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Introduction: Moyamoya disease (MMD) is an infrequent cerebrovascular 
disorder typified by bilateral internal carotid artery obstruction, yet its pathogenic 
mechanism remains elusive. This study examines the role of epigenetic 
ubiquitination-related genes in MMD.
Methods: We utilized two datasets (GSE157628 and GSE141024) from the GEO 
database and sourced ubiquitination-related genes from the GeneCards database. 
Differentially expressed genes were identified, followed by Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment 
Analysis (GSEA) to elucidate key gene functions. Machine learning techniques, 
including LASSO logistic regression and support vector machine, helped identify 
crucial genes. Immune characteristics were analyzed using single-sample gene 
set enrichment analysis, while transcription factors and miRNA-gene regulatory 
networks were constructed with the Citrome and Mircode databases.
Results: We identified three key ubiquitination-related genes—ANAPC11, UCHL1, 
and USP41—that may be involved in the pathogenesis of MMD. Further, we 
found that the serum UCHL1 expression level in MMD was significantly reduced, 
and knocking down UCHL1 could enhance the migration ability of human brain 
vascular smooth muscle cells (HBVSMCs), as verified by In vitro experiments. 
Immune infiltration analysis demonstrated significant correlations between these 
genes and various immune factors. Furthermore, we constructed a miRNA-gene 
network involving 30 miRNAs and identified secondary genes EXO1 and ISG15.
Discussion: Potential therapeutic drugs, including benzohydroxamic acid and 
PKC-beta inhibitors, were predicted to target these key genes, suggesting new 
avenues for MMD treatment.
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Introduction

Moyamoya disease (MMD) is a rare cerebrovascular condition where the terminal part of 
the internal carotid arteries (ICAs) experiences stenosis or obstruction, leading to the 
development of an abnormal vascular network at the base of brain, consisting of vulnerable 
perforating vessels (1). Epidemiological investigations have revealed that MMD is more 
prevalent among East Asians compared to Westerners and that it occurs more frequently in 
women (2). MMD seizures show two age peaks: childhood and young adulthood (2). However, 
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the pathogenesis of MMD is still unclear (2, 3). Current research has 
indicated that both genetic and microenvironmental factors contribute 
to its development (3–5).

In recent years, researchers have discovered that mutations in a 
single gene cannot adequately account for the onset of MMD. A 
growing body of evidence underscores the regulatory function of 
epigenetic markers in pivotal cellular and molecular processes 
associated with the pathogenesis of MMD (6, 7). Epigenetics typically 
encompasses DNA methylation, histone modifications, and 
non-coding RNAs. To date, genome-wide approaches to analyzing the 
epigenome have gradually expanded the observed epigenetic 
features in MMD.

The ring finger protein 213 (RNF213) gene located in the 17q25-
ter region has been identified as the primary susceptibility gene for 
MMD in East Asian populations (8, 9). Specific variations leading to 
single-nucleotide polymorphisms (SNPs) (preponderantly p. R4810K 
and p. R4859K) in RNF213 have been associated with the familial and 
sporadic cases in Japanese, Korean, and Chinese (8, 9). Subsequent 
studies have reported the discovery of several other new variants of 
RNF213 identified in non-p. R4810K East Asian and Caucasian 
patients (8, 10, 11). RNF213 is a 591-kDa cytosolic protein with two 
functional domains: a Walker motif and a RING finger domain 
exhibiting dual AAA + adenosine triphosphatase (ATPase) domains 
and ubiquitin ligase activities (8). A study further revealed the 
complex folding of the mouse RNF213 including an amino-terminal 
(N-terminal) stalk, a core structure reminiscent of dynein featuring 
six ATPase units, and a complex E3 ubiquitin ligase module with 
multiple domains by scanning its structure with the cryogenic 
electron microscopy (cryo-EM) (12). This study also suggested that 
pathological MMD mutations are concentrated in the E3 domain and 
might interfere with substrate ubiquitination (12). In addition, 
another study indicated that mutations in the RING finger domain 
of RNF213 reduced its ubiquitin ligase activity and enhanced the 
activation and apoptosis of nuclear factor kappa B (NF-kappa B) in 
an AAA + domain-dependent manner, and that this dysregulation 
might contribute to MMD pathogenesis (13). Consequently, it is easy 
to hypothesize ubiquitination modification may play a crucial role in 
the development of MMD. However, there is a lack of research on the 
mechanism of ubiquitination modification in MMD, and the genetic 
factors associated with ubiquitination in MMD remain understudied.

In addition to directly pathogenic genetic factors, the complex 
microenvironmental factors also be involved in the pathogenesis of 
MMD (3, 4). The composition of the microenvironment is very 
complex. Several researches have explored the specific landscape of 
immune cell infiltration in MMD (14, 15). For example, Li et al. 
reported that the abundances of eosinophils, natural killer T (NKT) 
cells, and T helper (Th) 2 cells were significantly different between 
patients with MMD and controls (14). Another study recently 
conducted by Cao et al. investigated that eosinophils were highly 
proportioned in the specific immune infiltration landscape of MMD, 
rather than T or B cells (15). However, the precise proportions of 
various immune cells present in MMD require future research.

Thus, our research aims to identify gene factors associated with 
ubiquitination modification in MMD, analyze the relationship 
between key ubiquitination-related genes and immune cell 
infiltration, and explore the potential molecular mechanisms 
underlying the occurrence of MMD. Additionally, we analyzed and 

depicted the miRNA-gene regulatory network, and predicted 
potential targeted therapeutic drugs.

Materials and methods

Downloading and processing of data

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) (accessed on 12 August 2023) database was the source of 
our data. We  downloaded the series matrix files of GSE157628 
dataset from this database. These files contain 20 transcription 
profiles collected from 11 MMD patients and 9 age- and 
sex-matched controls. Additionally, we obtained the series matrix 
files of GSE141024 dataset from GEO database which consist of 
eight transcription profiles collected from four MMD patients and 
four matched controls. The annotated file for the both datasets 
is GPL16699.

We then used the GeneCards database (https://www.genecards.
org/) to extract ubiquitination-related genes. Relevance score is a 
metric used in the GeneCards database to measure the relevance of a 
gene to a specific topic or field. This score is calculated based on a 
variety of data sources and information resources. Specifically, a 
higher relevance score indicates a stronger correlation between a gene 
and the topic or field. We set a screening condition that only genes 
with a relevance score > 10 were selected to ensure that the genes 
we selected had high relevance to ubiquitination.

Batch effect correction and analysis of 
differentially expressed genes (DEGs)

After merging and normalizing the datasets, we utilized the 
Surrogate Variable Analysis (SVA) package in R software to 
perform batch effect correction on the data. Subsequently, 
we plotted the sample distributions before and after correction 
using principal component analysis (PCA) to visualize how the 
batch effect changed before and after correction. The “limma” 
package in R software was used to examine the distinctions in 
molecular mechanisms between MMD and control samples, with 
the objective of pinpointing DEGs. The selection criteria were 
based on an absolute log fold change (FC) exceeding 0.585 and a 
p-value below 0.05. Additionally, we plotted volcano and clustering 
heat maps to visualize the results.

Functional enrichment analysis of gene 
ontology (GO) and Kyoto encyclopedia of 
genes and genomes (KEGG)

A comprehensive functional enrichment analysis was performed 
on the differentially expressed ubiquitination-related genes using the 
Metascape database (https://www.metascape.org). Relevant functional 
categories were evaluated through the application of GO and KEGG 
pathways. Statistical significance was only achieved if minimum 
overlap ≥3 and p ≤ 0.01. And we plotted histograms and network 
diagrams to visualize the results.
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Feature selection process for least absolute 
shrinkage and selection operator (LASSO)
logistic regression and support vector 
machine (SVM) algorithms

Our study integrated the LASSO logistic regression and SVM 
algorithms to select the key genes of MMD (16). LASSO logistic 
regression, a linear regression approach applied to select features in 
a model by incorporating a penalty term that restricts the coefficients 
within the model, forcing the coefficients of certain features to zero, 
thereby enabling automatic feature selection, and is capable of 
efficiently handling high-dimensional datasets, reducing overfitting, 
and identifying the most relevant features. In our study, LASSO 
logistic regression algorithms were implemented using the “glmnet” 
package within R software. We modeled gene expression data using 
the “glmnet” function, specifying a Gaussian distribution (“family” 
set to “gaussian”), and determined the optimal lambda value through 
a rigorous 10-fold cross-validation process. The key parameter of 
LASSO regression, lambda, which serves as the coefficient of the 
penalty term, determines the degree to which the LASSO regression 
model constrains feature selection, with larger values causing more 
feature coefficients to converge to zero, thus selecting fewer features, 
whereas smaller values result in more features entering the model, 
thereby increasing its complexity. To determine the optimal lambda 
value, a 10-fold cross-validation was conducted. The classification 
effectiveness of the model was assessed using the “type.
measure = ‘class’“parameter within the “cv.glmnet” function. Then, 
the optimal lambda value corresponding to “lambda.min” was 
selected to avoid overfitting and improve the generalization ability 
and stability of the model. We plotted the performance curves for 
each lambda value, and by examining the curve’s nadir, 
we  determined the optimal lambda value to identify the 
featured genes.

Support vector machine-recursive feature elimination (SVM-
RFE) is an algorithm for feature selection based on SVMs that 
progressively removes unimportant features by recursion and retains 
the features that contribute most to the classification task. The basic 
idea of the method is to construct a classification model using SVM 
and calculate the weight of each feature, followed by gradually 
removing features with smaller weights until the remaining set of 
features is optimal. In this study, we  implemented the SVM-RFE 
method with the “e1071” software package in R software and 
combined it with cross-validation to evaluate the performance of the 
model to identify biomarkers with high diagnostic value. In SVM-RFE, 
the number of feature selection iterations (i.e., starting from the initial 
set of features and gradually eliminating unimportant features until 
the best subset of features remains) has a significant impact on the 
final set of genes selected. To guarantee the robustness of the feature 
selection procedure and to gauge how the removal of features in each 
cycle affects model efficacy, we  employed 5-fold cross-validation. 
Cross-validation helped us select the optimal subset of features such 
that these features exhibited the best predictive performance on all 
training datasets. We used the “e1071” package based on SVM-RFE 
method to select the features of differential genes to get the ranking of 
each gene, and to utilize the top 10 ranked genes to construct SVM 
models. Then we evaluated the minimum point of error rate of the 
models and get the combination of genes when the error rate reached 
the minimum point.

LASSO regression can perform feature selection while handling 
multicollinearity, whereas SVM-RFE focuses on evaluating the 
importance of features using support vector machine algorithms. The 
combination of these two algorithms can manage feature selection for 
both high-dimensional data and nonlinear relationships, thereby 
enhancing the overall performance of feature selection. Furthermore, 
it can also improve the model’s generalization ability. Therefore, the 
combined application of these two machine learning methods aims to 
enhance the stability of the model and the accuracy of feature selection 
in this study. Finally, by combining the genes derived from the 
SVM-RFE and LASSO algorithms, we aimed to pinpoint the key genes 
and assess their diagnostic value for MMD.

In vitro experimental verification

The validation set consists of self-test data from peripheral venous 
blood samples from 3 MMD patients and 3 healthy controls (HCs). 
The collection of biospecimens and data was approved by the 
Institutional Ethics Committee of Peking Union Medical College 
Hospital, Beijing, China (I-24PJ2435), and all specimens were 
obtained with written informed consent.

All blood samples were collected in the morning and rapidly 
centrifuged at 2500 rpm for 10 min at 4°C to obtain the supernatant 
as serum. The serum was then transferred to a new EP tube and stored 
at −80°C. After thawing, the level of UCHL1 were measured using 
Human UCHL1 ELISA Kit (HUES03248) (AssayGenie, Dublin, 
Ireland) according to the manufacturer’s instructions.

Commercial Human brain vascular smooth muscle cells 
(HBVSMCs) (ScienCell Research Laboratories, Hubei, China) were 
subcultured in SMCM medium containing 1% P/S bispecific antibody, 
1% smooth muscle cell growth supplement (SMCGS), and 2% 
FBS. When the cells fused to 90%, the old medium was discarded and 
the cells were washed twice with 2 mL PBS. After discarding PBS, 
2 mL of 0.25% trypsin 0.02% EDTA mixed digestion solution was 
added and observed under a microscope for about 30 s. When the 
cells became round, 2 mL of complete medium was quickly added to 
terminate digestion, gently blown, and collected. 800 rpm, Centrifuge 
at 4°C for 5 min, discard the supernatant, resuspend the cells in 
complete culture medium, culture in separate bottles, and change the 
medium the next day. On the day before transfection, approximately 
2.5 × 105 cells were seeded in a 6-well plate and incubated for 24 h, 
resulting in a cell density of approximately 60–70%. Use Lipofectamine 
3,000 transfection reagent (L3000150) (Thermo Fisher Scientific, 
Pittsburgh, PA, USA) to transfect HBVSMC with siRNA. Incubate at 
37 ° C in a 5% CO2 incubator for 4–6 h, then replace with fresh 
medium and incubate for 3 days.

After transfection, prepare each group as a cell suspension and 
seed them into 6-well plates, with 5 × 105 cells per well. When the cells 
have fused to 90%, perform the corresponding treatments according 
to the experimental groups. After treatment, digest the cells, 
centrifuge, precipitate, dry, and dissolve to obtain the total RNA 
solution. Take 2 μL of the total RNA as the template, prepare the 
reverse transcription reaction system according to the kit instructions, 
place the reaction system in the PCR instrument, select the preset 
program, and react at 25°C for 5 min, 46°C for 20 min, and 95°C for 
1 min to obtain cDNA, which is stored at −70°C. Prepare the reaction 
system and qPCR reaction conditions according to the protocol 
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instructions, and perform amplification according to the pre-set 
program. The obtained data, after processing, represent the mRNA 
expression levels.

Based on the experimental groups, each group was prepared as a 
cell suspension and seeded into 6-well plates, with 1 × 106 cells per 
well. Upon reaching 90% confluence, the supernatant was discarded, 
and the cell samples were washed twice with pre-chilled PBS. For 
every 100 μL of cell sample, 1 mL of RIPA containing PMSF was 
added, and the cells were lysed thoroughly. The lysate was then 
centrifuged at 4°C at 12,000 ×  g for 5 min. The supernatant was 
immediately transferred to a pre-chilled Eppendorf tube, representing 
the extracted cellular protein, and stored at −80°C for later use. 
Protein quantification was conducted using the BCA method. Finally, 
5 × loading buffer was added, and the sample was heated in a boiling 
water bath for 10 min. The sample preparation was complete and 
could be stored at −20°C. Depending on the molecular weight of the 
target protein, prepare a 10% separating gel and a 5% stacking gel. 
Cast SDS-PAGE gels, adding 5 mL of prepared separating gel to each 
gel plate. After adding the gel, apply isopropanol and press the gel. 
Once the gel lines have formed (gel set), place the gel rack horizontally 
and remove the isopropanol with filter paper. After mixing the 
prepared stacking gel, inject 2 mL of the prepared stacking gel at the 
top of the separating gel. Immediately insert the comb vertically, 
ensuring it remains horizontal during insertion. After the stacking gel 
has solidified, remove the comb and place it in the electrophoresis 
chamber containing the electrophoresis buffer. Add an appropriate 
amount of pre-chilled 1 × electrophoresis buffer, then begin loading 
the samples. Perform constant-voltage electrophoresis at 80 V for 
approximately 30 min. Once the samples have entered the separating 
gel, adjust the voltage to 120 V and continue electrophoresis. Stop 
electrophoresis once the target band reaches the desired position. Cut 
the PVDF membrane to match the size of the gel, activate it in 
methanol for 1 min, then soak it in the transfer buffer. Place the filter 
paper in the transfer buffer and soak for 15 min. Assemble the transfer 
“sandwich” following the principle of PVDF membrane ≥ gel ≥ filter 
paper, ensuring all bubbles are removed before starting constant-
pressure transfer. After transfer is complete, stain the membrane with 
Lithmus Red S solution, then wash twice with TBST and observe the 
proteins on the membrane. Wet the membrane with TBS from bottom 
to top, then transfer it to a dish containing a blocking solution (5% 
non-fat milk powder in TBST) and shake at room temperature on a 
shaking incubator for 1 h to block the immunoglobulin binding sites 
on the PVDF membrane. Wash the membrane with TBST to remove 
residual liquid, then place the membrane in a self-sealing bag using a 
sealer, seal three sides, add the primary antibody diluted to the 
appropriate concentration with TBST, expel air bubbles as much as 
possible, seal the bag opening, and incubate at 4°C overnight. Open 
the self-sealing bag, wash the membrane three times with TBST, each 
for 10 min. Then place the membrane in a sealing bag, add an 
appropriate amount of secondary antibody at the appropriate 
concentration, seal the bag, and incubate at room temperature for 1 h. 
Open the self-sealing bag, wash the membrane three times with TBST, 
each for 10 min. Mix equal volumes of chemiluminescent reagent A 
and B, and place the membrane protein side down in contact with the 
mixture. After 5 min, detect using the Tanon 5,200 chemiluminescence 
imaging workstation. If multiple exposures are required for the same 
PVDF membrane, wash with strip solution (protein blot membrane 
regeneration solution) at room temperature for 45 min, then wash 

with TBST three times, and restart from the blocking step, with 
subsequent steps as before; Protein expression levels were analyzed 
using Image Pro Plus 6.0 software to assess optical density values. 
Relative protein expression was calculated as the ratio of target protein 
gray value to internal control protein gray value, and phosphorylated 
protein gray value to total protein gray value.

Cell scratch assay was used to test the migration ability of 
HBVSMC. Use a UV disinfected marker pen to evenly draw horizontal 
lines behind the 6-well plate, approximately every 0.5–1 cm, crossing 
the holes with at least 5 lines per hole. Cells in logarithmic growth 
phase are digested into single-cell suspension using trypsin, and the 
concentration of the cell suspension is adjusted by adding appropriate 
culture medium. 2 mL of cells with a density of 6 × 105 cells/mL are 
seeded into a 6-well plate marked with lines to ensure full cell growth 
the next day. The final total amount of culture medium per well is 
2 mL. The cells are cultured in a 37°C, 5% CO2 cell culture incubator 
according to the grouping requirements. After 24 h, when observing 
the cell adhesion and uniform distribution under a microscope, use a 
disinfected 200 μ L gun head to scratch the marked horizontal line on 
the back in a super clean bench, with the gun head vertical and not 
tilted. Wash the cells three times with PBS, remove the cut cells, add 
serum-free medium, and culture in a 37°C, 5% CO2 incubator. Take 
a photo at a magnification of 100 times, ensuring that the scratch is 
centered and vertical, paying attention to consistent background, 
sampling according to time points, and taking photos for recording.

Analysis of immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) represents 
a commonly employed technique for evaluating the types of immune 
cells present in the microenvironment. We used the ssGSEA algorithm 
in the “GSVA” package of R software to quantify 29 human immune 
cell phenotypes in MMD, and infer the relative proportion of immune-
infiltrating cells. The Spearman’s rank correlation coefficient was used 
to correlate gene expression with the immune cells. And we plotted 
cell content histograms, violin plots, and cell correlation heat maps to 
visualize the results.

Gene set enrichment analyses (GSEA)

GSEA, respectively, divides the samples into high- and 
low-expression groups based on the median expression value of key 
genes. The genes were categorized based on the level of differential 
expression between the two groups. Subsequently, an analysis was 
conducted to determine if the background gene datasets were 
concentrated at either the top or bottom of this categorized list. The 
datasets labeled c2.cp.kegg (version 7.0) were sourced from the 
MsigDB database (https://www.gsea-msigdb.org/gsea/msigdb/index.
jsp) and served as the background gene datasets for this study. To 
delve deeper into the molecular mechanisms underlying key genes, 
we employed GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) to 
analyze and compare the disparities in KEGG signaling pathways 
between samples from the high-expression and low-expression 
groups. Subsequently, we  arranged the gene datasets that were 
significantly enriched (adjusted p < 0.05) based on their 
concordance scores.
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Prediction of a MicroRNA (miRNA)-genes 
regulatory network

Cistrome database (http://cistrome.org/db/) which contains a large 
number of samples related to chromatin immunoprecipitation 
sequencing (ChIP-seq) and deoxyribonucleasednase-sequencing 
(DNase-seq), was used to explore the regulatory interactions between 
transcription factors and key genes. In this study, the genome file was 
configured to use the hg38 reference, with the transcription start site 
designated as 10 kb upstream. The obtained results were then graphically 
represented using Cytoscape software, facilitating a clearer understanding 
and analysis. MiRNAs are small non-coding RNAs that regulate gene 
expression by promoting messenger RNAs (mRNAs) degradation or 
inhibiting translation. We utilized the miRcode database (http://www.
mircode.org/) to identify miRNAs related to the key genes and employed 
the Cytoscape software to illustrate the networks of these miRNAs.

Prediction of potential drugs using 
connectivity map (CMap)

CMap (https://www.broadinstitute.org/connectivity-map-cmap) 
is a comprehensive gene-expression profiling database established by 
the Broad Institute. It encompasses a vast array of gene microarray 
data, specifically detailing the responses of 1,309 small molecule drugs 
before and after treatment in five distinct human cell lines, all 
examined under a wide range of conditions. This resource serves as a 
valuable tool for researchers seeking to understand the molecular 
mechanisms underlying drug action and response. This study 
identified potential therapeutic agents for MMD by targeting the key 
genes. L1000 as a background dataset provided us with contextual 
information on perturbation response patterns and helped us to more 
accurately identify the effects of drugs on gene expression, thus 
revealing the functional link between drugs and MMD.

Statistical analysis

In bioinformatics analysis, all statistical computations were 
performed utilizing the R software package (version 4.2.2). The 
statistical tests conducted were two-tailed, with statistical 
significance set at p < 0.05. During the self-test validation 
experiments, the data were examined and visualized using 
Graphpad Prism 9 (Version 9.4.0), and subsequently organized and 
illustrated using Adobe Illustrator 2022 (Version 26.3.0). The data 
are presented as mean values ± standard deviation (SD), and 
statistical variations among groups were evaluated using the t-test 
and one-way ANOVA. A p-value of less than 0.05 is regarded as 
indicative of statistical significance.

Results

DEGs identification and functional 
enrichment analysis

We selected and downloaded the GSE157628 and GSE141024 
datasets related to MMD from the GEO database, including expression 

profiling data from 28 patients (The control group comprised 13 
participants, while the MMD group had 15). GSE157628 consisted of 
11 patients with MMD and nine controls, and GSE141024 consisted 
of four patients with MMD and four controls.

After integrating and standardizing the data, we employed the 
SVA package within the R software framework to address and mitigate 
batch effects. We  plotted the sample distributions before 
(Supplementary Figure S1) and after correction using PCA 
(Figure  1A) to illustrated that the batch effects between different 
microarrays were significantly reduced after correction.

Using the “limma” package, we  identified 1,632 differentially 
expressed genes (Figures  1B,C). Based on the criteria of 
|logFoldChange(FC)|exceeding 0.585 and a p-value below 0.05, the 
expression levels of 794 genes were found to be upregulated, while 
those of 838 genes were downregulated.

Subsequently, ubiquitination-related genes with relevance scores 
> 10 were extracted from the GeneCards database. These 
ubiquitination-related genes and the DEGs described above were 
taken to intersect and we  obtained 25 differentially expressed 
ubiquitination-related genes (Figure 1D).

In addition, we conducted a functional enrichment analysis of the 
aforementioned genes utilizing the Metascape database. Both GO and 
KEGG were employed to evaluate the pertinent functional categories. 
Statistical significance was only achieved if minimum overlap ≥ 3 and 
p ≤ 0.01. These differentially expressed ubiquitination-related genes 
were predominantly enriched in signaling pathways, such as ubiquitin 
mediated proteolysis, protein catabolic process and ubiquitin binding 
(Figures 1E,F).

Selection of the key genes of MMD

To conduct feature selection among the 25 pre-selected 
differentially expressed ubiquitination-related genes, we combined the 
LASSO logistic regression and SVM algorithms. The LASSO 
regression algorithm identified seven feature genes in MMD 
(Figures 2A,B), and the SVM-RFE algorithm showed that eight feature 
genes had the highest accuracy when screening the MMD datasets 
(Figure 2C). By taking the intersection, we obtained three key genes 
from these two sets of feature genes: anaphase promoting complex 
subunit 11 (ANAPC11), ubiquitin carboxyl-terminal hydrolase L1 
(UCHL1), and ubiquitin specific peptidase 41 (USP41) (Figure 2D).

In vitro experimental verification

We utilized the Human UCHL1 ELISA Kit to measure the 
expression level of UCHL1 and discovered that, compared with the 
HC group, the serum UCHL1 content in the MMD group was 
significantly reduced (Figure 3A).

Subsequently, we  employed si-NC (SS: UUCUCCGA 
ACGUGUCACGUTT, AS: ACGUGACACGUUCGGAGAATT); 
si-UCHL1#1 (SS: 5’-GGACAAGAAGUUAGUCCUAAA -3′, AS: 5′- 
UAGGACUAACUUCUUGUCCCU -3′); si-UCHL1#2 (SS: 5′- GGUU 
UCUGUCUGUAAGUUAAG -3′, AS: 5′- UAACUUACAGACAGAAA 
CCAA −3′); and si-UCHL1#3 (SS: 5′- GUUUCUGUCUGUAA 
GUUAAGA -3′, AS: 5′- UUAACUUACAGACAGAAACCA −3′) to 
transfect HBVSMC and validated the transfection efficiency using 
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FIGURE 1

Differentially expressed gene (DEG) analysis and functional annotation. (A) Principal component analysis (PCA). The scatterplot depicts the results of 
PCA between the GSE157628 and GSE141024 datasets. (B) DEG analysis. A volcano plot is utilized to present the differentially expressed genes (DEGs). 
In the MMD group, down-regulated genes are indicated by blue dots, whereas up-regulated genes are represented by red dots. Black dots signify 
genes that are not differentially expressed. (C) DEG analysis. A heat map is employed to display the expression patterns of DEGs. Each column 
corresponds to a sample, and each row corresponds to a DEG. (D) The identification of differentially expressed ubiquitination-related genes was 
carried out. A Venn diagram illustrates 25 ubiquitination-related genes with differential expression in MMD. (E) Functional annotation. A histogram 
shows the top nine signaling pathways that the 25 genes were mainly enriched to. The horizontal axis (X) represents the enrichment degree, while the 
vertical axis (Y) signifies the regulatory pathway. (F) Function annotation. A network indicates the relationship between these signaling pathways. The 
dot color indicates the pathways. The size of the dots indicates the degree of pathway enrichment.
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FIGURE 2

Selection of the key genes of Moyamoya disease (MMD) and enrichment analysis of key genes. (A) Least absolute shrinkage and selection operator 
(LASSO) regression was employed. Feature selection was carried out using the LASSO regression model. The coefficient variations of different genes 
were observed with different lambda values (fraction deviance explained). (B) LASSO regression. To determine the optimal parameter (lambda) for the 
LASSO model, a graph was plotted of the partial likelihood deviance (binomial deviance) curve against log (lambda) for validation purposes. (C) Analysis 
with support vector machine (SVM) algorithm. In the support vector machine - recursive feature elimination method, the accuracy of the model varied 
as the number of features changed. (D) A Venn plot shows three key genes of MMD. (E) Signaling pathways enrichment analysis. UCHL1 was enriched 
in three major pathways. (F) A Circos plot shows the pathways enriched by UCHL1. (G) Signaling pathways enrichment analysis. ANAPC11 was enriched 
in three major pathways. (H) Signaling pathways enrichment analysis. USP41 was enriched in three major pathways.
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FIGURE 3

The expression level of UCHL1 in MMD and the effects of UCHL1 gene knockout on vascular smooth muscle migration ability. (A) The contents of 
UCHL1 in the serum were measured by ELISA assay. (B) The Western Blot experiment results showed the transfection efficiency of si-RNAs in HBVSMC. 
(C) Results of qPCR analysis of the transfection efficiency of si-RNAs. (D) Results of qPCR analysis of the transfection efficiency of si-RNAs based on 
relative quantitative method. (E) The bar chart shows the effects of UCHL1 gene knockout on the migration ability of HBVSMC. (F) Cell migration was 
detected by scratch assay. Bar = 200 micrometers. Results were mean ± SD for all individual experiments. *p < 0.05; **p < 0.01.
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Western Blot experiments and PCR (Figures  3B–D). The results 
indicated that the transfection efficiency of si-UCHL1#2 was the 
highest, and it was chosen for the subsequent cell scratch assay.

The cell scratch assay was conducted to assess the migration 
ability of HBVSMC (Figures 3E,F). The results demonstrated that, 
compared with the si-NC group, the migration ability of HBVSMC 
cells in the si-UCHL1 group was significantly enhanced.

Analysis of immune cell infiltration

To gain insights into the potential molecular mechanisms driving 
MMD progression, we conducted an in-depth exploration of the 
relationship between key genes and immune cell infiltration. By 
employing the ssGSEA algorithm, we  assessed the immune cells 
present in the expression profiles and deduced the respective 
percentages of immune-infiltrating cells. The results showed the 
percentages of various immune cells in MMD and the correlation 
between the different kinds of immune cells (Figures 4A,B). These 
findings also suggested that the levels of human leukocyte antigen 
(HLA), follicular helper T cells (Tfh), and tumor-infiltrating 
lymphocytes (TIL) were significantly higher in patients with MMD 
than in controls (Figure 4D). The correlation analysis between key 
genes and immune cells revealed that ANAPC11 was significantly 
negatively associated with HLA, macrophages, and major 
histocompatibility complex (MHC) class 
I  (Supplementary Figure S2F). UCHL1 exhibited a significant 
negative correlation with the type I interferon (IFN) response and 
HLA (Supplementary Figure S2F), whereas USP41 demonstrated a 
significant positive correlation with the type I  IFN response, 
chemokine receptor (CCR), type II IFN response, plasmacytoid 
dendritic cells (pDCs), neutrophils, parainflammation, TILs and B 
cells (Figure 4C).

Additionally, we employed the TISIDB database (http://cis.hku.
hk/TISIDB/) to explore the relationships between the three key genes 
and diverse immune elements. Our findings revealed that these key 
genes were intimately linked to the extent of immune cell infiltration 
and potentially held a crucial position within the immune 
microenvironment (Supplementary Figures S1A–E).

Gene set enrichment analyses of key genes

The GSEA-based enrichment analysis illustrated that the pathways 
enriched by UCHL1 included base excision repair, Hippo signaling 
pathway, and Th1 and Th2 cell differentiation (Figures 2E,F). Pathways 
enriched by ANAPC11 included neutrophil extracellular trap formation, 
olfactory transduction, and oxidative phosphorylation (Figure  2G). 
Pathways enriched by UPS41 included the chemokine signaling 
pathway, NF-kappa B signaling pathway, and phagosome (Figure 2H).

Prediction of regulatory networks of key 
genes

Taking the three key genes (ANAPC11, UCHL1, and USP41) as 
the gene set, we predicted the associated transcription factors using 
the Cistrome database and constructed transcriptional regulatory 

networks. A total of 76 transcriptional regulators were predicted by 
ANAPC11, 97 by UCHL1, and 99 by USP41 (Supplementary Figure S3). 
Employing the Mircode database for the purpose of anticipating the 
expression patterns of these pivotal genes in reverse, we obtained 30 
miRNAs and 40 messenger RNA (mRNA)-miRNA relationship pairs. 
The visualization of this results was also performed with Cytoscape 
software (Supplementary Figure S4).

Analysis of secondary-related genes 
involved in MMD

We retrieved MMD-associated genes from the GeneCards database 
(https://www.genecards.org/), and selected those genes that exhibited 
the highest correlation scores related to MMD. The expression 
differences of these MMD-related genes between MMD patients and 
controls were analyzed. We found that the expression levels of ADA, 
ADARB2, APOA1, CALCR, DHX9, DOCK9, EXO1, GPR152, ISG15, 
ONECUT1, and SMPDL3B indicated notable variations between the 
two groups (Figure 5A). An analysis of the correlation between three 
crucial genes and a selection of MMD-associated genes indicated that 
USP41 and EXO1 exhibited a notable positive correlation (Pearson’ s 
r = 0.63), whereas UCHL1 and ISG15 displayed a significant negative 
correlation (Pearson’ s r = −0.544) (Figure 5B).

Prediction of potential drugs

The top 150 differentially upregulated and downregulated genes 
were divided into two groups, and the CMap database was utilized for 
drug prediction. The results suggested that the expression profiles of 
drug perturbations such as benzohydroxamic-acid, PKC-beta 
Inhibitor, quinoclamine, and XMD-1150 were more significantly 
negatively correlated with the expression profiles of MMD 
perturbations. These findings suggest that these drugs might be able 
to attenuate or even reverse the state of MMD.

Discussion

MMD is a rare and unique cerebrovascular condition, first 
documented in 1969. It is distinguished by stenosis or occlusion in the 
terminal segment of the internal carotid artery, which results in the 
development of an aberrant vascular network comprising collateral 
pathways at the base of the brain. Reducing its incidence and 
prevalence is crucial for improving patient outcomes (17). For 
decades, a considerable number of neuroscientists have worked on 
MMD. However, its pathology remains unclear.

The pathological studies of the abnormal intracranial vessels in 
MMD have revealed a series of pathological changes, including the 
thickening of the intima due to fibrocellular proliferation, 
accompanied by an elevated count of smooth muscle cells, and 
conspicuous waviness in the internal elastic lamina, along with a 
thinning of the media (18). However, the mechanisms underlying 
these abnormal pathological findings are largely unknown. An 
epidemiological study reported that approximately 15% of the patients 
of MMD in Japan are familial cases, and pedigree analysis suggested 
that this disease might be  autosomal dominant with incomplete 
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FIGURE 4

Analysis of infiltrating immune cells and immune-related pathways. (A) A heatmap visualizes the immune characteristic profiles between the 
Moyamoya disease (MMD) group and the control group. Each column stands for a sample, and each row represents an immune factor. (B) A 

(Continued)
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penetrance (19). Although its pathogenic genes have not yet been 
identified, multiple studies have suggested that MMD was associated 
with specific genetic factors (20). In 2011, the specific variations 
leading to SNPs (preponderantly p. R4810K and p. R4859K) in 
RNF213, which were associated with the familial and sporadic cases 
in Japanese, Korean, and Chinese individuals, were independently 
identified by two research groups (8, 9). Subsequently, a number of 
additional RNF213 variants were detected in East Asian and Caucasian 
patients who did not have the p. R4810K mutation (8, 10, 11). RNF213 
is regarded as a gene that predisposes individuals to MMD, and the 
importance of MMD’s genetic background is receiving growing 
attention. RNF213, a cytosolic protein with a molecular weight of 
591-kDa, is composed of two distinct functional domains, which 
exhibit six ATPase units and a multidomain E3 ubiquitin ligases 
module, and the pathologic mutations in MMD cluster in the E3 
domain which not only result in a decline in the ubiquitin ligase 
activity of RNF213 but also boost the activation of NF-kappa B and 
apoptosis in an AAA + domain-dependent manner (8, 12, 13). 
Additionally, researchers have characterized the ubiquitin ligase 
function of RNF213 in vitro and discovered that mutations in RNF213 
associated with MMD can result in a substantial decrease in its 
ubiquitin ligase activity, which suggests that diminished ubiquitin 
ligase activity, caused by mutations in RNF213, may contribute to the 
development of MMD (13). Therefore, ubiquitination may be  an 
important biological process that contributes to MMD.

In our study, we selected and downloaded the GSE157628 and 
GSE141024 datasets related to MMD from the GEO database, 
including expression profiling data from 28 patients. Then 1,632 DEGs 
were identified by screening for differential expression between the 
MMD and control groups. Among them, 794 were upregulated and 
838 were downregulated. Next, we extracted ubiquitination-related 
genes with relevance scores > 10 using the GeneCards database and 
took the intersection of these genes and the DEGs described above. 
We identified 25 intersecting genes that were ubiquitination-related 
and differentially expressed. Subsequently, LASSO regression and the 
SVM algorithm were employed to further select the features of these 
intersecting genes and identified seven and eight feature genes, 
respectively. Finally, we examined the intersection of these genes and 
obtained three key genes for our study, ANAPC11, UCHL1, 
and USP41.

Furthermore, we measured the blood samples of MMD patients 
and normal controls, and the results showed that the serum UCHL1 
content in MMD group was significantly lower than that in HC group. 
This is consistent with the findings of bioinformatics mentioned 
above. In addition, we further conducted cell scratch experiments, and 
the results showed that compared with the negative control group, the 
migration ability of HBVSMC cells in the UCHL1 knockout group 
was significantly improved. These results suggest that the decreased 
expression level of UCHL1 may affect the pathogenesis of MMD by 
promoting the migration of vascular smooth muscle cells and other 
mechanisms. And the significant decrease in UCHL1 expression levels 

in the peripheral blood of MMD patients that we discovered provides 
innovative theoretical basis for the development of clinical diagnostic 
tools, such as test kits and rapid test strips. Further research is needed 
to explore its mechanism and application in MMD.

UCHL1 gene encodes the ubiquitin carboxyl-terminal hydrolase 
L1 (UCHL1), which is a critical a member of the deubiquitinating 
enzyme family for removing ubiquitin or polyubiquitin from target 
proteins (21, 22). UCHL1, a protein of diverse functions, is capable 
of cleaving free monoubiquitin from ubiquitinated proteins, thus 
facilitating its reuse, conjugating ubiquitin to certain proteins, and 
binding to free monoubiquitin, ensuring the maintenance of an 
adequate supply of available ubiquitin (23, 24). Human UCHL1 was 
first discovered in the brain and other organs using two-dimensional 
electrophoresis and was termed protein gene product 9.5 (PGP9.5) 
(25). Later, ubiquitin C-terminal hydrolase activity was discovered 
(23). UCHL1 is neuron-specific and one of the most abundantly 
expressed proteins in the brain, accounting for approximately 1–5% 
of the soluble proteins, with a minor proportion tightly bound to 
membranes in the brain (26, 27). UCHL1 is essential for maintaining 
ubiquitin homeostasis. It may also be important in regulating other 
neuronal processes, in addition to the ubiquitin-proteasome 
pathway. Under pathological conditions, unfolded UCHL1 may also 
inhibit autophagy (28, 29). UCHL1 may also be  related to the 
neuronal cytoskeleton proteins and may be involved in the regulation 
of axonal transport and maintenance of axonal integrity (28, 30). 
Mutations or deletions in UCHL1 result in axonal and dendritic 
pathologies, particularly affecting the motor systems (31–33). It 
might also be  involved in memory function by regulating the 
function of synapses under some conditions (34). Mutations and 
functional aberrations of UCHL1 are associated with several 
neurological disorders. Several neurodegenerative diseases, 
including Parkinson’s disease, Alzheimer’s disease, and amyotrophic 
lateral sclerosis, have been linked to UCHL1 dysfunction (35). The 
injury mechanisms and the processes of recovery after suffering 
from traumatic brain injury and cerebral ischemia are both closely 
related to this dysfunction (36). Cerebral ischemia leads to the 
forming of various reactive lipids and other molecules, such as 
cyclopentenone prostaglandins (CyPGs) and nitric oxide (NO) (36–
38). The cysteine at cysteine 152 (C152) of UCHL1 could 
be covalently modified by CyPGs and NO, which inhibits its activity, 
unfold the enzyme, and lead to protein aggregation (36–40). 
Multiple studies have indicated that UCHL1 could play a part in 
determining the survival of gray and white matter, alleviating gray 
and white matter damage, and contributing to motor recovery post-
cerebral ischemia (36, 40–44). Besides, an article on ischemic heart 
injury reported that UCHL1 might play a novel protective role on 
myocardial infarction via stabilizing hypoxia-inducible factor 1 
alpha and promoting its signaling (45). This suggests that there may 
be  other undiscovered pathways through which UCHL1 affects 
neurological disorders, such as cerebral ischemia. Therefore, further 
research on UCHL1 expression is warranted.

correlation matrix depicts all immune cells. Immune cells with positive associations are colored red, while those with negative associations are colored 
blue. The significance threshold was set at p < 0.05. (C) The illustration shows that USP41 was significantly positively associated with type I IFN 
response, CCR, type II IFN response, plasmacytoid dendritic cells (pDCs), neutrophils, parainflammation, TILs, and B cells. The plot color represents the 
p value, and the plot size represents the correlation. (D) The violin plot shows the difference in all immune cells between the MMD and control groups.
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FIGURE 5

Analysis of secondary-related genes involved in Moyamoya disease. (A) The significantly differentially expressed genes between the MMD and control 
groups. (B) The correlation between the key genes and the secondary-related genes.
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Studies on ANAPC11 and USP41 are limited. The ANAPC11 gene 
is widely spread across the cytoplasm and nucleus, and discrete 
aggregates can be observed in the granular structures (46). In northern 
blot hybridization, the signal intensity varied throughout the body and 
was higher in organs such as skeletal muscle, heart, brain and kidneys 
(46). ANAPC11 has notably high expression in particular cancer types 
and displays distinct expression profiles across different cancer cell 
lines (47). In contrast to the expression levels in normal tissues, 
ANAPC11 is overexpressed in leukemia and lung cancer cell lines 
(46). USP41 is overexpressed in lung cancer tissues, osteosarcoma cell 
lines, and breast cancer (48). These results suggest that the 
pathomechanism of MMD is complex and may be associated with 
certain tumor-promoting factors, which require further research.

In addition to gene factors, microenvironmental factors also play 
a role in MMD pathogenesis (3, 4). Immune factors are extensively 
involved in the composition of the microenvironment. Due to the 
absence of pathological evidence, it is not clear if inflammatory and 
immune factors have an impact on the pathogenesis of 
MMD. Nevertheless, an immunohistochemical examination of 
autopsy specimens from MMD cases disclosed that the expression of 
immunoglobulin G in the internal elastic lamina of the internal 
carotid artery (ICA) and middle cerebral artery deviated from normal 
levels, which implies that the autoimmune response may play a role in 
the pathogenesis of MMD (49). In addition, a high-density 
autoantibody array revealed that the levels of 165 autoantibodies in 
the serum of MMD patients were elevated relative to the control 
group, and six of these autoantibodies were identified as being specific 
to MMD (50). Recently, bioinformatics studies have reported the 
involvement of immune cell infiltration and activity in MMD 
progression (14, 15). Nevertheless, additional research is essential to 
clarify the role of autoimmunity in the progression of MMD. To delve 
deeper into the potential molecular mechanisms underlying MMD 
progression, we  analyzed the connection between the key genes 
identified above and immune infiltration. Initially, we utilized the 
ssGSEA algorithm to quantify the immune cells within the expression 
profiles, aiming to infer the relative proportions of 29 types of 
immune-infiltrating cells. The results indicated that the levels of HLA, 
Tfh, and TIL in the MMD group were notably higher than those in the 
control group. We  then employed Spearman’s rank correlation 
coefficient to explore the correlations between the three key genes and 
immune cells. The results showed that ANAPC11 had a significant 
negative correlation with HLA, macrophages, and MHC class I; 
UCHL1 exhibited a significant negative correlation with the type 
I IFN response and HLA, whereas USP41 demonstrated a significant 
positive correlation with the type I IFN response, CCR, type II IFN 
response, plasmacytoid dendritic cells (pDCs), neutrophils, 
inflammation, TILs, and B cells.

Moreover, we  employed the TISIDB database to explore the 
relationships between the three key genes and diverse immune 
elements, such as immunostimulatory factors, immunosuppressive 
factors, chemokines, and receptors. Our findings revealed that these 
key genes were intimately linked to the extent of immune cell 
infiltration and potentially held a crucial position within the 
immune microenvironment.

Furthermore, we  conducted an in-depth enrichment analysis 
focusing on the three key genes associated with MMD. The results 
demonstrated that the pathways enriched by ANAPC11 encompassed 

neutrophil extracellular trap formation, olfactory transduction, and 
oxidative phosphorylation. For UCHL1, the enriched pathways 
involved base excision repair, the Hippo signaling pathway, as well as 
Th1 and Th2 cell differentiation. Regarding USP41, the chemokine 
signaling pathway, the NF-kappa B signaling pathway, and the 
phagosome were among the enriched pathways. Neutrophil 
extracellular traps (NETs) are DNA structures decorated with 
cytosolic, granular, and nuclear proteins that can entrap 
microorganism, and the release of NETs might be  influenced by 
unbalanced immune responses, leading to a variety of disorders (51). 
Mechanisms underlying NET formation are complex (52). There are 
several known mechanisms for NET formation, and this process 
varies in different physiological environments, including blood and 
tissues, and under alkaline or hypertonic conditions (52). NETs could 
induce a wide range of pathological processes and plays a role in 
autoimmune immunodeficiencies, diabetes and cardiovascular 
diseases, tumors and cystic fibrosis (51). One of the pathogenic 
functions of NET is occlusion, in which NETs frequently converge in 
intravascular thrombi and occluded conduits, blocking the circulation 
and secretion of blood and other fluids (53). Base excision repair can 
correct oxidative, deamination, alkylation, and basic single-base 
damage. Base excision repair (BER) genes deficiency contributes to 
cancer, inflammation, aging, and neurodegenerative disorders (54). 
The Hippo pathway has now been implicated in a variety of human 
diseases such as cancer, autoimmunity and so on (55). The 
transcription factor family of NF-kappa B serves as a crucial stress-
responsive element within the cellular milieu, and it exerts a regulatory 
function over the expression of key genes related to multiple biological 
processes, such as immunity, inflammation, cell death, and 
proliferation (56). Studies have shown that RNF213 can also enhance 
NF-kappa B activation, which might be  part of the pathological 
process of MMD (13). Thus, the outcomes of these pathway analyses 
further indicate that the three key genes may play critical regulatory 
roles in the pathogenesis of MMD. However, the specific mechanisms 
of these pathways in MMD remain unclear. And incorporating more 
experimental validation can be  further explored to enhance the 
persuasiveness of the conclusions. Our team will continue to 
investigate the potential pathways of ubiquitination in MMD in 
future studies.

We predicted the key gene-associated transcription factors and 
constructed transcriptional regulatory networks using the 
Cistrome database. A total of 76 transcriptional regulators were 
predicted by ANAPC11, 97 by UCHL1, and 99 by USP41. The 
appearance of proteins during MMD progression were modified 
by gene-miRNAs by targeting their primary targets. In our 
research, we built a gene-miRNA regulatory network. Employing 
the Mircode database for the purpose of anticipating the 
expression patterns of these pivotal genes in reverse, we obtained 
30 miRNAs and 40 mRNA-miRNA relationship pairs. These 
miRNAs can be  targeted for intervention in the study of 
MMD pathogenesis.

We retrieved MMD-related genes from the GeneCards database. 
We selected the genes with the highest relevance scores and conducted 
an analysis of the expression variations between the MMD group and 
the control group to reduce redundancy. The results indicated that 
there were significant differences in the expression levels of ADA, 
ADARB2, APOA1, CALCR, DHX9, DOCK9, EXO1, GPR152, ISG15, 
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ONECUT1, and SMPDL3B between the two groups. Moreover, 
we examined the correlations between the expression levels of the 
three key genes and those of several selected genes. It turned out that 
USP41 and EXO1 were significantly positively correlated (Pearson’s 
r = 0.63), while UCHL1 and ISG15 were significantly negatively 
correlated (Pearson r = −0.544). ISG15, an interferon-stimulated 
ubiquitin-like protein, attaches to substrate proteins through a process 
known as ISGylation, playing a role in the body’s defense against 
microbial infections (57). Interferon is capable of triggering the 
ISGylation and oligomerization of RNF213 on lipid droplets, during 
which RNF213 acts as a detector for ISGylated proteins, suggesting 
that it serves as a vital antimicrobial effector (57). Further research is 
essential to clarify the roles these genes play in the 
development of MMD.

In addition, our study identified 13 potential medications or 
chemical entities as treatment options for MMD by focusing on key 
ARGs. The top  150 genes with differentially upregulated and 
downregulated expressions were grouped into two categories, and the 
Connectivity Map database was utilized for drug prediction. The 
outcomes indicated that the expression profiles of drug interferences 
like benzohydroxamic-acid, PKC-beta inhibitor, quinoclamine, and 
XMD-1150 were more remarkably negatively correlated with the 
expression profiles of MMD-related interferences. Previous 
observations suggest that benzohydroxamic-acid may inhibit tumor 
cell proliferation and metastasis through various mechanisms (58). 
The results suggest benzohydroxamic-acid may inhibit the 
proliferation and migration of vascular smooth muscle cells in 
MMD. Research data indicates that PKC-beta inhibitors help reduce 
the risk of severe cardiac microvascular ischemia/reperfusion injury 
in diabetic rats by maintaining endothelial barrier function and 
exerting anti-apoptotic effects (59). It may also play an endothelial 
protective role in MMD. The XMD-1150 compound has the potential 
to target one or multiple autophagy hub genes, thereby expediting the 
modulation of autophagy in the context of cancer therapy (60). By 
targeting one or multiple autophagy hub genes, XMD1150 could 
expedite the modulation of autophagy, a process crucial for cellular 
homeostasis and clearance of damaged or unnecessary cellular 
components. In the context of moyamoya disease, which involves 
abnormal blood vessel formation and ischemia, autophagy 
modulation might help to regulate vessel growth, reduce 
inflammation, or enhance the clearance of debris, thereby 
contributing to therapeutic benefits. These results imply that these 
drugs may be capable of alleviating or even reversing the condition 
of MMD. However, further research is needed to fully elucidate the 
specific pathways and mechanisms through which these drugs exert 
its effects in MMD treatment.

In summary, the expression level of UCHL1 gene is significantly 
reduced in MMD, which may affect the pathogenesis of MMD by 
promoting the migration of vascular smooth muscle cells. ANAPC11, 
UCHL1, and USP41 ubiquitination related genes may be significantly 
associated with the pathogenesis of MMD. In depth research on this 
correlation, in vitro and in vivo validation of gene miRNA regulatory 
networks, exploration of potential therapeutic drugs for MMD, and 
validation of drug effects are important directions for future research. 
There is a significant correlation between ubiquitination and the 
pathogenesis of MMD. The in-depth study of this correlation, the 
in  vitro and in  vivo validation of the gene-miRNA regulatory 

network, the exploration of potential therapeutic drugs for MMD, 
and the validation of drug effects are important directions for 
future research.

This study has several limitations. First, although we used a variety 
of methods in the feature selection process and verified the stability of 
the model through cross-validation, the sample size of this study still 
could lead to overfitting which might limit the reliability of the study 
model and the reliability of the identified ubiquitin-related genes. 
We also plan to expand the sample size in future studies, particularly 
by including blood and surgical specimens from children and adult 
MMD patients with fewer comorbidities, to conduct an in-depth 
investigation of ubiquitination-related genes in MMD. Secondly, in 
the selected datasets, control samples were obtained from patients 
with other diseases. Given the potential genetic and 
microenvironmental impacts of other diseases, the data from the 
control group might diverge from that of normal samples at the 
transcriptional level. Harvesting normal blood vessels from healthy 
controls is essential for ethical reasons. Therefore, it is acceptable to 
use samples from patients with other diseases as controls when 
studying MMD. Third, the results were based on bioinformatics and 
in  vitro experiments which only verified the effect of UCHL1 on 
smooth muscle migration. Further animal experiments are crucial for 
verifying the role of ubiquitination modification in the pathogenesis 
of MMD. However, there are currently no animal models for MMD, 
and our findings provide a new potential theoretical basis for the 
development of an MMD animal model. Our team will continue to 
invest in research aimed at establishing a suitable animal model 
for MMD.

Conclusion

In our study, these three ubiquitination-related genes, namely 
ANAPC11, UCHL1, and USP41, were identified as the key genes that 
might be involved in the pathogenesis of MMD, and these genes were 
closely associated with multiple signaling pathways of protein 
modification, autoimmune, immune response, neutrophil 
extracellular trap formation, base excision repair, Hippo signaling 
pathway, and NF − kappa B signaling pathway. In addition, 
we  verified that the level of serum UCHL1 expression in MMD 
disease was significantly reduced by external data and in  vitro 
experiments, and that UCHL1 gene knockout could promote the 
migration of vascular smooth muscle cells. These results suggest that 
UCHL1 may affect the migration ability of vascular smooth muscle 
cells through mechanisms such as ubiquitination modification, and 
thus participate in the pathogenesis of MMD. Using these three key 
genes, we  identified two secondary genes: EXO1 and ISG15. 
Furthermore, we constructed a gene-miRNA network containing 30 
miRNAs. Finally, we predicted that drugs targeting key genes might 
be effective in treating MMD.
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