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Introduction: Methamphetamine (METH) abuse primarily affects the central
nervous system (CNS), leading to CNS damage and contributing to depressive-
like behaviors, cognitive impairment, and other neuropsychiatric disorders.
Electroacupuncture (EA) has shown promise in treating mental disorders
linked to CNS damage, yet the effects of EA on METH-induced depressive-like
behaviors and cognitive impairment and it's underlying therapeutic mechanisms
remain largely unclear.

Methods: In this study, a mouse model of METH-induced neuropsychiatric
dysfunction was established by administering high-dose METH under elevated
ambient temperature. EA was applied at different frequencies to the Zusanli (ST36)
acupoint for 7 days post-METH administration.

Results: Behavioral tests revealed that low-frequency EA significantly
alleviated depressive-like behaviors and cognitive impairment. Additionally, EA
restored blood-brain barrier (BBB) integrity, as evidenced by Western blotting
(WB) and Evans blue staining. Neuronal injury was attenuated, as shown by
Nissl and hematoxylin and eosin (HE) staining. Further investigations into
neuroinflammation revealed that EA suppressed microglial activation in the
hippocampus, decreased the expression of IL-6 and TNF-«, and inhibited the
NF-kB/NLRP3 signaling pathway.

Discussion: The present study suggested that EA alleviates METH-induced
depressive-like behaviors and cognitive impairment by modulating
neuroinflammation, particularly through the inhibition of microglial activation
and pro-inflammatory cytokine release. EA may represent a promising non-
pharmacologicalstrategy forthe treatment of METH-associated neuropsychiatric
disorders.
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1 Introduction

Drug abuse remains a critical global public health and security
concern (1). Methamphetamine (METH) ranks among the most
extensively abused psychostimulants worldwide (2), which is
particular concern due to its high addictive potential and severe
neurotoxic and neuropsychiatric effects (3). High-dose or long-term
METH use frequently leads to a range of psychiatric disorders,
including emotional dysregulation, cognitive impairment, and
psychotic symptoms such as anxiety, depression, paranoia, delirium
and mania (3-6). Currently, effective pharmacological interventions
for METH addiction remain largely unavailable, highlighting the
urgent need to explore novel therapeutic strategies and underlying
mechanisms associated with METH-induced neurological and
neuropsychiatric disorders.

The METH abuse is associated with complex and multifaceted
neurotoxic effects (7). Current evidence suggests that the primary
mechanisms of METH-induced neuropsychiatric dysfunction involve
a complex interplay of pathophysiological alterations, including
hyperthermia, systemic and neuroinflammatory responses, oxidative
stress, excitotoxicity due to amino acid imbalances, and mitochondrial
dysfunction (8, 9). These disturbances disrupt neurotransmitter
homeostasis, impair synaptic plasticity (10), and eventually lead to
widespread neural circuit disability and behavioral abnormalities (11).
Among these mechanisms, neuroinflammation has emerged as a
central and critical contributor to METH-induced neuropathology
(12). Mounting evidence indicates that METH triggers a robust
inflammatory response in central nervous system (CNS) (13, 14). This
inflammation is increasingly recognized as a driving factor in the
development of depressive-like behaviors and cognitive impairment
caused by METH abuse. Therefore, modulating neuroinflammation
may represent a promising therapeutic approach to mitigate the
METH
cognitive impairment.

exposure-associated  depressive-like  behaviors and
Acupuncture is a fundamental therapeutic modality in traditional
Chinese medicine. Electroacupuncture (EA), which integrates
acupuncture with modern electrical stimulation techniques, delivers
low-frequency currents to specific acupoints to modulate physiological
functions (15, 16). EA has demonstrated therapeutic potential in
various neuropsychiatric disorders, including cognitive impairment
and depressive-like behaviors (17). Notably, accumulating evidence
highlights the anti-inflammatory and immune-regulatory effects of
EA (18-21). For instance, EA has been found to improve cognitive
impairment and inflammation in models of cerebral ischemia-
reperfusion injury (22, 23). Furthermore, EA intervention of the
Zusanli (ST36) acupoint has demonstrated enhanced immune
function in post-surgical animals and exert anti-inflammatory effects
(24). However, there remains a significant gap in understanding
whether EA stimulation at ST36 acupoint can attenuate METH-
induced depressive-like behaviors and cognitive impairment.
Herein, we employed the open field test (OFT), tail suspension
test (TST), forced swimming test (FST), and novel object recognition
test (NORT) to evaluate the efficacy of EA in alleviating METH-
induced depressive-like behaviors and cognitive impairment. In
addition, we assessed blood-brain barrier (BBB) integrity, neuronal
damage and evaluated neuroinflammation by measuring the
expression of IL-6, TNF-a, nuclear factor kappa-B (NF-kB),
NLRP3 in hippocampus. The study aims to elucidate the
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neurobiological mechanisms underlying the therapeutic effects of EA
on METH-induced depressive-like behaviors and cognitive
with a focus on its role in

impairment, regulating

hippocampal inflammation.

2 Materials and methods

2.1 Animals

Male C57BL/6N mice (6-8 weeks old) were procured from Beijing
Vital River Laboratory Animal Technology Co., Ltd. and housed
under specific pathogen-free (SPF) conditions at the Experimental
Animal Center of Hebei Medical University. Animals were maintained
in a controlled environment with a temperature of 22 °C, relative
humidity of ~60%, and a 12-h light/dark cycle (lights off from 7:00 to
19:00), with a maximum of five mice per cage. All experimental
procedures involving animals were conducted in accordance with
ethical guidelines and approved by the Institutional Animal Care and
Use Committee of Hebei Medical University (Approval No.:
TACUC-Hebmu-202023).

2.2 Experimental design and intervention

Building upon our previous research, a mouse model of METH-
induced depressive-like behaviors and cognitive impairment was
established. Mice were then randomly assigned to five
experimental groups:

Saline group: Mice were administered intraperitoneal (i.p.)
injections of saline.

Saline + Anesthetic group: Mice were administered (i.p.)
injections of saline and, during EA sessions, were administered 2%
pentobarbital sodium (i.p.) to control for anesthetic effects.

METH + Anesthetic group: Mice were administered METH
(10 mg/kg, i.p.) four times at 2-h intervals at 28 °C. During EA
sessions, they were also given 2% pentobarbital sodium to eliminate
the influence of anesthesia.

METH + EA 10 Hz group (High-frequency EA): Mice were
administered METH injections as above and underwent EA at the
ST36 acupoints twice daily for 7 consecutive days (30 min per session,
6-h interval), using 10Hz frequency, 1 mA current, and
0.25 x 13 mm needles.

METH + EA 2 Hz group (Low-frequency EA): This group were
administered identical METH treatment and EA procedure as the
10 Hz group, but with a 2 Hz stimulation frequency.

This acute binge-exposure paradigm was selected to model the
scenario of recreational binge use leading to acute neurotoxicity,
which allows for the efficient investigation of early pathological events

and therapeutic interventions.

2.3 Open field test (OFT)

At the onset of the test, each mouse was positioned in the center
area of the arena. Following a 5-min acclimatization period, the
mouse’s movement trajectories were recorded using the Noldus
EthoVision XT video tracking software (Wageningen, Netherlands).
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Total distance traveled and time spent in the central zone were
recorded to evaluate anxiety-related behaviors.

2.4 Tail suspension test (TST)

Each mouse was suspended by the tail with head facing downward
and prevented any contact with the desktop or surrounding walls.
After a 1-min acclimatization period, the immobility time of the
mouse was recorded over a total measurement duration of 5 min.

2.5 Forced swimming test (FST)

Mice were positioned in a cylindrical transparent container filled
with water (bucket diameter: 20 cm, height: 40 cm), with the
temperature of the water controlled between 23 and 25 °C and the
level of the water set at 17 cm. After gently placing the mice into the
water, a 1-min acclimatization period was allowed. Subsequently, the
immobility time, reflecting a state of despair behavior, was recorded
over a total duration of 5 min. Immobility was defined as the absence
of active movement of the hind limbs.

2.6 Novel object recognition test (NORT)

Cognitive abilities in mice were assessed using the NORT. On the
first day of the experiment, mice were positioned in an empty arena
to explore freely, once in the morning and once in the afternoon, with
each session lasting 10 min. On the second day, two identical familiar
objects (A, A) were positioned in symmetric positions on one side of
the testing box, with both objects positioned 10 centimeters away
from the side walls and the back wall. Mice were gently placed in the
center of the opposite wall and allowed to explore the experimental
arena freely for a duration of 5 min. During this time, the number of
times the mice’s nose or mouth came into contact with the familiar
objects (A, A) and the exploration time within 2-3 centimeters of the
objects were recorded. After 4 h, a short-term memory and learning
test was conducted by replacing one of the familiar objects (A) with
a novel object (B). After 24 h, the novel object (B) was replaced with
another novel object (C), and the experiment was repeated. The
exploration time for the novel objects (B, C) and the familiar object
(A) was recorded. The Discrimination Index was used as the
statistical measure and calculated using the formula N/
(N + F) x 100%, where N represents the exploration time for the
novel objects (B, C) and F represents the exploration time for the
familiar object (A).

2.7 Nissl staining

Mouse brain tissue sections were stained with Methyl Blue
(G1434, Solarbio Life Science, Beijing, China) for 10 min and
differentiated in Nissl staining buffer. Subsequently, the sections were
treated with ammonium molybdate for 3 min, followed by sequential
dehydration using 70% alcohol, 80% alcohol, 95% alcohol, anhydrous
ethanol, and xylene. After dehydration, the sections were immediately
rinsed with distilled water. The sections were then mounted with
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neutral resin and examined under a microscope to assess pathological
morphology in the hippocampal region of the mice. The area of Nissl
bodies was quantified using Image] software (Media Cybernetics,
United States).

2.8 Evans blue staining

Mice were injected with Evans blue staining solution at a ratio of
2-3 mL/kg. Within 10 s after injection, the eyes and tails of the mice
gradually turned blue, and within 1 h, the paws and ears also exhibited
a blue coloration. After 1 h, the mice were sacrificed, and their brain
tissues were harvested. The tissues were fixed in 4% paraformaldehyde
for 48h. Subsequently, the hippocampal region was excised,
dehydrated, embedded in paraffin, and sectioned into 5 pm-thick
slices, which were mounted onto glass slides. The sections were then
dewaxed and subjected to antigen retrieval. A specific primary
antibody, Rabbit Anti-CD31 pAb (1:200, GB11063-2, Servicebio,
Wauhan, China), was applied for incubation. This was followed by
incubation with a goat anti-rabbit fluorescent dye-conjugated
secondary antibody (1:2000, A21207, Invitrogen, United States). Cell
nuclei were stained with DAPI (89618, Cell Signaling Technology,
United States). After completion of the staining process, the sections
were observed under a fluorescence confocal laser microscope (Leica,
Germany), and the data were analyzed using Image]J software.

2.9 Hematoxylin and eosin (HE) staining

Mice were euthanized, and their brain tissues were harvested,
fixed in 10% formaldehyde, embedded in paraffin, and sectioned at a
of 5pm. The paraffin-embedded
deparaffinized with xylene and rehydrated through a graded ethanol

thickness sections were
series (100, 95, and 80%, each for 5 min). Subsequently, the sections
were stained with Harris hematoxylin for 1 min, differentiated with
1% hydrochloric acid ethanol for 3 s, rinsed in distilled water, and
dehydrated using a graded ethanol series. Eosin staining was
performed for 40 s. Final dehydration was completed with absolute
ethanol and xylene, and the sections were mounted using neutral
resin. Histological images were captured using a Leica Aperio CS2

microscope (Leica, Germany).

2.10 Immunofluorescence (IF) assay

Mouse brain tissues were fixed in 4% paraformaldehyde for 48 h.
The hippocampal regions were dissected, dehydrated through a graded
alcohol series (75, 85, and 95%, absolute ethanol), cleared in xylene,
and embedded in paraffin. Serial sections (5 pm thick) were prepared
and mounted onto glass slides, followed by xylene treatment for
10 min to remove residual paraffin. After antigen retrieval, the sections
were incubated overnight at 4 °C with specific primary antibodies:
anti-Iba-1 (1:100, ET1705-78, Huaan, Zhejiang, China) and anti-NeuN
(1:200, HA601111, Huaan, Zhejiang, China). Following PBS washes, a
goat anti-rabbit fluorescent secondary antibody (1:2000, A21207,
Invitrogen, United States) was applied for 5 min, then washed six times
with PBS (5 min per wash). Nuclei were counterstained with DAPI
(89618, Cell Signaling Technology, United States). Fluorescent images
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were obtained using a confocal laser scanning microscope (Leica,
Germany), and image analysis was performed using Image]J software.

2.11 Western blotting (WB) analysis

Mouse brain tissues were collected, and the hippocampal region
was added to RIPA lysis buffer and homogenized thoroughly. The
homogenate was centrifuged at 4 °C, and the supernatant was
collected. Protein concentration was determined using the BCA
method. Equal amounts of protein samples were denatured and
subjected to electrophoresis on a 10% SDS-PAGE gel. Following
separation, the proteins were electrophoretically transferred onto a
0.45 um PVDF membrane (Immobilon®-P, IPVH0010, Merck
Millipore, United States). This membrane was then incubated for 2 h
at ambient temperature in a blocking solution consisting of Tris-
buffered saline fortified with 5% skim milk and 0.1% Tween-20
(TBST). After blocking, the membrane was incubated with designated
primary antibodies at 4 °C overnight, including Mouse Anti-Claudin-5
Antibody (1:1000, 35-2,500, Invitrogen, United States), Rabbit Anti-
Occludin Antibody (1:1000, R1510-33, Huaan, China), Rabbit Anti-
IL-6 Antibody (1:1000, DF6087, Affinity Biosciences, USA), Rabbit
Anti-TNF-Alpha Antibody (1:1000, AF7014, Affinity Biosciences,
USA), Rabbit Anti-NF-kB p65 Antibody (1:1000, D14E12, Cell
Signaling Technology, United States), Rabbit Anti-NLRP3 Antibody
(1:1000, ET1610-93, Huaan, Zhejiang, China), diluted together with
Rabbit Anti-GAPDH Antibody (1:10000, ET1601-4, Huaan, China)
or Rabbit Anti-beta Tubulin Antibody (1:80000, ab179513, Abcam,
United Kingdom). The membrane was washed four times with TBST,
5 min each time, and then incubated with goat anti-rabbit secondary
antibodies (1:5000, D40416-05, Licor, United States) or goat anti-
mouse secondary antibodies (1:5000, D40409-05, Licor, USA) in a 37
°C constant-temperature shaker for 1h in the dark. Following
incubation, the membrane was rinsed three times with TBST (5 min
each), followed by a final wash with TBS for 5 min. Protein signals
were visualized using the Odyssey imaging system, and band
intensities were quantified with Image]J software. Statistical analyses
were conducted using GraphPad Prism version 8.4.3.

2.12 Statistical analysis

In this study, we utilized GraphPad Prism 8.4.3 for our statistical
analyses. All results were presented as the mean with standard error
of the mean (SEM). We evaluated group variances through a one-way
analysis of variance (ANOVA). To delve deeper, we employed the
Bonferroni correction for post-hoc analysis. A threshold of p < 0.05
was set to denote statistical significance.

3 Results

3.1 Low-frequency EA alleviates
METH-induced anxiety and depressive-like
behaviors

To establish a model of METH-induced depressive-like behaviors,

C57BL/6 N mice (7-8 weeks old, 20-25g) received four
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intraperitoneal injections of METH (10 mg/kg) at 2-h intervals under
ambient temperature (28 °C). Control mice received an equivalent
volume of saline. Following METH administration, EA was applied at
the ST36 acupoints at different frequencies for 7 consecutive days, and
behavioral tests were conducted at the end of treatment. The timeline
of drug administration, EA intervention and behavioral tests is
depicted in Figure 1A.

In the OFT, no significant difference in total distance traveled was
observed between groups [Fu 00,2002 = 0.4817, p = 0.7489, 1> = 0.063
(negligible), f= 0.26 (small), Cohen’s d < 0.2; Figure 1D], indicating
no change in overall locomotor activity. However, the percentage of
time spent in the central zone, indicative of anxiety- and depressive-
like behaviors, differed significantly among groups [F400,1927) = 8.054,
p =0.0005, 7* = 0.626 (large), f=1.29 (large), Cohen’s d = 1.1-2.0;
Figures 1B,C]. Post hoc analysis showed that METH administration
significantly reduced central zone time compared to saline
(p=0.0001), confirming the establishment of depressive-like
behaviors. Low-frequency EA significantly increased time spent in the
center compared to the METH group (p = 0.0107), whereas high-
frequency EA had no significant effect (p = 0.5814). Anesthetics alone
did not affect behavior (p = 0.9900).

In the TST, immobility time significantly differed among groups
[Eis000, 3258 = 8.985, p <0.0001, > =0.525 (large), f=1.05 (large),
Cohen’s d=0.9-1.7; Figure 1E]. METH exposure significantly
increased immobility compared to saline (p=0.0194), while
low-frequency EA significantly reduced immobility (p = 0.0121). No
significant improvement was observed with high-frequency EA
(p =0.9997).

Similarly, in the FST, significant group differences in immobility
time were observed [F 00,2305 = 12.00, p < 0.0001, * = 0.667 (large),
f=1.41 (large), Cohen’s d = 1.2-2.1; Figure 1F]. METH increased
immobility (p = 0.0106), which was reversed by low-frequency EA
(p = 0.0084), but not by high-frequency EA (p > 0.9999).

The experiments described above demonstrate that low-frequency
EA treatment ameliorated the METH-induced depressive- and
anxiety-like behavior. Notably, high-frequency EA did not alter
these behaviors.

3.2 Low-frequency EA mitigates
METH-induced impairment of memory
functions

To assess cognitive function, the NORT was conducted
(Figure 2A). During the familiarization phase (two identical objects),
no significant group differences were detected [F 00, 3057 = 0.1868,
p =0.9435, n* = 0.024 (negligible), f=0.16 (small), Cohen’s d < 0.2;
Figure 2B]. Four hours later, one object was replaced with a novel one
to assess short-term memory function. Recognition index significantly
differed among groups [Fiom, 2516 = 20.84, p < 0.0001, n*=0.748
(large), f=1.72 (large), Cohen’s d = 1.6-2.5; Figure 2C]. METH
significantly reduced the recognition index compared to saline
(p =0.0002), while low-frequency EA significantly improved it
(p =0.0030). No improvement was seen with high-frequency EA
(p = 0.9894). No significant differences were observed 24 h later in the
second recognition test [Fu o0, 3320 = 1.387, p =0.2598, n* = 0.144
(small), f=0.41 (small), Cohen’s d = 0.2-0.5; Figure 2D]. This test
evaluates long-term memory retention.
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FIGURE 1

Effect of EA on anxiety and depressive-like behaviors in mice exposed to METH. (A) Timeline of drug administration, EA intervention, and behavioral
test. (B) The movement trajectories in heatmap. (C) Time in center in OFT. (D) Total distance in OFT. (E) The duration of immobility observed in mice
during TST. (F) The duration of immobility observed in mice during FST. **p < 0.01 and ***p < 0.001 compared with Saline group; **p < 0.01 and
***p < 0.001 compared with METH+Anesthetic group. n = 8 in each group.
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FIGURE 2
Effect of EA on cognition function in mice exposed to METH. (A) Timeline of EA interventions after drug administration and NORT. (B) The
discrimination index of mice in (A, A). (C) The discrimination index of mice in (A, B). (D) The discrimination index of mice in (A, C). ***p < 0.001
compared with Saline group and METH+Anesthetic group. n = 8 in each group.

3.3 Low-frequency EA protects against
METH-induced BBB disruption in the
hippocampus

Evans blue dye injection revealed increased BBB permeability in
the hippocampal CA1 region of METH-treated mice. Blood vessels
were visualized by immunofluorescent staining as described above
using a CD31 (PECAM-1) specific antibody. IF staining showed
extensive dye leakage in the METH group but not in the saline or
METH+EA 2 Hz groups. Dye infiltration was still present in the
METH+EA 10 Hz group (Figure 3A).

WB analysis confirmed decreased expression of tight junction
proteins Occludin and Claudin-5 in the METH group (Figure 3B)
(Claudin-5: p = 0.0239, Figure 3C; Occludin: p = 0.0263, Figure 3D),
which was significantly restored by low-frequency EA (Claudin-5:
p =0.0448; Occludin: p =0.0399). No significant recovery was
observed in the high-frequency EA group (Claudin-5: p = 0.9370;
Occludin: p=0.9367) [Claudin-5: Fy0, 1037 = 15.63, p =0.0002,
n* = 0.857 (large), f= 2.46 (large), Cohen’s d = 1.9-3.1; Figure 3C]
[Occludin: F 00,1790 = 6.34, p = 0.0023, 1> = 0.586 (large), f=1.19

Frontiers in Neurology

(large), Cohen’s d=1.0-1.8]. Anesthetics alone did not alter
protein expression.

3.4 Low-frequency EA attenuates
METH-induced neuronal damage in the
hippocampal CAl region

To investigate the impact of EA on METH-induced
histopathological changes in the hippocampal CAl region,
HE staining was conducted on adjacent tissue sections. HE staining
revealed substantial neuronal damage in the CA1 region following
METH
disorganization. And eosinophilic cytoplasm with bland, uniform

treatment, including nuclear condensation and
nuclear features. These pathological changes were markedly improved
by low-frequency EA, while high-frequency EA showed limited effect
(Figure 4A).

Subsequently, we performed Nissl staining on the sections to
visualize the morphological characteristics of neurons and assess

positive neuronal loss (Figure 4B). The Nissl staining results were
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FIGURE 3

Effect of EA on BBB permeability changes in hippocampal CA1 region of mice exposed to METH. (A) Infiltration of Evans Blue in Hippocampus CAl
(B) Representative blots showing Occludin and Claudin-5 expression. (C,D) Relative amounts quantified by densitometric quantification of changes in
gray values. *p < 0.05 and ***p < 0.001 compared with Saline group; **p < 0.01 compared with METH+Anesthetic group. n = 6 in each group

(large), Cohen’s d = 1.2-2.1; ] in METH-treated mice. The
Nissl body area was significantly restored by low-frequency EA
(p = 0.0044), but not by high-frequency EA (p = 0.4661). Similarly, the
positive neuron number exhibited analogous outcomes (Low-frequency
EA: p = 0.0029; high-frequency EA: p = 0.7191).

consistent with those of the HE staining. Niss| staining analysis revealed
a significant reduction in Nissl body area (p = 0.0011, ) [Flaom,
63 = 17.12, p<0.0001, * = 0.744 (large), f=1.70 (large), Cohen’s
d=15-24; ] and positive neuron number (p = 0.0070,

) [Fraoo. 226 = 11.25, p < 0.0001, 7 = 0.665 (large), f = 1.41
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3.5 Low-frequency EA suppresses
METH-induced hippocampal microglia
activation and inflammatory signaling
pathway

IF staining showed activated microglia with amoeboid
morphology and an enlarged soma with few blunt or no processes in
the hippocampal CA1 region of METH-treated mice. Low-frequency
EA reduced microglial activation, while high-frequency EA did not
(Figure 5A). Meanwhile, we utilized the microglial marker Iba-1 to
evaluate microglial activation. Quantification of Iba-1 fluorescence
intensity confirmed these findings [F o0, 1526 = 99.06, p < 0.0001,
n*=0.956 (large), f=4.63 (large), Cohen’s d = 3.5-5.2; Figure 5B].
Low-frequency EA significantly reduced Iba-1 expression (p < 0.0001),
but high-frequency EA showed no effect (p = 0.5882).

To elucidate the potential mechanism underlying the therapeutic
effects of EA against METH-induced neurotoxicity, we investigated
the NF-kB/NLRP3 signaling pathway, a key mediator implicated in
CNS neuroinflammation. WB analysis revealed significantly elevated
levels of IL-6, TNF-a, NF-xB, and NLRP3 in the METH group
(Figure 5C), which were attenuated by low-frequency EA (IL-6:
p=00328; TNF-o: p=00002 NF-xB: p=00228 NLRP3:
p =0.0009). High-frequency EA did not significantly alter these
protein levels (IL-6: p = 0.9980; TNF-o: p = 0.9990; NF-kB: p > 0.9999;
NLRP3: p=0.9942; Figures 5D-G) [IL-6: Fuono. 1500 = 21.45,
P <0.0001, #* = 0.850 (large), f=2.38 (large), Cohen’s d =2.0-3.2;
Figure 5D] [TNF-: Fiy 000, 13.40) = 25.46, p < 0.0001, 7> = 0.883 (large),
f=2.75 (large), Cohen’s d=2.3-3.5; Figure 5E] [NF-kB: Fp,
1300 = 21.02, p < 0.0001, 7* = 0.866 (large), f=2.55 (large), Cohen’s
d = 2.1-3.3] [NLRP3: Fy 000,15 = 29.99, p < 0.0001, > = 0.867 (large),
f=2.56 (large), Cohen’s d = 2.2-3.4].

4 Discussion

This study demonstrated that low-frequency (2 Hz) EA at the
ST36 acupoint significantly ameliorates METH-induced depressive-
like behaviors and cognitive impairment. This effect was associated
with the restoration of BBB integrity, attenuation of hippocampal
neuronal damage, and inhibition of neuroinflammatory responses
mediated by microglial activation and the NF-kB/NLRP3 signaling
pathway. Notably, high-frequency EA (10 Hz) did not produce
comparable protective effects. Therefore, our findings indicated that
EA served as a promising therapeutic approach for decreasing METH-
induced depressive-like behaviors and cognitive impairment.

METH administration is associated with a broad range of
neuropsychiatric behaviors in mice, including cognitive impairment and
depressive-like behaviors (25, 26). In this study, high-dose METH
exposure resulted in increased immobility time in the TST and FST, as
well as reduced exploratory behavior in the OFT, suggesting the
successful induction of anxiety and depressive-like behaviors and
cognitive impairment. In the NORT, METH-induced mice displayed a
significantly lower recognition index, indicating impaired recognition
memory. Consistent with the behavioral phenotypes reported in our
previously established binge-dose paradigm, the present data confirm
the robust reproducibility and experimental stability of this model (27,
28). Importantly, single-binge administration does not recapitulate the
progressive neuroadaptations that define chronic METH addiction;
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sustained-exposure paradigms are required to model the persistent
mnemonic and executive deficits observed in long-term users. The
present observation of transient short-term memory impairment with
intact long-term memory, however, aligns with acute binge exposure
rather than chronic regimens. This high-dose paradigm replicates a
clinically relevant scenario in which emergency care is sought after
recreational binge use, endowing the binge model with unique
translational value for early intervention and prevention strategies
against stimulant abuse. Beyond their divergent translational contexts,
chronic-exposure paradigms are anticipated to diverge from acute binge-
dose regimens in progressive neuroadaptive trajectories, sustained
mnemonic and executive deficits, and the underlying molecular
cascades; elucidating these distinctions is the focal axis of our
forthcoming investigations. Therefore, the findings of the present study
are primarily applicable to elucidating intervention mechanisms
underlying acute METH toxicity; their therapeutic relevance in chronic
users remains to be prospectively validated. In subsequent studies,
we plan to focus particularly on the more complex mechanisms
underlying chronic METH exposure, including neural plasticity
alterations, sustained glial cell activation, and epigenetic regulation.
These investigations will be integrated with the NF-kB/NLRP3
inflammatory pathway identified in the current study, aiming to
comprehensively evaluate the therapeutic potential of EA in treating
METH-related neuropsychiatric disorders.

Notably, the results indicated that low-frequency EA stimulation
significantly alleviated anxiety, cognitive impairment and depressive-
like behaviors in METH-induced mice, whereas high-frequency EA
did not produce such effects. These findings are consistent with prior
reports indicating that EA can modulate emotional and cognitive
behaviors by influencing hippocampal and prefrontal neural circuits
(29-31). However, few studies have investigated this approach in the
context of METH-induced neuropsychiatric dysfunction, thus
emphasizing the novelty of our findings.

Mechanistically, our results show that low-frequency EA preserves
the structural and functional integrity of the BBB in the hippocampal
CAl region. METH administration significantly disrupted BBB
permeability, as evidenced by elevated Evans blue extravasation and
downregulation of Occludin and Claudin-5. Our findings revealed
that low-frequency EA intervention significantly mitigated these
changes, whereas not by high-frequency EA. The BBB plays a crucial
role in maintaining CNS homeostasis, and its disruption is associated
with increased vulnerability to peripheral immune cell infiltration and
neuroinflammation (32-35). Therefore, the observed BBB-protective
effect of EA may represent a key mechanism underlying its
therapeutic potential.

In addition to BBB damage, METH exposure led to extensive
neuronal injury in the hippocampal CAl region, including
disorganized cell arrangement, nuclear fragmentation, and loss of Nissl
substance. These histopathological changes were accompanied by a
significant reduction in the number of surviving neurons. However,
low-frequency EA was able to attenuate these morphological changes
and neuronal damage, suggesting a neuroprotective effect that may
contribute to the observed improvements in depressive-like behaviors
and cognitive impairment. These findings align with previous reports
demonstrating that EA can reduce neuronal apoptosis and promote
synaptic plasticity under pathological conditions (36, 37). It is
important to note that the present study focused primarily on the
hippocampal CAL1 region. Given the well-established roles of other
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FIGURE 5

Effect of EA on the level of neuroinflammation in mice exposed to METH. (A,B) Relative fluorescence intensity of Iba-1 in representative IF staining
(C) Representative blots of the NF-kB/NLRP3 signaling pathway showing protein expression (Relative amounts quantified by densitometric
quantification of changes in gray values). (D) Relative expression changes in protein imprinting of IL-6. (E) Relative expression changes in protein
imprinting of TNF-a. (F) Relative expression changes in protein imprinting of NF-kB. (G) Relative expression changes in protein imprinting of NLRP3
***p < 0.001 compared with Saline group; ***p < 0.001 compared with METH+Anesthetic group. n = 6 in each group.
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brain areas, such as the prefrontal cortex and amygdala, in METH-
induced neuropsychiatric deficits, future studies will be essential to
determine whether the beneficial effects of EA and the underlying
mechanisms identified here extend to these regions.
Neuroinflammation is a central pathogenic mechanism in METH-
induced neurotoxicity (38). Our study demonstrated that METH
exposure induced robust activation of microglia, as evidenced by
morphological alterations and enhanced expression of Iba-1.
WB of
pro-inflammatory cytokines IL-6 and TNF-a, as well as activation of

Concurrently, analysis revealed elevated levels
the NF-kB/NLRP3 signaling axis. These inflammatory changes were
significantly suppressed by low-frequency EA treatment. This suggests
that low-frequency EA may exert its beneficial effects by dampening
neuroinflammatory responses and modulating microglial reactivity.
Previous studies have demonstrated that EA can inhibit the NF-xB
pathway and reduce inflammasome activation in various models of
CNS injury, supporting our current observations (39-41).

Furthermore, an important aspect of our findings is the frequency-
dependent effect of EA. While both 2 Hz and 10 Hz stimulation were
applied at the same acupoint, only low-frequency EA produced
significant neurobehavioral and neuroprotective outcomes, high-
frequency EA showed no significant therapeutic effect. Studies have
shown that low-frequency EA stimulation at ST36 activates the vagus-
adrenal network via Prokr2-expressing neurons at the acupoint,
thereby engaging the parasympathetic nervous system (42). This
activation leads to the release of catecholamines, exerting anti-
inflammatory effects (43). In contrast, high-frequency EA at ST36 has
been found to stimulate the sympathetic nervous system, reducing
stress resistance. In conclusion, the distinct mechanisms of low- and
high-frequency EA interventions may be attributed to the natural
rhythm of low-frequency EA, which likely activates the endorphin
system, whereas high-frequency EA directly modulates neural
conduction pathways through rapid stimulation. These differential
mechanisms of frequency-specific EA modulation in the context of
METH-induced pathology warrant further investigation.

Our study highlights the potential of low-frequency EA as a
promising non-pharmacological intervention for METH-induced
neuropsychiatric disorders. Previous studies have demonstrated that
high-frequency EA effectively alleviates opioid-induced inflammatory
pain, likely through the activation of peripheral x-opioid receptors by
EA stimulation (44). But this is the first study to systematically
investigate the effects of conventional EA at ST36 on METH-induced
depressive-like behaviors and cognitive impairment, and to elucidate
BBB
neuroinflammation, and neuronal survival. These findings provide

its  underlying mechanisms involving integrity,
new insights into the integration of traditional Chinese medicine
approaches with modern neuropsychiatric treatment strategies.
Nevertheless, several limitations should be acknowledged. The
study utilized an acute METH exposure model, which may not fully
recapitulate the chronic neuroadaptations seen in human addiction.
Furthermore, our investigation focused on the hippocampal CAl
region, while other brain regions such as the prefrontal cortex and
amygdala also play critical roles in emotion and cognition. This study
aims to evaluate the therapeutic potential of EA in mitigating METH-
induced neurobehavioral impairments and to elucidate the underlying
molecular mechanisms. Our findings suggest that suppression of the
NF-xB/NLRP3 signaling axis may represent a key mechanism through
which EA exerts neuroprotective effects. Although our data indicate

that low-frequency EA alleviates neuroinflammation via the NF-xB/
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NLRP3 pathway, we acknowledge that a causal relationship has not
been definitively established. The absence of pathway-specific inhibition
or genetic manipulation experiments precludes a conclusive assertion
that the effects of EA are entirely mediated through this pathway.
Nonetheless, our results are highly consistent with independent studies
employing widely used NF-kB/NLRP3 inhibitors (45, 46). These
findings have been further corroborated using other pharmacological
inhibitors, such as ACT001 and JC124. By adopting comparable
methodological approaches, these studies demonstrated that inhibition
of the NF-kB/NLRP3 pathway significantly downregulates microglial
activation markers, reduces the production of M1 polarization-related
factors, and ameliorates inflammation-associated behavioral
phenotypes and histopathological damage (47, 48). These results
functionally establish a causal link between specific inhibition of this
pathway and the induction of a quiescent microglial state.

Notably, this causality has been consistently replicated across
established

underscoring not only the reproducibility of the findings but also the

multiple  independently experimental models,
specificity and generalizability of the mechanism. These observations
support the biological plausibility of the proposed pathway. Future
studies employing targeted interventional experiments are warranted
the of this

EA-mediated neuroprotection.

to confirm causal role signaling axis in

This study has several limitations. All experiments were conducted
exclusively in male mice. Given well-established sex differences in METH
metabolism, neurotoxicity, and immune responses, the generalizability of
our findings to females remains limited. Future studies—which we have
already planned—will be necessary to include both sexes, in order to
determine whether the protective effects of EA against METH-induced
functional deficits are sex-specific or conserved. Finally, the therapeutic
timeline in this study was relatively short. While we demonstrated that a
7-day EA intervention effectively alleviated METH-induced deficits, it
remains unknown whether these benefits are sustained long-term after
treatment cessation. The transient or durable nature of these effects is a
critical factor for clinical relevance and will be a primary focus of our
future investigations, which will include long-term survival studies with
delayed behavioral and molecular analyses. While our data demonstrate
that EA significantly reduces immobility in the TST and FST—behaviors
often interpreted as despair-like states—it is important to acknowledge
that these tests capture only certain dimensions of depression-related
behavior, such as passive stress coping. They do not fully recapitulate the
complex ethology of human depressive disorders, which include
additional features such as anhedonia, appetite changes, and social
withdrawal. Thus, our conclusions are necessarily constrained to these
behavioral despair paradigms, and further studies employing additional
models (e.g., sucrose preference for anhedonia, social interaction tests)
are warranted to more comprehensively evaluate the antidepressant-like

potential of EA.

5 Conclusion

Our findings revealed the potential of low-frequency (2 Hz) EA at
ST36 acupoint in attenuating depressive-like behaviors and cognitive
impairment caused by METH abuse. Additionally, EA intervention
reduced METH-induced damage to the BBB and neuronal injury. These
effects appear to be decreased by the attenuation of hippocampal
microglial activation, decreased pro-inflammatory cytokines (including
IL-6 and TNF-a), and the suppression of the NF-kB/NLRP3 signaling

frontiersin.org


https://doi.org/10.3389/fneur.2025.1652065
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Zhang et al.

pathway. Taken together, low-frequency EA has the therapeutic potential
as a non-pharmacological strategy for the treatment of METH-related
neuropsychiatric disorders. Future studies will further investigate these
findings in chronic METH exposure models and offer a solid theoretical
foundation for its clinical applications.
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