studies (n = 103) using self-
efficacy rating scales. Pooled results are shown in Figure 6F and
Table 2. The analysis demonstrated that non-immersive CCI had no
significant effect on self-efficacy (SMD: 0.12, 95% CI: —0.27 to 0.51,
p =055 = 0%).

4 Discussion

Based on the current evidence reviewed, our results demonstrate
that digital cognitive intervention significantly improved global
cognitive function, executive function, attention, and social cognitive
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function in patients with TBI. However, no significant improvements
were observed in memory, processing speed, ADL, or psychosocial
outcomes, including self-efficacy and anxiety/depression. Subgroup
analyses revealed that VR-CI resulted in significantly greater
improvements in global cognitive and executive functions compared
to conventional face-to-face cognitive therapy. Moreover, a higher
number of training sessions appeared to enhance cognitive benefits.
VR-CI was also found to have beneficial effects on depression in
TBI patients.

The manifestation and severity of cognitive dysfunction
following TBI are influenced by various factors, including the nature
of the injury, psychosocial circumstances, and individual patient
characteristics (32). Common cognitive deficits post-TBI include
memory impairments (90%), attention difficulties (82%), and
executive dysfunction (75%) (40). Digital cognitive intervention
leverage technology to enhance cognitive performance through
targeted, engaging training paradigms. Computerized programs
(e.g., Cogmed, Lumosity) use adaptive tasks to strengthen specific
domains such as working memory and attention by reinforcing
neural pathways through repetitive and progressively challenging
exercises (41). VR interventions immerse users in simulated real-
world environments, facilitating multisensory integration and
ecological transfer by simultaneously engaging memory, executive
functions, and visuospatial skills (42). A fundamental mechanism
these
neuroplasticity—the brain’s capacity to reorganize and form new

underlying the effectiveness of interventions is
synaptic connections in response to structured therapeutic stimuli
(43, 44). By capitalizing on this neuroadaptive potential, digital
interventions can induce cognitive improvements in task-relevant
brain regions (e.g., the prefrontal cortex for executive functions)
through structured training (45). Additionally, their engaging
interfaces and real-time feedback mechanisms enhance patient
motivation and adherence, further supporting behavioral and
cognitive recovery. Consistent with previous systematic reviews by
Alashram (32) and Manivannan et al. (17), our meta-analysis found
that digital cognitive intervention significantly enhanced global
cognitive function, highlighting their therapeutic promise for
cognitive rehabilitation. Subgroup analyses also revealed that
patients who completed a greater number of training sessions
showed superior cognitive gains. Therefore, a moderate increase in
the number of training sessions may help optimize and sustain long-
term cognitive benefits.
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FIGURE 4
Forest plot of the subgroup analysis of computer- and VR-based cognitive intervention on (A) global cognitive function and (B) executive function
according to intervention and control types. CCT, computerized cognitive training; Cl, cognitive intervention; Cl, confidence interval; SMD,
standardized mean difference; VR, virtual reality.

Two studies involving underage patients with TBI were included
in our meta-analysis. Shen et al. found that the VR-CI program was
safe for children with TBI and showed promising, though statistically
non-significant, benefits for executive function (38). Another study
reported that CCI significantly improved working memory in children
with TBI, but this benefit was not sustained during the follow-up
period (46). Notably, there are substantial developmental differences
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in cognition between children and adults. The ongoing neuroplasticity
of the developing brain may enhance responsiveness to cognitive
interventions (32). Therefore, further research is warranted to
investigate the safety and efficacy of digital cognitive interventions in
pediatric TBI populations.

Our subgroup analyses showed that VR-CI led to significantly
greater improvements in global cognitive function and executive
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FIGURE 5
Forest plot of the digital cognitive intervention on (A) memory and (B) processing speed in patients with traumatic brain injury. Cl, confidence interval;
SMD, standardized mean difference.

functioning compared to traditional face-to-face cognitive therapy.
VR technology enables the creation of interactive, multisensory, three-
dimensional environments that support comprehensive behavioral
monitoring, offering clinical assessment and rehabilitation capabilities
beyond those of conventional psychoeducational approaches (26).
Executive function encompasses a range of high-level cognitive skills,
including goal setting and initiation, planning and organization, task
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execution, and performance monitoring and regulation (47). These
skills are essential for executing goal-directed behaviors and play a
critical role in activities of daily living (ADLs). For example, Jacoby
et al. employed a virtual reality supermarket to enhance executive
function in TBI patients, demonstrating that VR-acquired skills
successfully transferred to real-world tasks (27). The multisensory
stimulation and interactive nature of VR environments allow patients
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Forest plot of the digital cognitive intervention on (A) social cognitive function, (B) depression (C) anxiety, (D) attention, (E) activity of daily living and
(F) self-efficacy in patients with traumatic brain injury. Cl, confidence interval; SMD, standardized mean difference.

Control Intervention

to repeatedly practice tasks in contexts that closely resemble real-life
situations, a benefit not achievable through conventional cognitive
rehabilitation. As such, VR-CI represents a promising alternative
approach for improving executive function in TBI patients.

Our results showed that CCI, including rehabilitation gaming, did
not produce significant improvements in executive function compared
to usual care or passive control groups. A previous systematic review
reported that CCI could enhance executive function in patients with
acquired brain injury, including TBI (48). However, since only three
studies in our analysis examined the effects of CCI on executive
function, these findings should be interpreted with caution due to the
limited evidence base. One of the included studies on gaming-based
rehabilitation noted that outcomes could have been influenced by
factors such as the participants’ broad age range, variability in game
types, their attitudes toward the therapy, among others (49). The
computerized interventions in the remaining two studies appeared to
primarily target improvements in attention and information
processing (50, 51). These findings suggest that personalized CCI
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programs tailored to the specific cognitive deficits of individual
patients may improve treatment efficacy by better addressing their
unique therapeutic needs.

Social cognition is a critical domain for individuals with TBI, as it
underpins social reintegration, emotional cue interpretation, and
interpersonal relationships-functions commonly impaired post-injury
(52). Traditional cognitive interventions tend to emphasize non-social
cognitive domains such as memory and executive function, often
neglecting aspects of social cognition (47, 53). Our findings showed
that CCI significantly improved social cognitive function. Although
only two studies included social cognition outcomes, their results
provide preliminary evidence supporting the therapeutic potential of
CCl in this area.

Enhancement of attention is crucial for both functional recovery
and active engagement in rehabilitation programs (54). Our meta-
analysis found a statistically significant improvement in attention
following digital cognitive intervention. Although only two studies
included attentional outcomes, their findings provide preliminary
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evidence supporting the effectiveness of these interventions in this
cognitive domain. Therefore, additional high-quality studies are
needed to further explore the impact of digital cognitive interventions
on attention and social cognition. Several studies have also reported a
negative correlation between reductions in depressive symptoms and
improvements in attention (55, 56). Given that depressive symptoms
are critical determinants of neurorehabilitation efficacy, addressing
them is essential. VR environments can incorporate exposure therapy
and relaxation exercises, which have been shown to reduce depressive
symptoms, phobias, and post-traumatic stress (57). In line with this,
our subgroup analysis demonstrated a meaningful reduction in
depressive symptoms following VR-CI. However, no significant
reduction in anxiety symptoms was observed following digital
cognitive interventions. This may be partially due to the limited
number of eligible studies included. Additionally, interventions
targeting anxiety in TBI patients often involve computer-based
cognitive behavioral therapy, which was beyond the scope of our
review (58).

Our pooled results did not show significant improvements in
memory or processing speed following digital cognitive intervention.
This may be attributed to a lack of targeted training focused on these
specific domains during the interventions. We extracted results from
all memory-related scales used in the included studies, which covered
a broad range of memory subtypes, such as working memory,
everyday memory, short-term memory, and delayed memory. The
varying effects of digital interventions on different memory domains
could contribute to the heterogeneity of findings. Furthermore, the
lack of sensitivity of some assessment tools may have limited the
detection of subtle memory improvements associated with digital
training (59). While our findings differ from several previous reviews
that reported improvements in memory-including working memory-
following digital cognitive interventions in patients with TBI (60, 61).
However, both Rodriguez-Rajo et al. (52) and Phillips et al. (62) found
no statistically significant differences in memory outcomes between
intervention and control groups. Therefore, future research should
utilize more sensitive and standardized assessment tools, develop
targeted interventions, and conduct larger, high-quality randomized
controlled trials to elucidate the efficacy of digital interventions in
specific cognitive domains such as memory and processing speed.

No significant improvements in ADL were observed in this
review, which may be attributed to the limited number of studies
(n=3) that provided analyzable data using ADL-related scales.
Notably, none of these three studies incorporated specific ADL
training tasks within their cognitive intervention programs. Prior
well-established
improvements in executive function and attention and enhanced

evidence suggests a association between
performance in ADL tasks (63). ADL is a critical domain, as one of
the primary goals of CI is to support patients’ reintegration into real-
world functional activities. Therefore, future CI studies should include
standardized assessments of ADL to better evaluate functional
outcomes. Self-efficacy, on the other hand, has demonstrated a
significant independent effect on the efficacy of cognitive rehabilitation
(59). Encouragement and positive feedback during therapy can
enhance patients’ perceived self-efficacy. However, our findings
showed no significant improvement in self-efficacy following
computer-based cognitive interventions. The study by Tam et al. (59)
found that self-efficacy was significantly enhanced in participants who
received targeted feedback interventions. As self-efficacy plays a key
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role in brain injury rehabilitation, future cognitive intervention studies
should routinely include standardized measures of self-efficacy and
consider integrating motivational elements to  support
its improvement.

VR-CI has also been demonstrated to improve global cognitive
function, executive function and memory among stroke patients
compared to control treatments (21). Alashram et al. reported that the
efficacy of CCI for visual and verbal working memory in acquired
brain injury (ABI) population (64). ABI, encompassing etiologies such
as stroke, hypoxic-ischemic injury, and brain tumors, shares with TBI
the common endpoint of disrupted neural networks and consequent
cognitive impairment. A core sequelae of ABI is the disruption of
inherent neuroplasticity, the brain’s ability to reorganize itself by
forming new neural connections. Both focal (e.g., stroke) and diffuse
(e.g., TBI, anoxia) injuries can impair this process. CCI is
fundamentally engineered to harness and drive neuroplasticity
through the principles of massed practice and intensity. This intensive
practice is believed to promote synaptic strengthening and efficiency
within damaged or alternative neural networks (65). The game-like,
engaging nature of many immersive VR-CI applications can increase
adherence to the high repetitions needed for neuroplasticity (66).
Therefore, the efficacy of digital cognitive interventions is not limited
to TBI alone but is potentially generalizable to a wide range of
ABI patients.

Our meta-analysis quantitatively confirmed the beneficial effects
of digital cognitive intervention on cognitive function in patients with
TBI. The low heterogeneity observed among the included studies
enhances the robustness of the findings. However, this meta-analysis
has several limitations. First, the results for some outcomes may have
been influenced by the limited number of studies available. Subgroup
analyses exploring potential moderating factors were also constrained
by the small sample of studies. Several covariates may influence
treatment effects, including: (a) the severity and age range of TBI
patients (from mild to severe), (b) the time elapsed since injury, (c)
the duration of follow-up after the intervention, and (d) the presence
or absence of one-on-one coaching during treatment. Second, there is
a lack of standardization in cognitive outcome assessments across
studies, which underscores the need for more precise and consistent
evaluation methods. Third, this review only included English-
language publications, which may have introduced geographic and
cultural bias. To better understand the effectiveness and influencing
factors of digital cognitive intervention in TBI, larger, high-quality
randomized controlled trials with more rigorous designs are
urgently needed.

5 Conclusion and clinical
recommendations

Our meta-analysis demonstrated that digital (computer- and
VR-based) cognitive intervention have a positive impact on global
cognitive function, executive function, attention, and social
cognitive function in patients with TBI. However, these
interventions did not show significant effects on memory, processing
speed, ADL, or psychosocial outcomes (self-efficacy, anxiety, and
depression). Subgroup analyses revealed that VR-CI were
significantly more effective than traditional cognitive therapy in
improving global cognitive and executive functions. VR-CI also
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showed beneficial effects on depressive symptoms. Moreover, a
greater number of training sessions may enhance the cognitive
benefits achieved.

In clinical practice, digital cognitive intervention is reccommended
to enhance cognitive functions in both adult and pediatric patients
with TBI. Although more further researches are warranted to
investigate the safety and efficacy of digital cognitive interventions in
pediatric TBI populations. In global cognitive function and execution
function, VR-CI demonstrate superior efficacy compared to
conventional cognitive intervention. Given the variability in cognitive
deficit profiles and intervention protocols focused on different specific
domains, we recommend individualized treatment strategies to more
effectively address cognitive impairments in TBI patients. Further
research is needed to determine the most appropriate digital cognitive
intervention programs tailored to individual patient characteristics.
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Glossary

ADL - activities of Daily Living
AMT - Attentive Matrices test
BAI - Beck Anxiety Inventory
BDI-II - Beck Depression Index II

BRIEF-A - Behavior Rating Inventory of Executive Functioning-
Adult version

CCI - computer-based cognitive intervention

CCT - computerized cognitive training

CES-D - Center for Epidemiologic Studies Depression Scale
CI - confidence interval

CR - cognitive rehabilitation

CVLT-II - California Verbal Learning Test-II

EFPT - Executive Function Performance Test

ERI - Emotion Recognition Index

ES - effect size

FAB - Frontal Assessment Battery

FEEST - Facial Expressions of Emotion-Stimuli and Tests
HRS-A - Hamilton Rating Scale for Anxiety

HRS-D - Hamilton Rating Scale for Depression

IRI - German version of the Interpersonal Reactivity Index
MDRS - Mattis Dementia Rating Scale

MeSH - medical subject heading

MET-SV - Multiple Errands Test-Simplified Version
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MMSE - Mini-mental state examination
MoCA - Montreal Cognitive Assessment
MSP - Moving Shapes Paradigm

PASAT - Paced Auditory Serial Addition Test
PHQ-9 - Patient Health Questionnaire-9

PRISMA - Preferred Reporting Items for Systematic Reviews and
Meta-Analyses

RBMT - Rivermead Behavioural Memory Test
RCT - randomized controlled trial

RMET - Reading the Mind in the Eyes Test
SDMT - Social Decision Making Task

SDMT - Symbol Digit Modalities Test

SF-36 PCS - Medical Outcomes Study 36-Item Short-Form Health
Survey Physical Component Summary

SMD - standardized mean difference

TBI - traumatic brain injury

TIADL - Timed Instrumental Activities of Daily Living
TICS-M - Telephone Interview for Cognitive Status-Modified
TMT-A - Trail Making Test part A

TMT-B - Trail Making Test part B

VR - virtual reality

VR-CI - virtual reality-based cognitive intervention
WAIS-IV - Wechsler Adult Intelligence Scale IV

WCST - Wisconsin Card Sorting Test
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