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Integrating machine learning for
the identification of
ubiquitination-associated genes
iIn moyamoya disease

Hongchuan NiuYf, Xilong Wang?, Zhenyu Zhou?, Yutong Liu®?,
Shihao He®** and Yuanli Zhao'**

!Department of Neurosurgery, Peking University International Hospital, Beijing, China, 2Department of
Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, *Department of
Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese
Academy of Medical Sciences, Beijing, China

Introduction: Moyamoya disease (MMD) is an infrequent cerebrovascular
disorder typified by bilateral internal carotid artery obstruction, yet its pathogenic
mechanism remains elusive. This study examines the role of epigenetic
ubiquitination-related genes in MMD.

Methods: We utilized two datasets (GSE157628 and GSE141024) from the GEO
database and sourced ubiquitination-related genes from the GeneCards database.
Differentially expressed genes were identified, followed by Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment
Analysis (GSEA) to elucidate key gene functions. Machine learning techniques,
including LASSO logistic regression and support vector machine, helped identify
crucial genes. Immune characteristics were analyzed using single-sample gene
set enrichment analysis, while transcription factors and miRNA-gene regulatory
networks were constructed with the Citrome and Mircode databases.

Results: We identified three key ubiquitination-related genes—ANAPC11, UCHLL,
and USP4l—that may be involved in the pathogenesis of MMD. Further, we
found that the serum UCHL1 expression level in MMD was significantly reduced,
and knocking down UCHL1 could enhance the migration ability of human brain
vascular smooth muscle cells (HBVSMCs), as verified by In vitro experiments.
Immune infiltration analysis demonstrated significant correlations between these
genes and various immune factors. Furthermore, we constructed a miRNA-gene
network involving 30 miRNAs and identified secondary genes EXO1 and ISG15.
Discussion: Potential therapeutic drugs, including benzohydroxamic acid and
PKC-beta inhibitors, were predicted to target these key genes, suggesting new
avenues for MMD treatment.

KEYWORDS

moyamoya disease, epigenetics, ubiquitination, machine learning, immune infiltration

Introduction

Moyamoya disease (MMD) is a rare cerebrovascular condition where the terminal part of
the internal carotid arteries (ICAs) experiences stenosis or obstruction, leading to the
development of an abnormal vascular network at the base of brain, consisting of vulnerable
perforating vessels (1). Epidemiological investigations have revealed that MMD is more
prevalent among East Asians compared to Westerners and that it occurs more frequently in
women (2). MMD seizures show two age peaks: childhood and young adulthood (2). However,
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the pathogenesis of MMD is still unclear (2, 3). Current research has
indicated that both genetic and microenvironmental factors contribute
to its development (3-5).

In recent years, researchers have discovered that mutations in a
single gene cannot adequately account for the onset of MMD. A
growing body of evidence underscores the regulatory function of
epigenetic markers in pivotal cellular and molecular processes
associated with the pathogenesis of MMD (6, 7). Epigenetics typically
encompasses DNA methylation, histone modifications, and
non-coding RNAs. To date, genome-wide approaches to analyzing the
epigenome have gradually expanded the observed epigenetic
features in MMD.

The ring finger protein 213 (RNF213) gene located in the 17q25-
ter region has been identified as the primary susceptibility gene for
MMD in East Asian populations (8, 9). Specific variations leading to
single-nucleotide polymorphisms (SNPs) (preponderantly p. R4810K
and p. R4859K) in RNF213 have been associated with the familial and
sporadic cases in Japanese, Korean, and Chinese (8, 9). Subsequent
studies have reported the discovery of several other new variants of
RNF213 identified in non-p. R4810K East Asian and Caucasian
patients (8, 10, 11). RNF213 is a 591-kDa cytosolic protein with two
functional domains: a Walker motif and a RING finger domain
exhibiting dual AAA + adenosine triphosphatase (ATPase) domains
and ubiquitin ligase activities (8). A study further revealed the
complex folding of the mouse RNF213 including an amino-terminal
(N-terminal) stalk, a core structure reminiscent of dynein featuring
six ATPase units, and a complex E3 ubiquitin ligase module with
multiple domains by scanning its structure with the cryogenic
electron microscopy (cryo-EM) (12). This study also suggested that
pathological MMD mutations are concentrated in the E3 domain and
might interfere with substrate ubiquitination (12). In addition,
another study indicated that mutations in the RING finger domain
of RNF213 reduced its ubiquitin ligase activity and enhanced the
activation and apoptosis of nuclear factor kappa B (NF-kappa B) in
an AAA + domain-dependent manner, and that this dysregulation
might contribute to MMD pathogenesis (13). Consequently, it is easy
to hypothesize ubiquitination modification may play a crucial role in
the development of MMD. However, there is a lack of research on the
mechanism of ubiquitination modification in MMD, and the genetic
factors associated with ubiquitination in MMD remain understudied.

In addition to directly pathogenic genetic factors, the complex
microenvironmental factors also be involved in the pathogenesis of
MMD (3, 4). The composition of the microenvironment is very
complex. Several researches have explored the specific landscape of
immune cell infiltration in MMD (14, 15). For example, Li et al.
reported that the abundances of eosinophils, natural killer T (NKT)
cells, and T helper (Th) 2 cells were significantly different between
patients with MMD and controls (14). Another study recently
conducted by Cao et al. investigated that eosinophils were highly
proportioned in the specific immune infiltration landscape of MMD,
rather than T or B cells (15). However, the precise proportions of
various immune cells present in MMD require future research.

Thus, our research aims to identify gene factors associated with
ubiquitination modification in MMD, analyze the relationship
between key ubiquitination-related genes and immune cell
infiltration, and explore the potential molecular mechanisms
underlying the occurrence of MMD. Additionally, we analyzed and
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depicted the miRNA-gene regulatory network, and predicted
potential targeted therapeutic drugs.

Materials and methods
Downloading and processing of data

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) (accessed on 12 August 2023) database was the source of
our data. We downloaded the series matrix files of GSE157628
dataset from this database. These files contain 20 transcription
profiles collected from 11 MMD patients and 9 age- and
sex-matched controls. Additionally, we obtained the series matrix
files of GSE141024 dataset from GEO database which consist of
eight transcription profiles collected from four MMD patients and
four matched controls. The annotated file for the both datasets
is GPL16699.

We then used the GeneCards database (https://www.genecards.
org/) to extract ubiquitination-related genes. Relevance score is a
metric used in the GeneCards database to measure the relevance of a
gene to a specific topic or field. This score is calculated based on a
variety of data sources and information resources. Specifically, a
higher relevance score indicates a stronger correlation between a gene
and the topic or field. We set a screening condition that only genes
with a relevance score > 10 were selected to ensure that the genes
we selected had high relevance to ubiquitination.

Batch effect correction and analysis of
differentially expressed genes (DEGs)

After merging and normalizing the datasets, we utilized the
Surrogate Variable Analysis (SVA) package in R software to
perform batch effect correction on the data. Subsequently,
we plotted the sample distributions before and after correction
using principal component analysis (PCA) to visualize how the
batch effect changed before and after correction. The “limma”
package in R software was used to examine the distinctions in
molecular mechanisms between MMD and control samples, with
the objective of pinpointing DEGs. The selection criteria were
based on an absolute log fold change (FC) exceeding 0.585 and a
p-value below 0.05. Additionally, we plotted volcano and clustering
heat maps to visualize the results.

Functional enrichment analysis of gene
ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGQ)

A comprehensive functional enrichment analysis was performed
on the differentially expressed ubiquitination-related genes using the
Metascape database (https://www.metascape.org). Relevant functional
categories were evaluated through the application of GO and KEGG
pathways. Statistical significance was only achieved if minimum
overlap >3 and p < 0.01. And we plotted histograms and network
diagrams to visualize the results.
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Feature selection process for least absolute
shrinkage and selection operator (LASSO)
logistic regression and support vector
machine (SVM) algorithms

Our study integrated the LASSO logistic regression and SVM
algorithms to select the key genes of MMD (16). LASSO logistic
regression, a linear regression approach applied to select features in
amodel by incorporating a penalty term that restricts the coefficients
within the model, forcing the coeflicients of certain features to zero,
thereby enabling automatic feature selection, and is capable of
efficiently handling high-dimensional datasets, reducing overfitting,
and identifying the most relevant features. In our study, LASSO
logistic regression algorithms were implemented using the “glmnet”
package within R software. We modeled gene expression data using
the “glmnet” function, specifying a Gaussian distribution (“family”
set to “gaussian”), and determined the optimal lambda value through
a rigorous 10-fold cross-validation process. The key parameter of
LASSO regression, lambda, which serves as the coefficient of the
penalty term, determines the degree to which the LASSO regression
model constrains feature selection, with larger values causing more
feature coeflicients to converge to zero, thus selecting fewer features,
whereas smaller values result in more features entering the model,
thereby increasing its complexity. To determine the optimal lambda
value, a 10-fold cross-validation was conducted. The classification
effectiveness of the model was assessed using the “type.
measure = ‘class “parameter within the “cv.glmnet” function. Then,
the optimal lambda value corresponding to “lambda.min” was
selected to avoid overfitting and improve the generalization ability
and stability of the model. We plotted the performance curves for
each lambda value, and by examining the curves nadir,
we determined the optimal lambda value to identify the
featured genes.

Support vector machine-recursive feature elimination (SVM-
RFE) is an algorithm for feature selection based on SVMs that
progressively removes unimportant features by recursion and retains
the features that contribute most to the classification task. The basic
idea of the method is to construct a classification model using SVM
and calculate the weight of each feature, followed by gradually
removing features with smaller weights until the remaining set of
features is optimal. In this study, we implemented the SVM-RFE
method with the “e1071” software package in R software and
combined it with cross-validation to evaluate the performance of the
model to identify biomarkers with high diagnostic value. In SVM-RFE,
the number of feature selection iterations (i.e., starting from the initial
set of features and gradually eliminating unimportant features until
the best subset of features remains) has a significant impact on the
final set of genes selected. To guarantee the robustness of the feature
selection procedure and to gauge how the removal of features in each
cycle affects model eflicacy, we employed 5-fold cross-validation.
Cross-validation helped us select the optimal subset of features such
that these features exhibited the best predictive performance on all
training datasets. We used the “e1071” package based on SVM-RFE
method to select the features of differential genes to get the ranking of
each gene, and to utilize the top 10 ranked genes to construct SVM
models. Then we evaluated the minimum point of error rate of the
models and get the combination of genes when the error rate reached
the minimum point.

Frontiers in Neurology

10.3389/fneur.2025.1653433

LASSO regression can perform feature selection while handling
multicollinearity, whereas SVM-RFE focuses on evaluating the
importance of features using support vector machine algorithms. The
combination of these two algorithms can manage feature selection for
both high-dimensional data and nonlinear relationships, thereby
enhancing the overall performance of feature selection. Furthermore,
it can also improve the model’s generalization ability. Therefore, the
combined application of these two machine learning methods aims to
enhance the stability of the model and the accuracy of feature selection
in this study. Finally, by combining the genes derived from the
SVM-RFE and LASSO algorithms, we aimed to pinpoint the key genes
and assess their diagnostic value for MMD.

In vitro experimental verification

The validation set consists of self-test data from peripheral venous
blood samples from 3 MMD patients and 3 healthy controls (HCs).
The collection of biospecimens and data was approved by the
Institutional Ethics Committee of Peking Union Medical College
Hospital, Beijing, China (I-24PJ2435), and all specimens were
obtained with written informed consent.

All blood samples were collected in the morning and rapidly
centrifuged at 2500 rpm for 10 min at 4°C to obtain the supernatant
as serum. The serum was then transferred to a new EP tube and stored
at —80°C. After thawing, the level of UCHL1 were measured using
Human UCHL1 ELISA Kit (HUES03248) (AssayGenie, Dublin,
Ireland) according to the manufacturer’s instructions.

Commercial Human brain vascular smooth muscle cells
(HBVSMCs) (ScienCell Research Laboratories, Hubei, China) were
subcultured in SMCM medium containing 1% P/S bispecific antibody,
1% smooth muscle cell growth supplement (SMCGS), and 2%
FBS. When the cells fused to 90%, the old medium was discarded and
the cells were washed twice with 2 mL PBS. After discarding PBS,
2mL of 0.25% trypsin 0.02% EDTA mixed digestion solution was
added and observed under a microscope for about 30 s. When the
cells became round, 2 mL of complete medium was quickly added to
terminate digestion, gently blown, and collected. 800 rpm, Centrifuge
at 4°C for 5 min, discard the supernatant, resuspend the cells in
complete culture medium, culture in separate bottles, and change the
medium the next day. On the day before transfection, approximately
2.5 % 105 cells were seeded in a 6-well plate and incubated for 24 h,
resulting in a cell density of approximately 60-70%. Use Lipofectamine
3,000 transfection reagent (L3000150) (Thermo Fisher Scientific,
Pittsburgh, PA, USA) to transfect HBVSMC with siRNA. Incubate at
37 ° Cin a 5% CO2 incubator for 4-6 h, then replace with fresh
medium and incubate for 3 days.

After transfection, prepare each group as a cell suspension and
seed them into 6-well plates, with 5 x 10° cells per well. When the cells
have fused to 90%, perform the corresponding treatments according
to the experimental groups. After treatment, digest the cells,
centrifuge, precipitate, dry, and dissolve to obtain the total RNA
solution. Take 2 pL of the total RNA as the template, prepare the
reverse transcription reaction system according to the kit instructions,
place the reaction system in the PCR instrument, select the preset
program, and react at 25°C for 5 min, 46°C for 20 min, and 95°C for
1 min to obtain cDNA, which is stored at —70°C. Prepare the reaction
system and qPCR reaction conditions according to the protocol
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instructions, and perform amplification according to the pre-set
program. The obtained data, after processing, represent the mRNA
expression levels.

Based on the experimental groups, each group was prepared as a
cell suspension and seeded into 6-well plates, with 1 x 10° cells per
well. Upon reaching 90% confluence, the supernatant was discarded,
and the cell samples were washed twice with pre-chilled PBS. For
every 100 pL of cell sample, 1 mL of RIPA containing PMSF was
added, and the cells were lysed thoroughly. The lysate was then
centrifuged at 4°C at 12,000 x g for 5 min. The supernatant was
immediately transferred to a pre-chilled Eppendorf tube, representing
the extracted cellular protein, and stored at —80°C for later use.
Protein quantification was conducted using the BCA method. Finally,
5 x loading buffer was added, and the sample was heated in a boiling
water bath for 10 min. The sample preparation was complete and
could be stored at —20°C. Depending on the molecular weight of the
target protein, prepare a 10% separating gel and a 5% stacking gel.
Cast SDS-PAGE gels, adding 5 mL of prepared separating gel to each
gel plate. After adding the gel, apply isopropanol and press the gel.
Once the gel lines have formed (gel set), place the gel rack horizontally
and remove the isopropanol with filter paper. After mixing the
prepared stacking gel, inject 2 mL of the prepared stacking gel at the
top of the separating gel. Immediately insert the comb vertically,
ensuring it remains horizontal during insertion. After the stacking gel
has solidified, remove the comb and place it in the electrophoresis
chamber containing the electrophoresis buffer. Add an appropriate
amount of pre-chilled 1 x electrophoresis buffer, then begin loading
the samples. Perform constant-voltage electrophoresis at 80 V for
approximately 30 min. Once the samples have entered the separating
gel, adjust the voltage to 120 V and continue electrophoresis. Stop
electrophoresis once the target band reaches the desired position. Cut
the PVDF membrane to match the size of the gel, activate it in
methanol for 1 min, then soak it in the transfer buffer. Place the filter
paper in the transfer buffer and soak for 15 min. Assemble the transfer
“sandwich” following the principle of PVDF membrane > gel > filter
paper, ensuring all bubbles are removed before starting constant-
pressure transfer. After transfer is complete, stain the membrane with
Lithmus Red S solution, then wash twice with TBST and observe the
proteins on the membrane. Wet the membrane with TBS from bottom
to top, then transfer it to a dish containing a blocking solution (5%
non-fat milk powder in TBST) and shake at room temperature on a
shaking incubator for 1 h to block the immunoglobulin binding sites
on the PVDF membrane. Wash the membrane with TBST to remove
residual liquid, then place the membrane in a self-sealing bag using a
sealer, seal three sides, add the primary antibody diluted to the
appropriate concentration with TBST, expel air bubbles as much as
possible, seal the bag opening, and incubate at 4°C overnight. Open
the self-sealing bag, wash the membrane three times with TBST, each
for 10 min. Then place the membrane in a sealing bag, add an
appropriate amount of secondary antibody at the appropriate
concentration, seal the bag, and incubate at room temperature for 1 h.
Open the self-sealing bag, wash the membrane three times with TBST,
each for 10 min. Mix equal volumes of chemiluminescent reagent A
and B, and place the membrane protein side down in contact with the
mixture. After 5 min, detect using the Tanon 5,200 chemiluminescence
imaging workstation. If multiple exposures are required for the same
PVDF membrane, wash with strip solution (protein blot membrane
regeneration solution) at room temperature for 45 min, then wash
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with TBST three times, and restart from the blocking step, with
subsequent steps as before; Protein expression levels were analyzed
using Image Pro Plus 6.0 software to assess optical density values.
Relative protein expression was calculated as the ratio of target protein
gray value to internal control protein gray value, and phosphorylated
protein gray value to total protein gray value.

Cell scratch assay was used to test the migration ability of
HBVSMC. Use a UV disinfected marker pen to evenly draw horizontal
lines behind the 6-well plate, approximately every 0.5-1 cm, crossing
the holes with at least 5 lines per hole. Cells in logarithmic growth
phase are digested into single-cell suspension using trypsin, and the
concentration of the cell suspension is adjusted by adding appropriate
culture medium. 2 mL of cells with a density of 6 x 105 cells/mL are
seeded into a 6-well plate marked with lines to ensure full cell growth
the next day. The final total amount of culture medium per well is
2 mL. The cells are cultured in a 37°C, 5% CO2 cell culture incubator
according to the grouping requirements. After 24 h, when observing
the cell adhesion and uniform distribution under a microscope, use a
disinfected 200 i L gun head to scratch the marked horizontal line on
the back in a super clean bench, with the gun head vertical and not
tilted. Wash the cells three times with PBS, remove the cut cells, add
serum-free medium, and culture in a 37°C, 5% CO2 incubator. Take
a photo at a magnification of 100 times, ensuring that the scratch is
centered and vertical, paying attention to consistent background,
sampling according to time points, and taking photos for recording.

Analysis of immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) represents
a commonly employed technique for evaluating the types of immune
cells present in the microenvironment. We used the ssGSEA algorithm
in the “GSVA” package of R software to quantify 29 human immune
cell phenotypes in MMD, and infer the relative proportion of immune-
infiltrating cells. The Spearman’s rank correlation coeflicient was used
to correlate gene expression with the immune cells. And we plotted
cell content histograms, violin plots, and cell correlation heat maps to
visualize the results.

Gene set enrichment analyses (GSEA)

GSEA, respectively, divides the samples into high- and
low-expression groups based on the median expression value of key
genes. The genes were categorized based on the level of differential
expression between the two groups. Subsequently, an analysis was
conducted to determine if the background gene datasets were
concentrated at either the top or bottom of this categorized list. The
datasets labeled c2.cp.kegg (version 7.0) were sourced from the
MsigDB database (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp) and served as the background gene datasets for this study. To
delve deeper into the molecular mechanisms underlying key genes,
we employed GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) to
analyze and compare the disparities in KEGG signaling pathways
between samples from the high-expression and low-expression
groups. Subsequently, we arranged the gene datasets that were
significantly enriched (adjusted p<0.05) based on their
concordance scores.
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Prediction of a MicroRNA (miRNA)-genes
regulatory network

Cistrome database (http://cistrome.org/db/) which contains a large
number of samples related to chromatin immunoprecipitation
sequencing (ChIP-seq) and deoxyribonucleasednase-sequencing
(DNase-seq), was used to explore the regulatory interactions between
transcription factors and key genes. In this study, the genome file was
configured to use the hg38 reference, with the transcription start site
designated as 10 kb upstream. The obtained results were then graphically
represented using Cytoscape software, facilitating a clearer understanding
and analysis. MiRNAs are small non-coding RNAs that regulate gene
expression by promoting messenger RNAs (mRNAs) degradation or
inhibiting translation. We utilized the miRcode database (http://www.
mircode.org/) to identify miRNAs related to the key genes and employed
the Cytoscape software to illustrate the networks of these miRNAs.

Prediction of potential drugs using
connectivity map (CMap)

CMap (https://www.broadinstitute.org/connectivity-map-cmap)
is a comprehensive gene-expression profiling database established by
the Broad Institute. It encompasses a vast array of gene microarray
data, specifically detailing the responses of 1,309 small molecule drugs
before and after treatment in five distinct human cell lines, all
examined under a wide range of conditions. This resource serves as a
valuable tool for researchers seeking to understand the molecular
mechanisms underlying drug action and response. This study
identified potential therapeutic agents for MMD by targeting the key
genes. L1000 as a background dataset provided us with contextual
information on perturbation response patterns and helped us to more
accurately identify the effects of drugs on gene expression, thus
revealing the functional link between drugs and MMD.

Statistical analysis

In bioinformatics analysis, all statistical computations were
performed utilizing the R software package (version 4.2.2). The
statistical tests conducted were two-tailed, with statistical
significance set at p <0.05. During the self-test validation
experiments, the data were examined and visualized using
Graphpad Prism 9 (Version 9.4.0), and subsequently organized and
illustrated using Adobe Illustrator 2022 (Version 26.3.0). The data
are presented as mean values * standard deviation (SD), and
statistical variations among groups were evaluated using the t-test
and one-way ANOVA. A p-value of less than 0.05 is regarded as
indicative of statistical significance.

Results

DEGs identification and functional
enrichment analysis

We selected and downloaded the GSE157628 and GSE141024
datasets related to MMD from the GEO database, including expression
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profiling data from 28 patients (The control group comprised 13
participants, while the MMD group had 15). GSE157628 consisted of
11 patients with MMD and nine controls, and GSE141024 consisted
of four patients with MMD and four controls.

After integrating and standardizing the data, we employed the
SVA package within the R software framework to address and mitigate
batch effects. We plotted the sample distributions before
(Supplementary Figure S1) and after correction using PCA
(Figure 1A) to illustrated that the batch effects between different
microarrays were significantly reduced after correction.

Using the “limma” package, we identified 1,632 differentially
expressed genes (Figures 1B,C). Based on the criteria of
[logFoldChange(FC)|exceeding 0.585 and a p-value below 0.05, the
expression levels of 794 genes were found to be upregulated, while
those of 838 genes were downregulated.

Subsequently, ubiquitination-related genes with relevance scores
database. These
ubiquitination-related genes and the DEGs described above were

> 10 were extracted from the GeneCards

taken to intersect and we obtained 25 differentially expressed
ubiquitination-related genes (Figure 1D).

In addition, we conducted a functional enrichment analysis of the
aforementioned genes utilizing the Metascape database. Both GO and
KEGG were employed to evaluate the pertinent functional categories.
Statistical significance was only achieved if minimum overlap > 3 and
p <0.01. These differentially expressed ubiquitination-related genes
were predominantly enriched in signaling pathways, such as ubiquitin
mediated proteolysis, protein catabolic process and ubiquitin binding
(Figures 1E,F).

Selection of the key genes of MMD

To conduct feature selection among the 25 pre-selected
differentially expressed ubiquitination-related genes, we combined the
LASSO logistic regression and SVM algorithms. The LASSO
regression algorithm identified seven feature genes in MMD
(Figures 2A,B), and the SVM-RFE algorithm showed that eight feature
genes had the highest accuracy when screening the MMD datasets
(Figure 2C). By taking the intersection, we obtained three key genes
from these two sets of feature genes: anaphase promoting complex
subunit 11 (ANAPCI1), ubiquitin carboxyl-terminal hydrolase L1
(UCHLI), and ubiquitin specific peptidase 41 (USP41) (Figure 2D).

In vitro experimental verification

We utilized the Human UCHL1 ELISA Kit to measure the
expression level of UCHLI and discovered that, compared with the
HC group, the serum UCHLI content in the MMD group was
significantly reduced (Figure 3A).

Subsequently, we employed si-NC (SS: UUCUCCGA
ACGUGUCACGUTT, AS: ACGUGACACGUUCGGAGAATT);
si-UCHLI#1 (SS: 5-GGACAAGAAGUUAGUCCUAAA -3/, AS: 5'-
UAGGACUAACUUCUUGUCCCU -3"); si-UCHL1#2 (SS: 5'- GGUU
UCUGUCUGUAAGUUAAG-3',AS: 5- UAACUUACAGACAGAAA
CCAA -3"); and si-UCHLI1#3 (SS: 5- GUUUCUGUCUGUAA
GUUAAGA -3/, AS: 5- UUAACUUACAGACAGAAACCA -3') to
transfect HBVSMC and validated the transfection efficiency using
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Differentially expressed gene (DEG) analysis and functional annotation. (A) Principal component analysis (PCA). The scatterplot depicts the results of
PCA between the GSE157628 and GSE141024 datasets. (B) DEG analysis. A volcano plot is utilized to present the differentially expressed genes (DEGs).
In the MMD group, down-regulated genes are indicated by blue dots, whereas up-regulated genes are represented by red dots. Black dots signify
genes that are not differentially expressed. (C) DEG analysis. A heat map is employed to display the expression patterns of DEGs. Each column
corresponds to a sample, and each row corresponds to a DEG. (D) The identification of differentially expressed ubiquitination-related genes was
carried out. A Venn diagram illustrates 25 ubiquitination-related genes with differential expression in MMD. (E) Functional annotation. A histogram
shows the top nine signaling pathways that the 25 genes were mainly enriched to. The horizontal axis (X) represents the enrichment degree, while the
vertical axis (Y) signifies the regulatory pathway. (F) Function annotation. A network indicates the relationship between these signaling pathways. The
dot color indicates the pathways. The size of the dots indicates the degree of pathway enrichment.
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FIGURE 2

Selection of the key genes of Moyamoya disease (MMD) and enrichment analysis of key genes. (A) Least absolute shrinkage and selection operator
(LASSO) regression was employed. Feature selection was carried out using the LASSO regression model. The coefficient variations of different genes
were observed with different lambda values (fraction deviance explained). (B) LASSO regression. To determine the optimal parameter (lambda) for the
LASSO model, a graph was plotted of the partial likelihood deviance (binomial deviance) curve against log (lambda) for validation purposes. (C) Analysis
with support vector machine (SVM) algorithm. In the support vector machine - recursive feature elimination method, the accuracy of the model varied
as the number of features changed. (D) A Venn plot shows three key genes of MMD. (E) Signaling pathways enrichment analysis. UCHL1 was enriched
in three major pathways. (F) A Circos plot shows the pathways enriched by UCHLL. (G) Signaling pathways enrichment analysis. ANAPC11 was enriched
in three major pathways. (H) Signaling pathways enrichment analysis. USP41 was enriched in three major pathways.
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FIGURE 3

The expression level of UCHLL in MMD and the effects of UCHL1 gene knockout on vascular smooth muscle migration ability. (A) The contents of
UCHLL1 in the serum were measured by ELISA assay. (B) The Western Blot experiment results showed the transfection efficiency of si-RNAs in HBVSMC.
(C) Results of gPCR analysis of the transfection efficiency of si-RNAs. (D) Results of gPCR analysis of the transfection efficiency of si-RNAs based on
relative quantitative method. (E) The bar chart shows the effects of UCHL1 gene knockout on the migration ability of HBVSMC. (F) Cell migration was
detected by scratch assay. Bar = 200 micrometers. Results were mean + SD for all individual experiments. *p < 0.05; **p < 0.01.
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Western Blot experiments and PCR (Figures 3B-D). The results
indicated that the transfection efficiency of si-UCHLI1#2 was the
highest, and it was chosen for the subsequent cell scratch assay.

The cell scratch assay was conducted to assess the migration
ability of HBVSMC (Figures 3E,F). The results demonstrated that,
compared with the si-NC group, the migration ability of HBVSMC
cells in the si-UCHLI group was significantly enhanced.

Analysis of immune cell infiltration

To gain insights into the potential molecular mechanisms driving
MMD progression, we conducted an in-depth exploration of the
relationship between key genes and immune cell infiltration. By
employing the ssGSEA algorithm, we assessed the immune cells
present in the expression profiles and deduced the respective
percentages of immune-infiltrating cells. The results showed the
percentages of various immune cells in MMD and the correlation
between the different kinds of immune cells (Figures 4A,B). These
findings also suggested that the levels of human leukocyte antigen
(HLA), follicular helper T cells (Tfh), and tumor-infiltrating
lymphocytes (TIL) were significantly higher in patients with MMD
than in controls (Figure 4D). The correlation analysis between key
genes and immune cells revealed that ANAPC11 was significantly
negatively associated with HLA, macrophages, and major
histocompatibility complex (MHC) class
I (Supplementary Figure S2F). UCHLI1 exhibited a significant
negative correlation with the type I interferon (IFN) response and
HLA (Supplementary Figure S2F), whereas USP41 demonstrated a
significant positive correlation with the type I IFN response,
chemokine receptor (CCR), type II IEN response, plasmacytoid
dendritic cells (pDCs), neutrophils, parainflammation, TILs and B
cells (Figure 4C).

Additionally, we employed the TISIDB database (http://cis.hku.
hk/TISIDB/) to explore the relationships between the three key genes
and diverse immune elements. Our findings revealed that these key
genes were intimately linked to the extent of immune cell infiltration
and potentially held a crucial position within the immune
microenvironment (Supplementary Figures STA-E).

Gene set enrichment analyses of key genes

The GSEA-based enrichment analysis illustrated that the pathways
enriched by UCHLI included base excision repair, Hippo signaling
pathway, and Th1 and Th2 cell differentiation (Figures 2E,F). Pathways
enriched by ANAPCI11 included neutrophil extracellular trap formation,
olfactory transduction, and oxidative phosphorylation (Figure 2G).
Pathways enriched by UPS41 included the chemokine signaling
pathway, NF-kappa B signaling pathway, and phagosome (Figure 2H).

Prediction of regulatory networks of key
genes
Taking the three key genes (ANAPC11, UCHLI, and USP4I) as

the gene set, we predicted the associated transcription factors using
the Cistrome database and constructed transcriptional regulatory
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networks. A total of 76 transcriptional regulators were predicted by
ANAPCI11,97 by UCHLL, and 99 by USP41 (Supplementary Figure S3).
Employing the Mircode database for the purpose of anticipating the
expression patterns of these pivotal genes in reverse, we obtained 30
miRNAs and 40 messenger RNA (mRNA)-miRNA relationship pairs.
The visualization of this results was also performed with Cytoscape
software (Supplementary Figure 54).

Analysis of secondary-related genes
involved in MMD

We retrieved MMD-associated genes from the GeneCards database
(https://www.genecards.org/), and selected those genes that exhibited
the highest correlation scores related to MMD. The expression
differences of these MMD-related genes between MMD patients and
controls were analyzed. We found that the expression levels of ADA,
ADARB2, APOA1, CALCR, DHX9, DOCKY, EXO1, GPR152, ISG15,
ONECUT]1, and SMPDL3B indicated notable variations between the
two groups (Figure 5A). An analysis of the correlation between three
crucial genes and a selection of MMD-associated genes indicated that
USP41 and EXO1 exhibited a notable positive correlation (Pearson’ s
r=0.63), whereas UCHLI and ISG15 displayed a significant negative
correlation (Pearson’ s r = —0.544) (Figure 5B).

Prediction of potential drugs

The top 150 differentially upregulated and downregulated genes
were divided into two groups, and the CMap database was utilized for
drug prediction. The results suggested that the expression profiles of
drug perturbations such as benzohydroxamic-acid, PKC-beta
Inhibitor, quinoclamine, and XMD-1150 were more significantly
negatively correlated with the expression profiles of MMD
perturbations. These findings suggest that these drugs might be able
to attenuate or even reverse the state of MMD.

Discussion

MMD is a rare and unique cerebrovascular condition, first
documented in 1969. It is distinguished by stenosis or occlusion in the
terminal segment of the internal carotid artery, which results in the
development of an aberrant vascular network comprising collateral
pathways at the base of the brain. Reducing its incidence and
prevalence is crucial for improving patient outcomes (17). For
decades, a considerable number of neuroscientists have worked on
MMD. However, its pathology remains unclear.

The pathological studies of the abnormal intracranial vessels in
MMD have revealed a series of pathological changes, including the
thickening of the intima due to fibrocellular proliferation,
accompanied by an elevated count of smooth muscle cells, and
conspicuous waviness in the internal elastic lamina, along with a
thinning of the media (18). However, the mechanisms underlying
these abnormal pathological findings are largely unknown. An
epidemiological study reported that approximately 15% of the patients
of MMD in Japan are familial cases, and pedigree analysis suggested
that this disease might be autosomal dominant with incomplete
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FIGURE 4
Analysis of infiltrating immune cells and immune-related pathways. (A) A heatmap visualizes the immune characteristic profiles between the
Moyamoya disease (MMD) group and the control group. Each column stands for a sample, and each row represents an immune factor. (B) A
(Continued)
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FIGURE 4 (Continued)

correlation matrix depicts all immune cells. Immune cells with positive associations are colored red, while those with negative associations are colored
blue. The significance threshold was set at p < 0.05. (C) The illustration shows that USP41 was significantly positively associated with type | IFN

response, CCR, type Il IFN response, plasmacytoid dendritic cells (pDCs), neutrophils, parainflammation, TILs, and B cells. The plot color represents the
p value, and the plot size represents the correlation. (D) The violin plot shows the difference in all immune cells between the MMD and control groups.

penetrance (19). Although its pathogenic genes have not yet been
identified, multiple studies have suggested that MMD was associated
with specific genetic factors (20). In 2011, the specific variations
leading to SNPs (preponderantly p. R4810K and p. R4859K) in
RNF213, which were associated with the familial and sporadic cases
in Japanese, Korean, and Chinese individuals, were independently
identified by two research groups (8, 9). Subsequently, a number of
additional RNF213 variants were detected in East Asian and Caucasian
patients who did not have the p. R4810K mutation (8, 10, 11). RNF213
is regarded as a gene that predisposes individuals to MMD, and the
importance of MMD’s genetic background is receiving growing
attention. RNF213, a cytosolic protein with a molecular weight of
591-kDa, is composed of two distinct functional domains, which
exhibit six ATPase units and a multidomain E3 ubiquitin ligases
module, and the pathologic mutations in MMD cluster in the E3
domain which not only result in a decline in the ubiquitin ligase
activity of RNF213 but also boost the activation of NF-kappa B and
apoptosis in an AAA + domain-dependent manner (8, 12, 13).
Additionally, researchers have characterized the ubiquitin ligase
function of RNF213 in vitro and discovered that mutations in RNF213
associated with MMD can result in a substantial decrease in its
ubiquitin ligase activity, which suggests that diminished ubiquitin
ligase activity, caused by mutations in RNF213, may contribute to the
development of MMD (13). Therefore, ubiquitination may be an
important biological process that contributes to MMD.

In our study, we selected and downloaded the GSE157628 and
GSE141024 datasets related to MMD from the GEO database,
including expression profiling data from 28 patients. Then 1,632 DEGs
were identified by screening for differential expression between the
MMD and control groups. Among them, 794 were upregulated and
838 were downregulated. Next, we extracted ubiquitination-related
genes with relevance scores > 10 using the GeneCards database and
took the intersection of these genes and the DEGs described above.
We identified 25 intersecting genes that were ubiquitination-related
and differentially expressed. Subsequently, LASSO regression and the
SVM algorithm were employed to further select the features of these
intersecting genes and identified seven and eight feature genes,
respectively. Finally, we examined the intersection of these genes and
obtained three key genes for our study, ANAPC11, UCHLI,
and USP41.

Furthermore, we measured the blood samples of MMD patients
and normal controls, and the results showed that the serum UCHL1
content in MMD group was significantly lower than that in HC group.
This is consistent with the findings of bioinformatics mentioned
above. In addition, we further conducted cell scratch experiments, and
the results showed that compared with the negative control group, the
migration ability of HBVSMC cells in the UCHL1 knockout group
was significantly improved. These results suggest that the decreased
expression level of UCHLI may affect the pathogenesis of MMD by
promoting the migration of vascular smooth muscle cells and other
mechanisms. And the significant decrease in UCHLI expression levels
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in the peripheral blood of MMD patients that we discovered provides
innovative theoretical basis for the development of clinical diagnostic
tools, such as test kits and rapid test strips. Further research is needed
to explore its mechanism and application in MMD.

UCHLI gene encodes the ubiquitin carboxyl-terminal hydrolase
L1 (UCHL1), which is a critical a member of the deubiquitinating
enzyme family for removing ubiquitin or polyubiquitin from target
proteins (21, 22). UCHLI, a protein of diverse functions, is capable
of cleaving free monoubiquitin from ubiquitinated proteins, thus
facilitating its reuse, conjugating ubiquitin to certain proteins, and
binding to free monoubiquitin, ensuring the maintenance of an
adequate supply of available ubiquitin (23, 24). Human UCHL1 was
first discovered in the brain and other organs using two-dimensional
electrophoresis and was termed protein gene product 9.5 (PGP9.5)
(25). Later, ubiquitin C-terminal hydrolase activity was discovered
(23). UCHLI is neuron-specific and one of the most abundantly
expressed proteins in the brain, accounting for approximately 1-5%
of the soluble proteins, with a minor proportion tightly bound to
membranes in the brain (26, 27). UCHLI is essential for maintaining
ubiquitin homeostasis. It may also be important in regulating other
neuronal processes, in addition to the ubiquitin-proteasome
pathway. Under pathological conditions, unfolded UCHL1 may also
inhibit autophagy (28, 29). UCHL1 may also be related to the
neuronal cytoskeleton proteins and may be involved in the regulation
of axonal transport and maintenance of axonal integrity (28, 30).
Mutations or deletions in UCHLI result in axonal and dendritic
pathologies, particularly affecting the motor systems (31-33). It
might also be involved in memory function by regulating the
function of synapses under some conditions (34). Mutations and
functional aberrations of UCHLI are associated with several
neurological disorders. Several neurodegenerative diseases,
including Parkinson’s disease, Alzheimer’s disease, and amyotrophic
lateral sclerosis, have been linked to UCHLI dysfunction (35). The
injury mechanisms and the processes of recovery after suffering
from traumatic brain injury and cerebral ischemia are both closely
related to this dysfunction (36). Cerebral ischemia leads to the
forming of various reactive lipids and other molecules, such as
cyclopentenone prostaglandins (CyPGs) and nitric oxide (NO) (36—
38). The cysteine at cysteine 152 (C152) of UCHLI1 could
be covalently modified by CyPGs and NO, which inhibits its activity,
unfold the enzyme, and lead to protein aggregation (36-40).
Multiple studies have indicated that UCHLI could play a part in
determining the survival of gray and white matter, alleviating gray
and white matter damage, and contributing to motor recovery post-
cerebral ischemia (36, 40-44). Besides, an article on ischemic heart
injury reported that UCHLI might play a novel protective role on
myocardial infarction via stabilizing hypoxia-inducible factor 1
alpha and promoting its signaling (45). This suggests that there may
be other undiscovered pathways through which UCHLI1 affects
neurological disorders, such as cerebral ischemia. Therefore, further
research on UCHLI expression is warranted.
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Studies on ANAPCI11 and USP41 are limited. The ANAPC11 gene
is widely spread across the cytoplasm and nucleus, and discrete
aggregates can be observed in the granular structures (46). In northern
blot hybridization, the signal intensity varied throughout the body and
was higher in organs such as skeletal muscle, heart, brain and kidneys
(46). ANAPCI11 has notably high expression in particular cancer types
and displays distinct expression profiles across different cancer cell
lines (47). In contrast to the expression levels in normal tissues,
ANAPCI1 is overexpressed in leukemia and lung cancer cell lines
(46). USP41 is overexpressed in lung cancer tissues, osteosarcoma cell
lines, and breast cancer (48). These results suggest that the
pathomechanism of MMD is complex and may be associated with
certain tumor-promoting factors, which require further research.

In addition to gene factors, microenvironmental factors also play
a role in MMD pathogenesis (3, 4). Immune factors are extensively
involved in the composition of the microenvironment. Due to the
absence of pathological evidence, it is not clear if inflammatory and
immune factors have an impact on the pathogenesis of
MMD. Nevertheless, an immunohistochemical examination of
autopsy specimens from MMD cases disclosed that the expression of
immunoglobulin G in the internal elastic lamina of the internal
carotid artery (ICA) and middle cerebral artery deviated from normal
levels, which implies that the autoimmune response may play a role in
the pathogenesis of MMD (49). In addition, a high-density
autoantibody array revealed that the levels of 165 autoantibodies in
the serum of MMD patients were elevated relative to the control
group, and six of these autoantibodies were identified as being specific
to MMD (50). Recently, bioinformatics studies have reported the
involvement of immune cell infiltration and activity in MMD
progression (14, 15). Nevertheless, additional research is essential to
clarify the role of autoimmunity in the progression of MMD. To delve
deeper into the potential molecular mechanisms underlying MMD
progression, we analyzed the connection between the key genes
identified above and immune infiltration. Initially, we utilized the
ssGSEA algorithm to quantify the immune cells within the expression
profiles, aiming to infer the relative proportions of 29 types of
immune-infiltrating cells. The results indicated that the levels of HLA,
Tth, and TIL in the MMD group were notably higher than those in the
control group. We then employed Spearman’s rank correlation
coefficient to explore the correlations between the three key genes and
immune cells. The results showed that ANAPCI11 had a significant
negative correlation with HLA, macrophages, and MHC class [;
UCHLI exhibited a significant negative correlation with the type
I IFN response and HLA, whereas USP41 demonstrated a significant
positive correlation with the type I IFN response, CCR, type II IFN
response, plasmacytoid dendritic cells (pDCs), neutrophils,
inflammation, TILs, and B cells.

Moreover, we employed the TISIDB database to explore the
relationships between the three key genes and diverse immune
elements, such as immunostimulatory factors, immunosuppressive
factors, chemokines, and receptors. Our findings revealed that these
key genes were intimately linked to the extent of immune cell
infiltration and potentially held a crucial position within the
immune microenvironment.

Furthermore, we conducted an in-depth enrichment analysis
focusing on the three key genes associated with MMD. The results
demonstrated that the pathways enriched by ANAPC11 encompassed
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neutrophil extracellular trap formation, olfactory transduction, and
oxidative phosphorylation. For UCHLI, the enriched pathways
involved base excision repair, the Hippo signaling pathway, as well as
Thl and Th2 cell differentiation. Regarding USP41, the chemokine
signaling pathway, the NF-kappa B signaling pathway, and the
phagosome were among the enriched pathways. Neutrophil
extracellular traps (NETs) are DNA structures decorated with
cytosolic, granular, and nuclear proteins that can entrap
microorganism, and the release of NETs might be influenced by
unbalanced immune responses, leading to a variety of disorders (51).
Mechanisms underlying NET formation are complex (52). There are
several known mechanisms for NET formation, and this process
varies in different physiological environments, including blood and
tissues, and under alkaline or hypertonic conditions (52). NETs could
induce a wide range of pathological processes and plays a role in
autoimmune immunodeficiencies, diabetes and cardiovascular
diseases, tumors and cystic fibrosis (51). One of the pathogenic
functions of NET is occlusion, in which NETs frequently converge in
intravascular thrombi and occluded conduits, blocking the circulation
and secretion of blood and other fluids (53). Base excision repair can
correct oxidative, deamination, alkylation, and basic single-base
damage. Base excision repair (BER) genes deficiency contributes to
cancer, inflammation, aging, and neurodegenerative disorders (54).
The Hippo pathway has now been implicated in a variety of human
diseases such as cancer, autoimmunity and so on (55). The
transcription factor family of NF-kappa B serves as a crucial stress-
responsive element within the cellular milieu, and it exerts a regulatory
function over the expression of key genes related to multiple biological
processes, such as immunity, inflammation, cell death, and
proliferation (56). Studies have shown that RNF213 can also enhance
NE-kappa B activation, which might be part of the pathological
process of MMD (13). Thus, the outcomes of these pathway analyses
further indicate that the three key genes may play critical regulatory
roles in the pathogenesis of MMD. However, the specific mechanisms
of these pathways in MMD remain unclear. And incorporating more
experimental validation can be further explored to enhance the
persuasiveness of the conclusions. Our team will continue to
investigate the potential pathways of ubiquitination in MMD in
future studies.

We predicted the key gene-associated transcription factors and
constructed transcriptional regulatory networks using the
Cistrome database. A total of 76 transcriptional regulators were
predicted by ANAPCI11, 97 by UCHLI, and 99 by USP41. The
appearance of proteins during MMD progression were modified
by gene-miRNAs by targeting their primary targets. In our
research, we built a gene-miRNA regulatory network. Employing
the Mircode database for the purpose of anticipating the
expression patterns of these pivotal genes in reverse, we obtained
30 miRNAs and 40 mRNA-miRNA relationship pairs. These
miRNAs can be targeted for intervention in the study of
MMD pathogenesis.

We retrieved MMD-related genes from the GeneCards database.
We selected the genes with the highest relevance scores and conducted
an analysis of the expression variations between the MMD group and
the control group to reduce redundancy. The results indicated that
there were significant differences in the expression levels of ADA,
ADARB2, APOA1, CALCR, DHX9, DOCKOY, EXO1, GPR152, ISG15,
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ONECUT1, and SMPDL3B between the two groups. Moreover,
we examined the correlations between the expression levels of the
three key genes and those of several selected genes. It turned out that
USP41 and EXO1 were significantly positively correlated (Pearson’s
r=10.63), while UCHL1 and ISG15 were significantly negatively
correlated (Pearson r = —0.544). ISG15, an interferon-stimulated
ubiquitin-like protein, attaches to substrate proteins through a process
known as ISGylation, playing a role in the body’s defense against
microbial infections (57). Interferon is capable of triggering the
ISGylation and oligomerization of RNF213 on lipid droplets, during
which RNF213 acts as a detector for ISGylated proteins, suggesting
that it serves as a vital antimicrobial effector (57). Further research is
essential to clarify the roles
development of MMD.

In addition, our study identified 13 potential medications or

these genes play in the

chemical entities as treatment options for MMD by focusing on key
ARGs. The top 150 genes with differentially upregulated and
downregulated expressions were grouped into two categories, and the
Connectivity Map database was utilized for drug prediction. The
outcomes indicated that the expression profiles of drug interferences
like benzohydroxamic-acid, PKC-beta inhibitor, quinoclamine, and
XMD-1150 were more remarkably negatively correlated with the
expression profiles of MMD-related interferences. Previous
observations suggest that benzohydroxamic-acid may inhibit tumor
cell proliferation and metastasis through various mechanisms (58).
The results suggest benzohydroxamic-acid may inhibit the
proliferation and migration of vascular smooth muscle cells in
MMD. Research data indicates that PKC-beta inhibitors help reduce
the risk of severe cardiac microvascular ischemia/reperfusion injury
in diabetic rats by maintaining endothelial barrier function and
exerting anti-apoptotic effects (59). It may also play an endothelial
protective role in MMD. The XMD-1150 compound has the potential
to target one or multiple autophagy hub genes, thereby expediting the
modulation of autophagy in the context of cancer therapy (60). By
targeting one or multiple autophagy hub genes, XMD1150 could
expedite the modulation of autophagy, a process crucial for cellular
homeostasis and clearance of damaged or unnecessary cellular
components. In the context of moyamoya disease, which involves
abnormal blood vessel formation and ischemia, autophagy
modulation might help to regulate vessel growth, reduce
inflammation, or enhance the clearance of debris, thereby
contributing to therapeutic benefits. These results imply that these
drugs may be capable of alleviating or even reversing the condition
of MMD. However, further research is needed to fully elucidate the
specific pathways and mechanisms through which these drugs exert
its effects in MMD treatment.

In summary, the expression level of UCHLI gene is significantly
reduced in MMD, which may affect the pathogenesis of MMD by
promoting the migration of vascular smooth muscle cells. ANAPCI1,
UCHLI, and USP41 ubiquitination related genes may be significantly
associated with the pathogenesis of MMD. In depth research on this
correlation, in vitro and in vivo validation of gene miRNA regulatory
networks, exploration of potential therapeutic drugs for MMD, and
validation of drug effects are important directions for future research.
There is a significant correlation between ubiquitination and the
pathogenesis of MMD. The in-depth study of this correlation, the
in vitro and in vivo validation of the gene-miRNA regulatory
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network, the exploration of potential therapeutic drugs for MMD,
and the validation of drug effects are important directions for
future research.

This study has several limitations. First, although we used a variety
of methods in the feature selection process and verified the stability of
the model through cross-validation, the sample size of this study still
could lead to overfitting which might limit the reliability of the study
model and the reliability of the identified ubiquitin-related genes.
We also plan to expand the sample size in future studies, particularly
by including blood and surgical specimens from children and adult
MMD patients with fewer comorbidities, to conduct an in-depth
investigation of ubiquitination-related genes in MMD. Secondly, in
the selected datasets, control samples were obtained from patients
with Given the
microenvironmental impacts of other diseases, the data from the

other diseases. potential  genetic and
control group might diverge from that of normal samples at the
transcriptional level. Harvesting normal blood vessels from healthy
controls is essential for ethical reasons. Therefore, it is acceptable to
use samples from patients with other diseases as controls when
studying MMD. Third, the results were based on bioinformatics and
in vitro experiments which only verified the effect of UCHLI on
smooth muscle migration. Further animal experiments are crucial for
verifying the role of ubiquitination modification in the pathogenesis
of MMD. However, there are currently no animal models for MMD,
and our findings provide a new potential theoretical basis for the
development of an MMD animal model. Our team will continue to
invest in research aimed at establishing a suitable animal model

for MMD.

Conclusion

In our study, these three ubiquitination-related genes, namely
ANAPCI11, UCHLI, and USP41, were identified as the key genes that
might be involved in the pathogenesis of MMD, and these genes were
closely associated with multiple signaling pathways of protein
modification, autoimmune, immune response, neutrophil
extracellular trap formation, base excision repair, Hippo signaling
pathway, and NF —kappa B signaling pathway. In addition,
we verified that the level of serum UCHLI1 expression in MMD
disease was significantly reduced by external data and in vitro
experiments, and that UCHLI gene knockout could promote the
migration of vascular smooth muscle cells. These results suggest that
UCHLI1 may affect the migration ability of vascular smooth muscle
cells through mechanisms such as ubiquitination modification, and
thus participate in the pathogenesis of MMD. Using these three key
genes, we identified two secondary genes: EXO1 and ISGI5.
Furthermore, we constructed a gene-miRNA network containing 30
miRNAs. Finally, we predicted that drugs targeting key genes might

be effective in treating MMD.
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